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Purpose: Birth weight has a profound long-term impact on individual’s predisposition to 
various diseases at adulthood—a hypothesis commonly referred to as the fetal origins of 
adult diseases. However, it is not fully clear to what extent the fetal origins of adult diseases 
hypothesis holds and it is also not completely known what types of adult diseases are 
causally affected by birth weight.

Materials and methods: Mendelian randomization using multiple genetic instruments 
associated with birth weight was performed to explore the causal relationship between 
birth weight and adult diseases. The causal relationship between birth weight and 21 
adult diseases as well as 38 other complex traits was examined based on data collected 
from 37 large-scale genome-wide association studies with up to 340,000 individuals of 
European ancestry. Causal effects of birth weight were estimated using inverse-variance 
weighted methods. The identified causal relationships between birth weight and adult 
diseases were further validated through extensive sensitivity analyses, bias calculation, 
and simulations.

Results: Among the 21 adult diseases, three were identified to be inversely causally 
affected by birth weight after the Bonferroni correction. The measurement unit of birth 
weight was defined as its standard deviation (i.e., 488 g), and one unit lower birth weight 
was causally related to an increased risk of coronary artery disease (CAD), myocardial 
infarction (MI), type 2 diabetes (T2D), and BMI-adjusted T2D, with the estimated odds 
ratios of 1.34 [95% confidence interval (CI) 1.17–1.53], 1.30 (95% CI 1.13–1.51), 1.41 
(95% CI 1.15–1.73), and 1.54 (95% CI 1.25–1.89), respectively. All these identified causal 
associations were robust across various sensitivity analyses that guard against various 
confounding due to pleiotropy or maternal effects as well as reverse causation. In addition, 
analysis on 38 additional complex traits did not identify candidate traits that may mediate 
the causal association between birth weight and CAD/MI/T2D.
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INTRODUCTION

Birth weight is a widely used surrogate measurement of 
intrauterine exposure (Peck et al., 2003) and early life 
development (Scharf et al., 2016), and is an indicator of 
intergenerational influences (Hackman et al., 1983). It has long 
been hypothesized that birth weight has a profound long-term 
impact on an individual’s predisposition to various diseases 
at adulthood—a hypothesis commonly referred to as the 
fetal origins of adult diseases (Barker, 1990; Lucas et al., 1999; 
Barker et al., 2002), which complements the selection in utero 
hypothesis (Bruckner and Catalano, 2018). Indeed, early registry 
and other observational studies have provided strong empirical 
evidence supporting an inverse association between birth weight 
and the risks of several adult diseases (Barker, 1990; Lucas et al., 
1999; Barker et al., 2002; Barker, 2004). Exemplary birth weight 
negatively associated diseases include lung disease (Barker et al., 
1991), coronary artery disease (CAD) and stroke (Lawlor et al., 
2005), blood pressure (Curhan et al., 1996; Law and Shiell, 
1996), type 2 diabetes (T2D) (Harder et al., 2007), and asthma 
(Mu et al., 2014). In addition, recent studies have also revealed 
positive associations between birth weight and various types of 
cancers. Exemplary birth weight-associated cancers include renal 
cell cancer (Bergstrom et al., 2001), colorectal cancer (Sandhu 
et al., 2002), primary central nervous system tumor (Georgakis 
et al., 2017), prostate cancer (Zhou et al., 2016), bone tumor 
(Chen et al., 2015), and breast cancer (Xu et al., 2009). However, 
it remains unclear whether the identified associations between 
birth weight and the aforementioned adult diseases represent 
truly causal relationship, or are merely spurious associations 
caused by common confounding factors that occur during 
prenatal life (Barker, 1990; Leon, 1998; Law, 2002; Ruiz-Narvaez 
et al., 2014; Kahn et al., 2017) or confounding due to pleiotropy 
and shared genetic components (Lawlor et al., 2017). Common 
confounding factors, such as family socioeconomic position, 
parental education levels, or maternal lifestyles, can be associated 
with both birth weight and adult diseases and thus cause spurious 
association between the latter two. These confounding factors are 
often difficult to fully control for in observational studies (Lucas 
et  al., 1999). As a consequence, some identified associations 
between birth weight and adult diseases in early studies have 
not been validated in recent studies. For example, the inverse 
association between birth weight and adult blood pressure 
identified in early studies are later found to be a consequence of 
failure to adjust for adult weight or other factors (Leon, 1998; 
Lucas et al., 1999). As another example, potentially due to 
different confounding/mediation effects, different studies show 
conflicting results with regard to the association between birth 

weight and T2D: T2D risk is positively associated with birth 
weight in some studies but negatively associated with birth 
weight in others (Johnsson et al., 2015; Beaumont et al., 2017). 
Even in a previous twins-pair study that may well control for 
possible confounding due to socioeconomic, environmental, and 
genetic factors, it is not fully understood whether birth weight 
is causally associated with CAD or stroke in adulthood (Oberg 
et al., 2011). Therefore, it is not completely clear to what extent 
the fetal origins of adult diseases hypothesis holds and it is also 
not completely clear what types of adult diseases are causally 
affected by birth weight (Law, 2002; Kahn et al., 2017).

Understanding the long-term causal impact of birth weight on 
individual’s predisposition to various disease risks is important 
from a public health perspective, as a better understanding can pave 
ways for using early nutritional intervention that can potentially 
increase birth weight to reduce disease burden in later life 
(Ramakrishnan, 2004). Exemplary early nutritional intervention 
includes iron supplement (Cogswell et al., 2003). However, 
determining the causal impact of birth weight on various adult 
diseases through traditional randomized intervention studies is 
challenging, as such studies necessarily require long-term follow-
ups and are time-consuming, expensive, and often times unethical 
(Lucas, 1998; Eriksson et al., 2001; Lawlor et al., 2017). Therefore, 
it is desirable to determine the causal relationship between birth 
weight and various adult diseases through observational studies 
(Sheehan et al., 2008). A powerful statistical tool to determine causal 
relationship and estimate causal effects in observational studies is 
Mendelian randomization (MR). MR adapts the commonly used 
instrumental variable analysis method developed in the field of 
causal inference to settings where genetic variants are served as 
instrumental variables (Angrist et al., 1996; Greenland, 2000). In 
particular, MR employs genetic variants as proxy indicators (i.e., 
instrumental variables) for the exposure of interest (i.e., birth 
weight) and uses these genetic variants to assess the causal effect 
of the exposure on the outcome variable of interest (i.e., adult 
diseases) (Figure 1) (Sheehan et al., 2008). Because genetic variants 
are measured with high accuracy and capture long-term effect of 
the exposure, MR analysis results are often not susceptible to bias 
caused by measurement errors that are commonly encountered 
in randomized intervention studies (Haycock et al., 2016). In 
addition, because the two alleles of a genetic variant are randomly 
segregated during gamete formation and conception under the 
Mendel’s law and because such segregation is independent of 
many known or unknown confounders, MR analysis results are 
also less susceptible to reverse causation and confounding factors 
compared with other study designs (Davey Smith and Ebrahim, 
2003). As a result, MR has become a popular and cost-effective 
analysis tool for causal inference in observational studies, avoiding 

Conclusions: The results suggest that lower birth weight is causally associated with 
an increased risk of CAD, MI, and T2D in later life, supporting the fetal origins of adult 
diseases hypothesis.

Keywords: birth weight, adult diseases, Mendelian randomization, causal association, genome wide association 
study, type 2 diabetes, coronary artery disease, myocardial infarction

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Association Between Birth Weight and Adult DiseasesZeng and Zhou

3 July 2019 | Volume 10 | Article 618Frontiers in Genetics | www.frontiersin.org

the need to record and control for all possible confounding factors 
present in the study.

Indeed, MR studies have been recently carried out to investigate 
the causal effect of birth weight on either CAD or T2D (e.g., Au 
Yeung et al., 2016; Wang et al., 2016), each with a relatively small 
sample size and subsequently a small set of valid instrumental 
variables. Unfortunately, for CAD, the causality result of birth 
weight does not hold in follow-up sensitivity analyses and is not 
robust with respect to the choice of statistical methods (Au Yeung 
et al., 2016; Wang et al., 2016). For T2D, sensitivity analyses were 
not carried out in the study (Scott et al., 2017), and it was thus 
unclear, for example, whether instrumental variable outliers 
selected in the study may impact the estimation of the causal 
effect of birth weight. Similar MR analyses on CAD, T2D, and 
breast cancer also were conducted in more recently published 
studies (Kar et al., 2018; Zanetti et al., 2018). Here, we perform 
a large-scale MR study to comprehensively investigate the causal 
effects of birth weight on a total of 21 diseases and 38 complex 
traits in adulthood. Our results are validated with a wide range of 
sensitivity analyses and simulations to ensure result robustness.

MATERIALS AND METHODS

We present a brief overview of the analysis procedure with 
technical details provided in Text S1–Text S4.

Data Sources
We first obtained summary statistics in terms of marginal 
effect size estimate of single nucleotide polymorphism (SNP) 
and its standard error on birth weight from the Early Growth 
Genetics (EGG) consortium study (Horikoshi et al., 2016). The 
EGG consortium study is the largest genome-wide association 
study (GWAS) to date on birth weight (a continuous trait) 
and contains association results for 16,245,523 genotyped and 
imputed SNPs based on up to 153,781 individuals collected 
from 35 studies (Table S1). Next, to examine the causal effect of 
birth weight on adult diseases, we collected summary statistics 
from corresponding GWASs for 21 diseases (Text S1). These 
diseases include advanced age-related macular degeneration 
(AMD) (Fritsche et al., 2016), Alzheimer’s disease (Lambert 
et al., 2013), Parkinson’s disease (Pankratz et al., 2012), chronic 
kidney disease (CKD) (Köttgen et al., 2010), celiac disease 
(Dubois et al., 2010), inflammatory bowel disease (IBD) (Liu 
et al., 2015), Crohn’s disease (CD) (Liu et al., 2015), ulcerative 
colitis (UC) (Liu et al., 2015), primary biliary cirrhosis (PBC) 
(Cordell et al., 2015), primary sclerosing cholangitis (PSC) (Ji 
et al., 2017), systemic lupus erythematosus (SLE) (Bentham 
et al., 2015), CAD (Nikpay et al., 2015), myocardial infarction 
(MI) (Nikpay et al., 2015), T2D (Scott et al., 2017), rheumatoid 
arthritis (RA) (The Wellcome Trust Case Control Consortium, 
2007), type 1 diabetes (T1D) (The Wellcome Trust Case Control 
Consortium, 2007), hypertension (The Wellcome Trust Case 

FIGURE 1 | Graphical illustration of Mendelian randomization (MR) analysis. Arrows or dot lines represent the presence or absence of associations, respectively. The 
MR analysis estimates the causal effect of birth weight to adult disease risk in the presence of various measured and unmeasured confounding factors by carefully 
selecting single nucleotide polymorphisms (SNPs) that are associated with birth weight to serve as instrumental variables. Valid MR requires these selected SNPs 
to satisfy three conditions: selected SNPs are strongly associated with birth weight (condition i); selected SNPs are not associated with any known or unknown 
confounders that are associated with both birth weight and disease (condition ii); selected SNPs are independent of adult disease conditional on birth weight 
(condition iii). Note that the effects of instrumental variables (G) on the exposure of interest (x) may be indirect and mediated through mediator variables. Exemplary 
traits include BMI (body mass index), T2D (type 2 diabetes), and CAD (coronary artery disease). The notations in the figure are defined further in Text S4.
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Control Consortium, 2007), ankylosing spondylitis (AS) 
(Burton et al., 2007), ischemic stroke (IS) (Malik et al., 2018), 
and multiple sclerosis (MS) (Burton et al., 2007). In addition 
to these diseases, we also explored 57 adult diseases from the 
UK Biobank (Sudlow et al., 2015) (Text S1). However, because 
the UK Biobank data set contains only a small number of cases 
for most of these diseases, we will only briefly mention our 
results on UK Biobank. Finally, to identify complex traits that 
may mediate the causal effect of birth weight on any identified 
adult disease, we obtained a GWAS summary statistics for 38 
complex traits in adulthood (Text S2). These traits include 
educational attainment (i.e., EduYears and College) (Rietveld 
et al., 2013), smoking behaviors (The Tobacco and Genetics 
Consortium, 2010), early growth traits (Cousminer et al., 
2013), blood lipid traits (Teslovich et al., 2010), glycemic and 
harmonic traits (Dupuis et al., 2010), and blood pressures 
(Richey Sharrett).

Selecting Instruments for Mendelian 
Randomization Analyses
We first selected 47 independent index SNPs (Table 1) to serve as 
valid instrumental variables for birth weight based on the EGG 
consortium study (Horikoshi et al., 2016) using plink (version 
v1.90b3.38) (Purcell et al., 2007) following previous work (Noyce 
et al., 2017) (Text S3). Next, for each disease in turn, we relied 
on the corresponding disease GWAS and extracted summary 
statistics on the disease for the 47 index SNPs of birth weight. 
For these index SNPs that do not have summary statistics in 
the corresponding disease, we either replaced them with proxy 
SNPs that are in high linkage disequilibrium (LD) with the 
index SNPs or imputed the summary statistics (Pasaniuc et al., 
2014) for the index SNPs—both approaches yield similar results 
(Text S3). While our main MR analyses were performed using 
the above 47 SNPs as instrumental variables, to examine the 
robustness of the results, we also performed an alternative MR 
analysis using a slightly different set of 48 SNPs. These 48 SNPs 
are presented in the original GWAS of birth weight (Horikoshi 
et al., 2016) and that are also independent SNPs showing 
strong association with birth weight (p < 5.00E−8) (Table S2).  
For each disease, we also examined another alternative set 
of birth weight instruments by following (Østergaard et al., 
2015) to exclude potentially pleiotropic SNPs, which show 
relatively strong associations with the given disease/trait  
(p < 1.06E−3, which is 0.05/47) (Text S3) (Lawlor et al., 2008; 
Sheehan et al., 2008). In this alternative analysis, the number of 
instruments excluded varies for different diseases and ranges 
from 1 (e.g., for AMD) to 18 (e.g., for height) (Table S3). We 
further performed another alternative analysis by removing 
instruments with possible pleiotropic effects with any disease/
outcome (p < 5.00E−8) recorded in the Phenoscanner (Staley 
et al., 2016) and NHGRI-EBI Catalog (MacArthur et al., 2017) 
databases. In this analysis, only a final set of 21 instruments 
were kept for birth weight. Additionally, seven independently 
associated SNPs yielded from Horikoshi et al. (2013) (Table S4) 
are also employed to be instruments for further validation.

Mendelian Randomization, Sensitivity 
Analyses, and Multivariable Analyses
With the above data, we performed MR analyses. Details of 
MR are described in Text S3. Briefly, for each SNP in turn, we 
first estimated the proportion of phenotypic variance explained 
(PVE) by the SNP using summary statistics (Shim et al., 2015) 
and computed F statistic to ensure strong instrument (Cragg and 
Donald, 1993; Burgess et al., 2017a). We then performed MR 
analyses using the random-effects version of the inverse-variance 
weighted (IVW) methods (Burgess et al., 2017a) to estimate and 
test the causal effects of birth weight on each of the 21 adult 
diseases. During the process, we employed Q and I2 statistics 
to measure causal effect size heterogeneity across instruments 
(Thompson and Sharp, 1999) and performed power calculation 
using analytic forms (Brion et al., 2013; Freeman et al., 2013; 
Burgess, 2014).

For each disease identified to be causally affected by 
birth weight in the MR analyses, we performed a series of 
sensitivity analyses to ensure results robustness. Specifically, 
we performed a median-based MR analysis to guard against 
outlying instruments (Bowden et al., 2016a). We conducted a 
leave-one-out (LOO) cross-validation analysis (Noyce et al., 
2017) and Mendelian Randomization Pleiotropy RESidual Sum 
and Outlier (MR-PRESSO) analysis (Verbanck et al., 2018) to 
directly examine potential instrument outliers. We carried out 
MR-Egger regression to examine the assumption of directional 
pleiotropic effects (Bowden et al., 2016b; Burgess and Thompson, 
2017). To examine the potential influence of maternal genetic 
effects (Horikoshi et al., 2016), we performed an additional 
sensitivity analysis by excluding SNPs that affect birth weight 
through maternal effects (Lawlor et al., 2017; Beaumont et al., 
2018; Zanetti et al., 2018). We attempted to directly control for 
maternal effects (Table S5) in the analysis of birth weight effect 
on diseases using a genetic-score based approach. We also carried 
out bias calculations and used simulations to examine the impact 
of maternal effects on causal effect estimations (Vanderweele and 
Arah, 2011; Lawlor et al., 2017) (Text S4). We performed reverse 
causal inference to examine the possible reverse causality from 
diseases to birth weight. We also applied a recently developed 
analysis method iMAP (Zeng et al., 2018) to jointly model all 
genome-wide SNPs to provide supportive evidence on the 
directionality of the causal relationship between birth weight and 
these identified diseases.

Finally, we investigated whether any of the 38 complex traits 
may mediate the causal effect of birth weight on the identified 
adult diseases. To do so, we first performed MR analysis to 
examine whether birth weight causally affect any of the 38 
complex traits. In particular, for each of the 38 traits in turn, we 
extracted summary statistics from the corresponding GWAS 
for the 47 instrumental variables of birth weight. We replaced 
missing SNPs with proxy ones when necessary and applied the 
IVW methods following the same procedure as described above. 
Next, we performed a multivariable MR analysis (Do et al., 2013; 
Burgess and Thompson, 2015; Burgess et al., 2017b) for each 
pair of identified trait and disease to investigate whether any of 
these complex traits may mediate the causal effect of birth weight 
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on the identified disease. The multivariable MR analysis allows 
us to estimate and test both the direct effect of birth weight on 
the disease and the indirect effect of birth weight on the disease 
through the complex trait (Burgess et al., 2017b).

Note that, for some sensitivity analyses above (e.g., MR-EGGER 
and IMAP), we mostly followed the practical recommendations 
of other Mendelian randomization and performed them only 
when a significant causal association between birth weight and 
an adult disease (e.g., CAD) was detected.

RESULTS

Mendelian Randomization Identifies Three 
Adult Diseases That Are Causally Affected 
by Birth Weight
We first selected a set of 47 SNPs from a large-scale GWAS for 
birth weight based on 143,677 individuals to serve as instrumental 
variables for birth weight (Table 1 and Figure S1). We examined 
the strength of these instruments using F statistic based on the 

TABLE 1 | Summary information for the 47 autosomal SNPs that are used as instrumental variables in the MR analysis.

Chr SNP Position Gene Allele MAF BETA SE p N PVE F

7 rs138715366 44,246,271 YKT6-GCK T/C 0.01 −0.2412 0.0229 7.20E−26 132,343 8.38E−04 110.99
17 rs144843919 29,037,339 SUZ12P1-CRLF3 A/G 0.04 −0.0660 0.0116 1.40E−08 121,357 2.67E−04 32.41
3 rs900399 156,798,732 CCNL1-LEKR1 G/A 0.39 −0.0523 0.0039 2.20E−41 143,663 1.25E−03 179.80
22 rs41311445 42,070,374 SREBF2 C/A 0.10 −0.0445 0.0066 1.60E−11 135,729 3.35E−04 45.48
6 rs35261542 20,675,792 CDKAL1 A/C 0.27 −0.0444 0.0041 4.40E−27 143,667 8.16E−04 117.33
2 rs7575873 23,962,647 ATAD2B G/A 0.12 −0.0384 0.0057 1.20E−11 139,425 3.25E−04 45.33
6 rs10872678 152,039,964 ESR1 C/T 0.28 −0.0375 0.0041 6.90E−20 143,672 5.82E−04 83.66
21 rs2229742 16,339,172 NRIP1 C/G 0.13 −0.0360 0.0060 2.20E−09 143,672 2.51E−04 36.07
4 rs4144829 17,903,654 LCORL T/C 0.73 −0.0341 0.0042 5.30E−16 139,426 4.73E−04 65.98
8 rs13266210 41,533,514 ANK1-NKX6-3 G/A 0.21 −0.0308 0.0045 1.30E−11 139,429 3.36E−04 46.86
6 rs1187118 34,169,020 HMGA1 T/A 0.83 −0.0299 0.0051 3.60E−09 137,043 2.51E−04 34.41
10 rs2497304 94,492,716 HHEX-IDE T/C 0.48 −0.0282 0.0037 2.60E−14 143,673 4.04E−04 58.07
9 rs7854962 96,900,505 PTCH1 G/C 0.22 −0.0279 0.0046 1.90E−09 139,424 2.64E−04 36.82
5 rs854037 57,091,783 5q11.2 G/A 0.19 −0.0268 0.0048 2.20E−08 139,429 2.24E−04 31.24
7 rs11765649 23,479,013 IGF2BP3 C/T 0.25 −0.0267 0.0043 5.80E−10 139,428 2.76E−04 38.49
20 rs28530618 31,275,581 C20orl203 G/A 0.51 −0.0261 0.0038 7.70E−12 138,162 3.41E−04 47.13
15 rs7402982 99,193,269 IGF1R G/A 0.57 −0.0232 0.0039 2.30E−09 139,423 2.54E−04 35.42
8 rs12543725 142,247,979 SLC45A4 A/G 0.41 −0.0231 0.0038 1.20E−09 139,431 2.65E−04 36.96
7 rs798498 2,795,882 GNA12 G/T 0.31 −0.0229 0.0040 1.30E−08 139,427 2.35E−04 32.77
3 rs2168443 46,947,087 PTH1R A/T 0.62 −0.0228 0.0039 3.50E−09 139,426 2.45E−04 34.17
15 rs12906125 91,427,612 FES A/G 0.32 −0.0228 0.0040 1.70E−08 141,281 2.30E−04 32.50
22 rs134594 29,468,456 KREMEN1 T/C 0.65 −0.0227 0.0040 1.00E−08 137,340 2.34E−04 32.14
13 rs7998537 40,662,742 LINC00332 A/G 0.32 −0.0222 0.0040 3.90E−08 139,429 2.21E−04 30.82
3 rs10935733 148,622,968 CPA3 C/T 0.59 −0.0221 0.0039 9.20E−09 139,426 2.30E−04 32.07
12 rs2306547 26,877,885 ITPR2 T/C 0.46 −0.0211 0.0037 1.80E−08 139,432 2.33E−04 32.49
9 rs1411424 113,892,963 LPAR1 A/G 0.52 0.0212 0.0038 2.20E−08 139,428 2.23E−04 31.10
6 rs9368777 33,788,637 HMGA1 C/G 0.58 0.0215 0.0038 2.20E−08 135,709 2.36E−04 32.03
17 rs72833480 45,964,861 SP6-SP2 A/G 0.29 0.0226 0.0041 4.60E−08 139,426 2.18E−04 30.40
20 rs6040076 10,658,882 JAG1 C/G 0.49 0.0231 0.0039 2.00E−09 139,424 2.52E−04 35.14
16 rs28415607 19,993,015 GPR139 C/T 0.25 0.0233 0.0043 5.00E−08 143,660 2.04E−04 29.31
20 rs6016377 39,172,728 MAFB T/C 0.43 0.0239 0.0039 9.50E−10 139,425 2.69E−04 37.51
5 rs2946179 157,886,627 EBF1 C/T 0.73 0.0240 0.0042 1.30E−08 143,666 2.27E−04 32.62
4 rs2131354 145,599,908 HHIP A/G 0.53 0.0259 0.0037 4.10E−12 139,431 3.51E−04 48.96
1 rs3753639 154,986,091 ZBTB7B C/T 0.24 0.0306 0.0045 7.30E−12 138,162 3.35E−04 46.30
17 rs113086489 7,171,356 CLDN7 T/C 0.56 0.0307 0.0038 9.10E−16 139,426 4.68E−04 65.28
1 rs72480273 161,644,871 FCGR2B C/A 0.17 0.0313 0.0051 8.00E−10 138,380 2.72E−04 37.65
1 rs2473248 22,536,643 WNT4-ZBTB40 C/T 0.87 0.0325 0.0057 1.00E−08 139,428 2.33E−04 32.49
13 rs1819436 78,580,283 RNF219-AS1 C/T 0.87 0.0329 0.0057 6.30E−09 138,979 2.40E−04 33.36
9 rs10818797 126,020,405 STRBP C/T 0.14 0.0345 0.0054 1.20E−10 139,427 2.93E−04 40.86
10 rs740746 115,792,787 ADRB1 A/G 0.73 0.0364 0.0042 3.80E−18 143,672 5.23E−04 75.18
10 rs79237883 104,940,946 NT5C2 C/T 0.08 0.0371 0.0067 3.50E−08 143,666 2.13E−04 30.61
12 rs7964361 102,994,878 IGF1 A/G 0.09 0.0391 0.0067 4.70E−09 139,428 2.44E−04 34.03
3 rs11719201 123,068,744 ADCY5 T/C 0.23 0.0463 0.0044 2.40E−26 143,670 7.70E−04 110.71
2 rs17034876 46,484,310 EPAS1 T/C 0.70 0.0471 0.0042 2.60E−29 134,460 9.34E−04 125.70
11 rs72851023 2,130,620 INS-IGF2 T/C 0.07 0.0476 0.0075 2.90E−10 135,776 2.97E−04 40.34
7 rs111778406 72,957,570 MLXIPL G/A 0.07 0.0492 0.0075 5.80E−11 140,932 3.05E−04 43.00
9 rs3780573 98,239,503 PTCH1 A/G 0.10 0.0555 0.0064 7.00E−18 134,750 5.58E−04 75.23

These SNPs are associated with birth weight at the genome-wide significance level (p < 5.00E−08) in a meta-analysis with up to 143,677 individuals of European ancestry. 
SNPs are ordered based on their effect size estimates. All the genes (fourth column) were reported to be associated with birth weight in previous GWASs (Horikoshi et al., 2013; 
Horikoshi et al., 2016). Chr, chromosome; SNP, single-nucleotide polymorphism id; Position, genome position in base pair; Allele, effect allele and alternative allele; MAF, minor 
allele frequency; BETA, SNP effect size; SE, standard error; PVE, proportion of variance in birth weight explained by the SNP; p, N, and F represent p value, sample size, and F 
statistic, respectively.
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EGG GWAS discovery sample of birth weight following (Noyce 
et al., 2017) (Text S3). For the 47 instrumental variables, their 
F statistics individually range from 29.36 to 179.83 (Table 1) 
with an overall F statistic of 49.22 for all 47 instruments. These 
values are all above the usual threshold of 10, suggesting that the 
selected genetic variants have sufficiently strong effect sizes to be 
used as instrumental variables and that weak instrument bias is 
unlikely to occur in our analysis.

We examined the causal relationship between birth weight 
and 21 adult diseases through MR analysis using the selected 
instruments. Across 21 diseases, we displayed the causal effects of 
lower birth weight instead of birth weight in all figures and tables 
throughout the text by supplying a negative sign on the estimated 
birth weight effect (Figure 2 and Table S6). We found that lower 
birth weight is causally associated with increased risks for three 
diseases after Bonferroni correction (i.e., p-value threshold of 
0.05/21 = 2.38E−3). These three diseases include CAD (Nikpay 
et al., 2015), MI (Nikpay et al., 2015), and T2D (both in terms 
of the original T2D status and in terms of T2D_BMI, which 
represents the T2D status after adjusting for BMI) (Scott et al., 
2017). Because we identified effect size heterogeneity across 
the 47 instruments (Table S6; p values based on Q statistic are 
7.41E−1, 1.42E−2, 1.40E−4, and 1.92E−2, and the I2 statistics are 
0%, 33.1%, 48.9%, and 31.8% for CAD, MI, T2D, and T2D_BMI, 
respectively), we choose to mainly present our results from the 
random-effects IVW analysis, which properly accounts for causal 
effect heterogeneity.

For each of the three diseases, we compute the odds ratio 
(OR) of the disease for one unit decrease of birth weight, 
where the unit is defined as the standard deviation of birth 
weight, estimated to be 488  g across 35 studies in the original 

meta-analysis (Table S1) (Horikoshi et al., 2016). We found that 
a unit lower birth weight is causally associated with an increased 
CAD risk with an estimated OR of 1.34 [95% confidence interval 
(CI) 1.17–1.53, p = 1.54E−5]; a unit lower birth weight is causally 
associated with an increased MI risk with an estimated OR of 
1.30 (95% CI 1.13–1.51, p = 3.31E−4); a unit lower birth weight 
is also causally associated with an increased T2D risk, with an 
estimated OR of 1.41 (95% CI 1.15–1.73, p = 1.11E−3) for the 
original T2D, and with an estimated OR of 1.54 (95% CI 1.25–
1.89, p = 6.07E−5) for the BMI-adjusted T2D (i.e., T2D_BMI). 
These causal associations are also supported by the results 
generated using the smaller set of instruments from Horikoshi 
et al. (2013) (Table S6).

Consistent with the fetal origins of adult diseases hypothesis, 
the causal effects of lower birth weight on most of the diseases 
investigated are estimated to be positive [14 out of 21 (66.7%), 
Table S6], though most of these estimates are not statistically 
significantly different from one. In addition, the estimated causal 
effects of lower birth weight on four diseases (MS, Parkinson’s 
disease, PBC, and PSC) in addition to the three diseases 
mentioned in the above paragraph are above OR of 1.2, though 
these estimates came with large standard errors. Power calculation 
results based on parameters estimated in the MR analysis also 
suggest that the nonsignificant results for the remaining diseases 
may be due to a lack of statistical power (Table S6). The lack of 
power for the remain diseases suggest that a lack of association 
between birth weight and these diseases should not be over-
interpreted and that larger sample sizes are needed to elucidate 
the causal effects of birth weight on these diseases.

Finally, besides these 21 diseases, we have also attempted 
to examine additional 57 adult diseases from the UK Biobank 

FIGURE 2 | Causal effect estimates and 95% confidence intervals for lower birth weight on 21 diseases using the random-effects inverse variance weighted 
(IVW) method. Diseases are ordered based on their causal effect estimates. Estimations are carried out using both index SNPs and proxy SNPs. The dot size is 
proportional to the number of instrumental variables used for the given disease while dot color represents significance (p < 0.05 are highlighted in red). Disease 
names (x-axis) are further highlighted in red if the causal effects are significant after Bonferroni correction (p < 0.05/21).
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(Table S7). Unfortunately, due to the extremely low number 
of cases (e.g., only 119 cases of Alzheimer’s disease) for most 
diseases there and the resulting low statistical power (Zhou et al., 
2018), we did not detect any statistically significant associations 
between birth weight and those diseases in the UK Biobank 
(Table S7).

Mendelian Randomization Results Are 
Robust With Respect to Instrument 
Outliers and the Choice of Instrumental 
Variables
We examine the causal relationship between birth weight and the 
three diseases (CAD, MI, T2D, and T2D_BMI) in details here. 
We first display the causal effects of lower birth weight for each 
of the three diseases estimated using individual instrumental 
variables in Figure 3. We also plot the SNP effect sizes on birth 
weight versus the effect sizes on these diseases in Figure 4. One 
SNP, rs138715366, appears to be an outlier for all these traits. 
rs138715366 has a low minor allele frequency (MAF = 0.89%), 
is located within the intronic regions of the gene YKT6-GCK 
on Chr 7, and has the largest effect size on birth weight among 
all instrument variables (= −0.24; with 95% CI −0.20 to −0.29, 
p = 7.20E−26; Figure S1 and Table 1). In addition, another SNP, 
rs144843919, also appears to be a potential outlier for CAD. 
The effect size of rs144843919 on birth weight is estimated to 
be −0.066 (95% CI −0.09 to −0.04, p = 1.40E−8). However, as 
we will show in the next paragraph, neither SNP has substantial 
influence on the estimation of the causal effects.

Next, we directly tested whether any instrument is an 
outlier for any of the four diseases using MR-PRESSO. The 
results show that no significant instrument outliers exist 
for the MR analysis of each of the three diseases (CAD, MI, 
T2D, or T2D_BMI) at the nominal significance level of 0.05. 
In addition, we performed LOO analyses, which are also 
stable and demonstrate that no single instrumental variable 
substantially influences the estimation of the casual effects 
of birth weight on the four traits (Figure S2). For example, 
after removing rs138715366, the ORs for a unit decrease 
of birth weight are estimated to be 1.34 (95% CI 1.20–1.49,  
p = 9.70E−8) for CAD, 1.30 (95% CI 1.15–1.47, p = 1.66E−5) 
for MI, 1.48 (95% CI 1.27–1.71, p = 2.66E−7) for T2D, and 
1.57 (95% CI 1.32–1.87, p = 3.95E−7) for T2D_BMI, almost 
identical to the ORs estimated using all these instrumental 
variables together (Figure 2).

Our primary results described in the previous section 
are based on using 47 instrumental variables. For certain 
diseases, summary statistics for some of the 47 index SNPs are 
unavailable. In these cases, we have used proxy SNPs that are in 
high LD using a certain correlation threshold. We found that our 
results are robust with respect to various correlation thresholds 
to obtain these proxy SNPs (Figure S3). Besides using proxy 
SNPs, we imputed summary statistics for the unavailable index 
SNPs and performed analysis using all index SNPs. Results 
with imputed summary statistics remain similar (Figure S4). 
We also performed analysis using only part of the 47 index 
SNPs that are available for the given disease, without using any 

proxy SNPs or imputation; we again obtained consistent results 
(Figure S5). Besides the analysis using a set of 47 instruments, 
we performed an alternative analysis by using another set of 
48 instrumental variables (Table S2) that are presented in the 
original meta-analysis study (Horikoshi et al., 2016). Again, the 
results are largely similar to those in our main analyses (Figures 
S6 and S7).

Various Sensitivity Analyses Further Validate 
the Main Mendelian Randomization Results
We performed sensitivity analyses to complement our main MR 
analysis results obtained with IVW. First, to guard against the 
possibility that some instruments are invalid, we conducted a 
MR analysis using the weighted median method (Bowden et al., 
2016a) for CAD, MI, T2D, and T2D_BMI. The weighted median 
estimate approach yields qualitatively similar results as our main 
analysis (Text S3), suggesting that invalid instruments unlikely 
bias our main results.

To guard against the possibility that the used instruments 
may display horizontal pleiotropy and thus bias causal effect 
estimation, we performed the MR-Egger regression (Bowden 
et al., 2016b; Burgess and Thompson, 2017) for the four traits. 
The results from the MR-Egger regression analysis are again 
consistent with our main results (Text S3 and Figure 2). In 
addition, none of the intercepts from MR-Egger regression are 
significantly deviated from zero: they are estimated to be 0.005 
(95% CI −0.010 to 0.020, p = 0.515) for CAD, −0.003 (95% 
CI −0.019 to 0.013, p = 0.756) for MI, −0.010 (95% CI −0.031 to 
0.012, p = 0.383) for T2D, and −0.003 (95% CI −0.026 to 0.019, 
p = 0.783) for T2D_BMI, respectively. Moreover, funnel plots 
also display symmetric pattern of effect size variation around 
the point estimate (Figure S8). Together, MR-Egger regression 
results and funnel plots suggest that horizontal pleiotropy 
unlikely bias our results. Furthermore, using the set of 
instruments that were left after excluding all possible pleiotropic 
instruments based on the Phenoscanner (Staley et al., 2016) and 
NHGRI-EBI Catalog (MacArthur et al., 2017) datasets, we can 
still obtain similar results. For example, the ORs of birth weight 
on CAD, MI, T2D, and T2D_BMI are estimated to be 1.26 (95% 
CI 1.04–1.54, p = 1.98E−2), 1.16 (95% CI 0.93–1.50, p = 0.176), 
1.78 (95% CI 1.32–2.40, p = 1.66E−4), and 1.83 (95% CI 1.30–
2.56, p = 5.14E−4), respectively.

One of the main difficulties in causal inference is to distinguish 
causality from reverse causality (Burgess et al., 2017a). Because 
of the time order and the fact that birth weight precedes adult 
diseases, the issue of reverse causation is unlikely a concern in our 
study. Nevertheless, to guard against the small possibility that our 
results are driven by reverse causality, we performed IVW analysis 
in the reverse direction to examine the causal effects of CAD, MI, 
T2D, or T2D_BMI on birth weight. Results show that there are no 
reverse causal associations between any of the four traits and birth 
weight as one would expect (Table S8 and Figure S10).

To complement the MR analysis, we also performed analysis 
using the recently developed iMAP method (Zeng et al., 2018). 
iMAP analyzes a pair of traits jointly and borrows information 
across all genome-wide SNPs to provide additional evidence 
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regarding the causal relationship between the two traits. In 
particular, iMAP estimates the proportion of SNPs associated 
with one trait that is also associated with the other. By estimating 
such proportions, iMAP has the potential to provide evidence 
supporting potentially directional causality between the two 
analyzed traits (Zeng et al., 2018). Here, we applied iMAP to 
analyze birth weight and each of the four traits at a time. We 
estimated the proportion of SNPs associated with birth weight 
that is also associated with CAD, MI, T2D, and T2D_BMI to 
be 0.125, 0.134, 0.452, and 0.472, respectively. In contrast, the 
proportion of SNPs associated with CAD, MI, T2D, and T2D_
BMI that is also associated with birth weight are only 0.053, 0.029, 
0.211, and 0.130, respectively. The asymmetrical probabilities 
estimated from iMAP suggest that SNPs associated with the birth 
weight are also more likely associated with the disease than the 
other way around. Therefore, iMAP provides additional genome-
wide evidence supporting the causal effects of birth weight on the 
identified diseases.

Causal Effects of Birth Weight on the 
Three Identified Diseases Are Not 
Mediated Through Other Complex Traits
We explored the causal pathways through which birth weight 
may causally affect the adult diseases. To do so, we obtained 35 
quantitative traits and 3 binary traits that may mediate the causal 
effects of birth weight onto diseases (Text S2). For each trait in 
turn, we estimated the casual effect of birth weight on the trait 
using all available instruments using IVW (Figure S11 and Table 
S9). Among all examined traits, we only identified adult weight 
to be causally affected by birth weight based on the Bonferroni 
adjusted significance threshold (p < 0.05/38). In particular, birth 

weight is positively associated with adult weight with the causal 
effect estimated to be 0.36 in the random-effects IVW analysis 
(95% CI 0.12–0.60, p = 3.18E−3).

The lack of significant causal effects of birth weight on 
most examined complex traits are consistent with the lack 
of significant causal effects of birth weight on some of the 
examined diseases described in the earlier section. For example, 
with currently available GWAS gene data sets for us, owing to 
lack of power resulting from small sample sizes (~9,000), in 
our analysis we cannot find evidence that supports the causal 
association between birth weight with both systolic blood 
pressure (SBP) and diastolic blood pressure (DBP) (estimated 
causal effect on SBP is 0.35, 95% CI −0.10 to 0.79, p = 0.127; 
estimated causal effect on DBP is 0.27, 95% CI −0.17 to 
0.71, p = 0.233) by random-effects IVW analysis. The lack of 
causal association between birth weight and blood pressure is 
consistent with our earlier result on a lack of detectable causal 
association between birth weight and hypertension. In addition, 
the lack of causal association between birth weight and many 
complex traits suggests that the causal effects of birth weight on 
CAD, MI, or T2D are unlikely to be mediated by blood pressures 
or many other complex traits, which is further confirmed by the 
following multivariable regression.

To examine the possibility that some complex traits (e.g., adult 
weight, BMI, blood pressures, blood lipids, or hypertension) 
may mediate the causal effect of birth weight on each of the 
four traits (i.e., CAD, MI, T2D, and T2D_BMI), we performed a 
comprehensive multivariable MR analysis for all the 38 complex 
traits (Text S2) (Burgess et al., 2017b). The results do not provide 
evidence supporting the mediator role of those complex traits 
in the relationship between birth weight and the three diseases 
including CAD, MI, and T2D (Table S10). For example, the 

FIGURE 3 | Causal effect estimates and 95% confidence intervals for lower birth weight on (A) CAD, (B) MI, (C) T2D, and (D) T2D_BMI. Estimations are carried out 
either using all SNPs (first column on x-axis) or using individual SNPs (the remaining columns on x-axis) based on Equation (14) in Text S3. Dot size is proportional 
to the effect size estimates, while dot color represents significance (p < 0.05 are highlighted in red). SNP that yields the largest causal effect estimate is also 
highlighted in red (x-axis).
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estimated direct effect for a unit lower birth weight for CAD, MI, 
T2D, and T2D_BMI are 1.28 (95% CI 1.09–1.50, p = 4.57E−3), 
1.28 (95% CI 1.07–1.52, p = 8.48E−3), 1.66 (95% CI 1.17–2.37, 
p = 6.84E−3), and 1.73 (95% CI 1.19–2.51, p = 6.28E−3). The 
estimated indirect effect of birth weight on CAD, MI, T2D, and 
T2D_BMI are 1.05 (95% CI 0.85–1.30, p = 0.653), 1.02 (95% CI 

0.84–1.23, p = 0.852), 0.85 (95% CI 0.56–1.28, p = 0.432), and 
0.89 (95% CI 0.58–1.37, p = 0.606), respectively. Therefore, the 
lack of detectable indirect effect suggests that either adult weight 
unlikely mediate the causal effect of birth weight on any of the 
three diseases or that we do not have sufficient power to detect 
such mediation effect.

FIGURE 4 | Relationship between the effect size estimates on lower birth weight (x-axis) and the effect size estimates on diseases (y-axis) for the 47 SNPs that 
serve as instrumental variables. Examined diseases include (A) CAD, (B) MI, (C) T2D, and (D) T2D_BMI. 95% confidence intervals for the estimated SNP effect 
sizes on disease are shown as vertical black lines, while the 95% confidence intervals for the estimated SNP effect sizes on birth weight are shown as horizontal 
black lines. The vertical and horizontal red dotted lines represent zero effects. The slope of fitted lines represents the estimated the casual effects of birth weight 
on the corresponding disease obtained using either the random-effects IVW method (red solid lines) or the MR-Egger regression (blue dotted lines). SNP outlier 
rs13875366 (chocolate dot) was not included in MR-Egger regression to avoid outlier influence. Due to the inclusion of an intercept in the MR-Egger regression, the 
fitted lines by MR-Egger regression (blue dotted lines) do not necessarily pass the origin.
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Special Sensitivity Analyses to Examine 
the Influence of Maternal Effects on the 
Main Mendelian Randomization Results
Finally, we performed additional sensitivity analyses to examine 
the influence of maternal effects on MR results (Text S4). First, 
we excluded among the set of 47 instruments those instruments 
that may potentially exhibit maternal effects on birth weights 
relying on a recent GWAS of maternal effects on birth weights 
(Beaumont et al., 2018). We deleted a total of 10 instruments 
and with the remaining 37 instruments, we estimated the ORs 
(again, after removing the potentially pleiotropic instruments as 
done above) for a unit decrease in birth weight to be 1.37 (95% 
CI 1.17–1.61, p = 8.18E−5) for CAD, 1.31 (95% CI 1.10–1.55, 
p = 1.90E−3) for MI, 1.42 (95% CI 1.11–1.80, p = 4.62E−3) for 
T2D, and 1.41 (95% CI 1.10–1.80, p = 6.35E−3) for T2D_BMI, 
respectively. The results are consistent with the main results, 
suggesting that maternal effects unlikely bias our estimates.

Second, we directly controlled for maternal effects in the 
analysis of birth weight on T2D using a genetic-score based 
approach. Specially, we first obtained two sets of birth weight 
instruments: one set contains instruments for offspring’s effect 
on birth weight (Horikoshi et al., 2016) (i.e., 47 index SNPs in 
Table 1) and another set contains for instruments for mother’s 
effect on birth weight (i.e., 10 index SNPs in Table S5). We 
constructed two genetic scores using these instruments in the 
Genetic Epidemiology Research on Aging (GERA) cohort 
(Banda et al., 2015): one genetic score is obtained using the 
offspring’s instruments and represents offspring effect, while 
another genetic score is obtained using mother’s instruments 
and represents maternal effect. Afterwards, we examined the 
relationship between offspring’s birth weight and adult T2D by 
fitting a logistic model, treating T2D as outcome and offspring’s 
genetic score as predictor, while controlling for mother’s genetic 
score and other covariates. The adjusted OR for lower birth 
weight on T2D is estimated to be 1.07 (95% CI 1.04–1.11, p = 
3.91E−6), again supporting our observation that the lower birth 
weight is a risk factor of adult diseases. We can only apply this 
analysis to T2D because we only have individual-level data for 
T2D in the GERA cohort.

Third, we performed simulations to evaluate the extent to 
which the maternal effects may influence the birth-weight causal 
effect estimation in MR (Figure S12) (Lawlor et al., 2017). The 
simulation results show that the causal effects of birth weight are 
indeed approximately unbiased when the maternal effect is in a 
reasonable range (Figure S13) (Horikoshi et al., 2016; Beaumont 
et al., 2018) (e.g., each instrument has a maternal effect that 
explains 0.1% or 0.01% of phenotypic variance in birth weight). 
Only when the maternal effect is unrealistically strong (e.g., each 
instrument explains 1% or 10% of phenotypic variance in birth 
weight due to maternal effects), then the causal effect estimates 
can be slightly biased upward. The approximate unbiasedness 
results in simulations suggest that our main MR results are 
unlikely biased by realistic maternal effects.

Finally, we performed direct calculation to estimate bias 
due to maternal effect confounding with realistic assumption. 
Intuitively, if we know what the maternal effect (denoted by ϑ) 

is and if we know the probability that a mother gives birth to 
an offspring with low birth weight (denoted by π), then, even 
if we do not observe the maternal alleles, we can still compute 
the estimation bias induced by maternal effect (Text S4). As an 
extreme example, if we set ϑ to be as high as 0.30 and set π to 
be either 6.9% (which represents the corresponding estimate 
in developed countries (Johnson et al., 2017)) or 28% (which 
represents corresponding estimate in developing countries 
(WHO, 2014)), then the estimation bias due to maternal effects 
is expected to be only 7.87% or 2.16%, respectively. Therefore, 
potential estimation bias due to maternal effects is expected to be 
small under realistic assumptions.

DISCUSSION

A Summary of Our Mendelian 
Randomization Analyses
We have investigated the fetal origins of adult diseases hypothesis 
by performing a series of comprehensive MR analyses to examine 
the causal effects of birth weight on 21 adult diseases and 38 other 
complex traits. Our study relies on summary statistics obtained 
from 37 GWASs with sample sizes ranging from 4,798 (for RA, 
The Wellcome Trust Case Control Consortium, 2007) to 339,224 
(for BMI, Locke et al., 2015), thus representing one of the largest 
and most comprehensive MR analyses performed on birth 
weight to date. The large sample size used in our study allows 
us to fully establish an inverse causal relationship between birth 
weight and three adult diseases that include CAD, MI, and T2D. 
These inferred causal relationships are robust with respect to the 
selection of instrumental variables and to the choice of statistical 
methods, and are carefully validated in the present study through 
various sensitive analyses. In addition, our analysis also suggests 
that the lack of causality evidence between birth weight and the 
other diseases may be partly due to a lack of statistical power 
resulting from relatively small sample sizes for the remaining 
diseases. Finally, we investigate the possibility that any of the 
analyzed 38 complex traits may mediate the causal effects of 
birth weight on CAD, MI, or T2D. Overall, our study provides 
important causality evidence supporting the fetal origins 
hypothesis for three adult diseases and suggests that increasing 
sample size is likely needed to reveal causal effects of birth weight 
for the other disorders.

The mechanisms underlying the causal associations between 
low birth weight and adult diseases (e.g., CAD or T2D) are not 
fully understood. Many previous studies have suggested that a 
lot of risk factors may mediate the causal effect of birth weight 
on adult diseases. For example, it has been shown that insulin 
resistance is likely a mediator of low birth weight effect on 
T2D (Dabelea et al., 1999). As another example, rapid weight 
gain during childhood following the low birth weight has been 
shown to be associated with increased risk of obesity and CAD 
(Andersen et al., 2010). Therefore, while we did not detect 
statistically significant traits that may mediate the effects of birth 
weight on adult diseases in the present study, we acknowledge 
that we were only able to analyze 38 complex traits that likely 
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represent only a small proportion of possible mediators and that 
our analysis on these complex traits may also lack power due to 
the relatively small sample sizes for these traits.

Comparison of Our Findings With Those  
in Previous Studies
The finding of the identified causal association between birth 
weight and CAD in our study is consistent with an early twin 
study (Oberg et al., 2011). This early twin study shows that there 
is statistically significant association between CAD risk difference 
and birth weight difference in dizygotic twin pairs, but there is no 
statistically significant association between the two in monozygotic 
twin pairs. Intuitively, if birth weight effect on CAD is indeed 
causal, then the genetic component of birth weight would be 
associated with the risk of CAD. Because monozygotic twins share 
the identical genetic component, genetics does not contribute to the 
birth weight difference between monozygotic twins. Subsequently, 
if birth weight is indeed causally associated with CAD, then one 
would expect no association between birth weight difference and 
CAD risk difference in monozygotic twins. In contrast, because 
dizygotic twins do not share identical genetic component, the 
genetic component underlying birth weight difference between 
dizygotic twins becomes a good indicator of CAD risk differences 
between dizygotic twins. From this aspect, the results from the 
previous twin study are consistent with the causal relationship 
between birth weight and CAD identified in the present study.

Our findings are complementary to and consistent with 
the previous observation study that showed an inverse genetic 
correlation between birth weight and adult diseases (Horikoshi et 
al., 2016). Our causality results are also consistent with some of 
the previous association results obtained using standard logistic 
regressions. For example, we have estimated the OR of T2D per 
488  g lower of birth weight to be 1.41, which is very close to a 
previous meta-analysis estimate obtained using logistic regression 
where the OR of T2D per 500 g lower of birth weight is estimated 
to be 1.47 (Harder et al., 2007). We have estimated the OR of CAD 
per 488 g lower of birth weight to be 1.34, which is also close to 
that obtained from a birth cohort study where the OR of CAD for a 
500 g decrease in birth weight is estimated to be 1.27 (Lawlor et al., 
2005). Our conclusions of T2D and CAD here are also consistent 
with those previously derived by a genetic risk score regression 
(Wang et al., 2016) and a similar MR analysis (Zanetti et al., 2018). 
In addition, our results suggest that the inverse causal associations 
of birth weight with CAD, MI, or T2D are not likely mediated by 
other risk factors such as blood pressures or adult weight, again in 
line with previous studies (Ruiz-Narvaez et al., 2014). Nevertheless, 
we also acknowledge that our results may appear to be inconsistent 
with those in (Zanetti et al., 2018) in terms of detecting the causal 
effects of birth weight on LDL, BMI, and 2-h glucose. However, 
for LDL and BMI, we note that our results are based on a more 
stringent p-value significance threshold adjusted by Bonferroni 
correction (to adjust for the multiple traits examined). Our results 
of birth weight on LDL or BMI are indeed marginally significant 
based on the normal p-value threshold of 0.05 with expected effect 
direction (i.e., negative effect on LDL and positive effect on BMI), 
and are thus consistent with (Zanetti et al., 2018). For 2-h glucose, 

we suspect that the difference in the SNP instruments used may 
lead to different power and thus different results. Importantly, 
compared to those previous MR studies (Au Yeung et al., 2016; 
Wang et al., 2016; Zanetti et al., 2018), our study has the following 
unique advantages: i) we employed a larger number of valid 
instruments that were obtained from larger scale GWASs; ii) we 
performed a more comprehensive analysis by considering a larger 
set of adult diseases and mediators; and iii) we carried out much 
more extensive sensitivity analyses and simulations to guarantee 
the robustness of our results, including sensitivity analyses with 
regard to pleiotropy and maternal effects.

Public Health Implications of Our Results
Our results on the causal effects of birth weight on multiple 
adult diseases have important implications from a public health 
perspective. The benefits of reasonably high birth weight in terms 
of reducing the risks of adult diseases suggest that strategies to 
increase birth weight (e.g., through iron supplement; Cogswell 
et al., 2003) may achieve health gains in later life. Importantly, 
such public health policy towards improving birth weight may 
have added more benefits in the developing counties than in the 
developed counties. For example, half of world’s low birth weight 
infants are born in South Asia (Sachdev, 2001); nutrition-based 
intervention towards improving birth weight (Ramakrishnan, 
2004) there may help curb the unusually high risks of CAD 
(Nair and Prabhakaran, 2012), MI (Wilkinson et al., 1996), 
and T2D (Gujral et al., 2013) in these developing counties (e.g., 
India, Pakistan, and Nepal). Additionally, as birth weight is often 
tied with social/economic status (Chomitz et al., 1995), some of 
these strategies intervening the modifiable risk factors to birth 
weight may have a higher impact in developing countries than in 
developed countries. Nevertheless, we also caution that, despite 
the potential benefits, increasing birth weight may have unwanted 
side effects. For example, it has been shown that extremely high 
birth weight can lead to childhood obesity, which is itself related 
to a series of poor health outcomes, likely due to the potentially 
U-shaped relationship between birth weight and various adult 
diseases (Harder et al., 2007). In addition, from a theoretical 
evolutionary biology perspective, growth and reproduction may 
be expected to trade-off against longevity; thus, growth promotion 
may reduce longevity. Careful examination of the potential benefits 
and side effects of high birth weight is needed in future studies.

Confounding of the Maternal Effects
Maternal effect is an important confounder for causal effect 
estimation of birth weight on adult diseases. In the present study, we 
have performed extensive simulations under realistic assumptions 
to examine the extent to which maternal effects may influence 
or bias causal effect estimation. In addition, we have carried out 
sensitivity analysis by carefully removing instruments that may 
exhibit potential maternal effects on offspring’s birth weights as 
well as sensitivity analysis by using a genetic-score based approach 
to directly control for maternal genetic effects. Our simulations 
and sensitivity analyses support the robustness of our causal effect 
estimation results and suggest that maternal effects unlikely affect 
causal effect estimation in the present study. The robustness of our 
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results with respect to maternal effect confounding is consistent 
with the early study of Horikoshi et al. (2016), which discovered 
that fetal effects, rather than maternal effects, mainly drive the 
discovered causal associations between birth weight and adult 
diseases. In particular, Horikoshi et al. (2016) provided two lines 
of supporting evidence: i) fetal SNPs explain about six times more 
heritability of birth weight than maternal effects [0.24 (se = 0.11) 
vs. 0.04 (se = 0.10)]; and ii) among all identified loci associated with 
birth weight, 93% SNPs exhibit larger fetal effects than maternal 
effects. Nevertheless, despite the strong evidence, we acknowledge 
that we do not have access to individual-level genotype information 
in the present study and that the data sets we have analyzed here 
do not contain mother–child pairs. Accurate disentangling of 
maternal and offspring effects on adult outcomes in the absence of 
child–mother pairs and/or individual-level genotype information 
is challenging and remains an active area of research (Eaves et al., 
2014; Lawlor et al., 2017; Warrington et al., 2018). Therefore, we 
remain cautious on our results and leave the study of maternal 
effect confounding as an important topic for future investigations.

Limitations of Our Study
Our analysis results are not without limitations. First, we 
acknowledge that there was a small overlap between individuals 
used in the EGG GWAS for birth weight (Table S1) and individuals 
used in the DIAGRAM GWAS for T2D (Table S11), suggesting that 
a small set of individuals are simultaneously used to obtain SNP 
effect size estimates for both birth weight and T2D. In particular, 
the European Prospective Investigation into Cancer and Nutrition 
(EPIC) study was included in both these two aforementioned 
GWASs with an overlapping sample size of ~9,000 individuals 
(8,939 in EGG and 9,292 in DIAGRAM). Sample overlapping is 
commonly encountered in GWAS-based MR analysis (Burgess 
et al., 2016) and can result in model overfitting and biased causal 
effect estimates. However, the proportion of individuals in the 
EPIC study is relatively small and represents only 6.22% of the 
EGG study and 5.86% of the DIAGRAM study, suggesting that 
the bias resulting from overlapped samples is neglectable (Burgess 
et al., 2016). In addition, there is no overlap between samples 
used in EGG (for birth weight) (Table S1) and samples used in 
CARDIoGRAMplusC4D (for CAD and MI) (Table S12). Second, 
for some complex traits, we had to use GWASs with relatively small 
samples due to data availability reasons. For example, we had to use 
summary statistics for blood pressures from the Atherosclerosis 
Risk in Communities (ARIC) GWAS cohort data (Text S2) (Richey 
Sharrett, 1992) with only 8,749 individuals. The ARIC sample 
size is small compared with the previous largest GWAS meta-
analysis for blood pressure that includes ~200,000 individuals 
(The International Consortium for Blood Pressure Genome-Wide 
Association Studies., 2011). However, this largest GWAS for blood 
pressure only released summary statistics in terms of the absolute 
effect size estimate but without the effect size direction/sign, and 
thus cannot be used in the present study. Besides the largest GWAS 
of blood pressure, we also examined the UK Biobank data (Sudlow 
et al., 2015) and obtained summary statistics available from the 
online MR-Base platform (Hemani et al., 2018) for blood pressures. 
Unfortunately, these two data sources contain part of the samples in  

the EGG study of birth weight without releasing detailed individual 
overlapping information, and thus cannot be used in the present 
study. Therefore, we had to use the ARIC data with a relatively 
small sample size and we emphasize that future research with larger 
samples to investigate blood pressures will likely be beneficial. 
Third, like many other MR applications, we have assumed a linear 
relationship between birth weight and adult diseases. It is certainly 
possible that non-linear relationships exist; for example, a U-shaped 
association pattern between birth weight and T2D was observed in a 
case control study for low birth weight (i.e., birth weight <2,500 g 
vs. > 2,500 g) (Harder et al., 2007). However, because birth weights 
for most individuals collected in the EGG study (Horikoshi 
et  al., 2016) are in the normal range (95% range is 2,492–4,405 
g; Table S1), a linearity assumption is likely a sensible choice for 
our study. Fourth, due to the use of GWAS summary statistics, 
we unfortunately cannot perform stratified analysis by gender 
and cannot estimate the causal effects of birth weight on adult 
diseases in males and females separately. Therefore, we are unable 
to validate different gender-specific causal effects of birth weight on 
adult diseases that are observed in early studies (Barker et al., 2002). 
Fifth, similar to other MR studies, our study cannot also be fully 
immune to confounding biases that are commonly encountered in 
observational studies. For example, birth weight is typically related 
to the socioeconomic position, which may not completely be ruled 
out in MR studies. Sixth, our study focuses only on European 
population, and future studies are needed to investigate whether 
our conclusions can be generalized to other human populations.

CONCLUSION

Our results suggest that lower birth weight is causally associated 
with an increased risk of CAD, MI, and T2D in later life, 
supporting the fetal origins of adult diseases hypothesis.
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