
1 July 2019 | Volume 10 | Article 626

REVIEW

doi: 10.3389/fgene.2019.00626
published: 18 July 2019

Frontiers in Genetics | www.frontiersin.org

Edited by: 
William Cho,  

Queen Elizabeth Hospital (QEH), 
Hong Kong

Reviewed by: 
Sumit Arora,  

University of South Alabama,  
United States 

Venugopal Thayanithy,  
University of Minnesota,  

United States

*Correspondence: 
Ranji Cui 

cuiranji @jlu.edu.cn 
Xuewen Zhang 

zhang-xuewen@hotmail.com

Specialty section: 
This article was submitted to RNA,  

a section of the journal  
Frontiers in Genetics

Received: 01 November 2018
Accepted: 17 June 2019
Published: 18 July 2019

Citation: 
Cui M, Wang H, Yao X, Zhang D, 
Xie Y, Cui R and Zhang X (2019) 

Circulating MicroRNAs in Cancer: 
Potential and Challenge.  

Front. Genet. 10:626.  
doi: 10.3389/fgene.2019.00626

Circulating MicroRNAs in Cancer: 
Potential and Challenge
Mengying Cui 1, Hongdan Wang 2, Xiaoxiao Yao 1, Dan Zhang 1, Yingjun Xie 1, Ranji Cui 3* 
and Xuewen Zhang 1*

1 Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China, 
2 Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China, 3 Jilin Provincial Key Laboratory on 
Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China

MicroRNAs (miRNAs) are endogenous non-coding small RNA molecules that can 
be secreted into the circulation and exist in remarkably stable forms. Like intercellular 
miRNAs, circulating miRNAs participate in numerous regulations of biological process 
and expressed aberrantly under abnormal or pathological status. The quality and quantity 
changes of circulating miRNAs are associated with the initiation and progression of 
cancer and can be easily detected by basic molecular biology techniques. Consequently, 
considerable effort has been devoted to identify suitable extracellular miRNAs for 
noninvasive biomarkers in cancer. However, several challenges need to be overcome 
before the practical application. In this review, we discuss several issues of circulating 
miRNAs: biological function and basic transport carriers; extracellular cell communication 
process; roles as reliable cancer biomarkers and usage in targeted cancer therapy; and 
challenges for clinical application.
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INTRODUCTION

MicroRNA (miRNA) was first discovered as the product of the lin-4 gene in Caenorhabditis elegans 
in 1993 (Lee et al., 1993; Wightman et al., 1993). The small non-coding RNAs (19-22nt) develop 
post-transcriptional regulation by mRNA cleavage or translation repression, which depended on the 
complementarity degree of miRNA-mRNA. mRNA cleavage occurs when there is a perfect match, 
whereas imperfect combination results in gene repression (Bartel, 2004). A large number of studies have 
confirmed the role of microRNAs in various cancer-associated biological processes, such as proliferation, 
differentiation, apoptosis, metabolism, invasion, metastasis, and drug resistance. The pathological 
origin of cancer has also been proven to be directly related to the dysregulation of miRNAs. Moreover, 
miRNAs are tissue-specific. Different tumors have distinctive miRNA expression profiles. So far, the 
basic biogenesis and function of the intracellular miRNAs have been reviewed in a number of contexts. 
On the other hand, the presence of extracellular RNAs in serum/plasma was described first by Bartel 
(Bartel, 2004; Kibel, 2009) and various miRNAs are proved to exist in a stable cell-free form in body 
fluids and other extracellular environments, including plasma, serum, urine, saliva, seminal, ascites, 
amniotic pleural effusions, and cerebrospinal fluid (Weber et al., 2010; Cortez et al., 2011; Husted et al., 
2011; Alečković and Kang, 2015; Kibel, 2009). Studies suggested that they are injected to the circulation 
in different ways. Parts are due to the passive leakage of apoptosis, necrosis, or the environment of 
inflammation, and parts are secreted actively by exosomes/microvesicles, lipoproteins, and RNA-protein 
complex (Arroyo et al., 2011; Cheng, 2015). Furthermore, specific miRNAs are selected to pack into 
exosomes and become one of the most important aspects of the tumor microenvironment, which is the 
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underlying mechanism of tissue/disease specificity of circulating 
miRNAs. Additionally, circulating miRNAs are correlated with the 
degree of tumor progression and present differently at different 
stages of cancer, making them play an important role in cancer 
immunotherapy. That is to say, the presence of certain type of 
circulating miRNAs was confirmed essentially in the manifestation, 
development, invasion, and metastasis of cancer, and the abnormal 
levels of distinct miRNAs could be observed in every process above 
(Wang et al., 2018). Although the cancer-related biomarkers, which 
are widely used clinically, are simple and fast, their disadvantages, 
like poor early diagnosis and prognostic value, limit their role in 
targeted therapy and the lack of tissue specificity leads to an urgent 
need to find novel biomarkers. As a result, circulating miRNAs 
are becoming candidates of emerging non-invasive cellular and 
molecular biomarkers of cancer.

BIOLOGICAL FUNCTION AND CARRIER 
PROFILES OF CIRCULATING MIRNAS

The discovery of circulating miRNA is unanticipated, considering 
that the activity of RNase in plasma and the underlying mechanism 

came to be known after years of intensive experiments and 
discussion. In 2008, Patrick and colleagues confirmed that 
endogenous miRNAs ranging 18 to 24 nt exist in human plasma 
by cloning, sequencing, and quantification. Storing at room 
temperature, suffering freeze-thaw, or extreme variations in pH 
will not lead to a descending of circulating miRNAs (Duttagupta 
et al., 2011; Kibel, 2009). However, purified plasma (Arroyo et al., 
2011) miRNAs and synthetic miRNAs (Tsui et al., 2002; Kibel, 
2009) rapidly degraded when cultured with plasma, suggesting 
that endogenous miRNAs are resisted to RNase because of various 
modifications. There are two major populations of circulating 
miRNAs, vesicle-associated and non–vesicle-associated (Figure 
1), which reflect the different mechanisms of release. Some tissue-
specific miRNAs may release to the circulation in a protein-
mediated way and thus presented in protein complex only, such as 
the liver-specific miR-122 (Chang et al., 2004). However, because 
releasing vesicles are essential in the process of the maturation 
and activation of most blood cells, almost all erythrocytes and 
platelet-related miRNAs are packed into the vesicles in the 
circulation (Heijnen et al., 1999; Hunter et al., 2010).

Membrane-bound vesicles, such as exosomes (50–90 nm) and 
microvesicles (1 μm), comprise one type of extracellular miRNA, 

FIGURE 1 | (1) Biological functions and transportation carriers of circulating miRNA; (2) Diverse ways of miRNAs in cell communication: direct fusion and 
endocytosis of extracellular vesicles (exosomes orMVs) (red arrow) or direct transfer through cell gap junction (green arrow) or the indirect identification of specific 
surface receptor (blue arrow). Abbreviations: Pre-miRNA, precursor miRNA; Pri-miRNA, primary miRNA; AGO, Argonaute; TRBP, transactivation-responsive RNA-
binding protein; DGCR8, DiGeorge Syndrome Critical Region Gene 8; MVBs, multivesicular bodies; NPM1, nucleophosmin 1.
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which can be detected from vesicles isolated and purified from 
plasma/serum (Valadi et al., 2007; Taylor and Gercel-Taylor, 
2008; Hunter et al., 2010). A study done by a team from America 
found multiple heterogeneous RNAs via Bioanalyzer from 
exosomes derived from a mast cell line. Large amounts of small 
RNA were found while the level of ribosomal RNA was low. 
Then, more than 120 miRNAs were certified in further analysis 
by microarray (Valadi et al., 2007). There is no doubt that the 
formation of the miRNA-vesicle package is confirmed by lots 
of researches. However, recent studies found that the apoptotic 
body is also one of the forms of the vesicular carrier, but the 
miRNA it contains may be a random event that differs from the 
exosome. In a word, all these results indicated the function of 
MVBs as transporters for extracellular miRNAs.

On the other hand, other studies confirmed that majority of 
the circulating miRNAs exist in a non–vesicle-associated form, 
such as the ribonucleoprotein complex. The copies of miRNAs 
dropped significantly since proteinase K was added to the 
plasma, which verifies the hypothesis that miRNAs could be 
degraded by RNase easily when dissociated from a protease-
sensitive complex(10), and these proteins, such as Argonaute2 
(Ago), GW182, nucleophosmin1 (NPM1), and high-density 
lipoprotein (HDL), are confirmed as miRNA carriers in a large 
number of studies. Ago2, the central protein of miRNA-mediated 
interference, together with GW182, were verified responsible for 
the protection and transport of extracellular miRNAs (Wang 
et al., 2010; Arroyo et al., 2011; Yao et al., 2012; Montani and 
Bianchi, 2016). The miRNA degradation occurred when Ago2 
was isolated from the protein complex (Arroyo et al., 2011) and 
when GW182 was knocked down (Yao et al., 2012). Another 
protein that takes part in the protection of external miRNAs is 
the well-known nucleolar RNA-binding protein, nucleophosmin 
1 (NPM1), which is involved in the exporting of RNAs and 
ribosome (Maggi et al., 2008). Synthetic miR-122 was not 
degraded by RNase when incubated with NPM1, and the NPM1 
was confirmed not only participated in the packaging of miRNAs 
but also in the process of miRNA exporting (Wang et al., 2010). 
High-density lipoprotein is widely known as a mediation of 
excess cellular cholesterol. However, its function is far more 
complex especially when it involves the transportation and post-
transcription effect in the recipient cells of miRNAs (Rothblat 
and Phillips, 2010; Vickers et al., 2014). As a result, HDL has 
been used as the delivery of siRNAs in animal models (Kim 
et al., 2007).

In conclusion, it is just these miRNA transporters that protect 
circulating miRNAs from RNase in various body fluids. It may be 
associated with the cell type and tissue specificity, which carrier 
miRNAs “select” and the carrier of one specific miRNA may be 
not unique (Arroyo et al., 2011; Li et al., 2012).

CIRCULATING MiRNAs IN CELL 
COMMUNICATION

Traditional cell–cell communication means gap junctions or cell 
signal transduction, such as neurotransmitter, hormone, and 
cytokines, whereas the extracellular miRNA-dependent cell-cell 

communication is proven to be induced by membrane-derived 
vesicles recently (Xu et al., 2013). Exosomes were demonstrated 
to be related to the immune function many years ago, and 
researchers were surprised to confirm that both mRNA and 
miRNAs could be packaged to the “magical” vesicles and are 
exported or released from cells in response to biological stimuli 
(Cortez et al., 2011). The lipid bilayer is the coat of exosome that 
reflects the information from the original cell, and the proteins 
on the surface are important in cell signal pathway (Zhao et al., 
2015). Respiratory chain inhibitor rotenone was able to reduce the 
level of extracellular miRNAs (Wang et al., 2010), and the mRNA 
and miRNA profiles of exosomes are different from those of the 
parent cells (Valadi et al., 2007), suggesting that the secretion of 
exosomes is an ATP-dependent and active-selecting process. On 
the other hand, the difference between the spectra of intracellular 
and extracellular miRNAs under the condition of no cytolysis 
indicated that the cellular control mechanism was involved in 
the release of extracellular miRNAs(20). In in vitro experiments, 
many miRNAs were overexpressed in the culture medium after 
the intervention of serum starvation and proved to be related to 
the cell cycle arrest, apoptosis, and cell death, suggesting that the 
biological function of miRNAs may extend outside of the cell 
and mediate cell–cell communication (Wang et al., 2010). A few 
selected miRNAs showed a trend of translating from intracellular 
to extracellular during the first 2 h of serum elimination, which 
suggested that there is a process of prepackage and storage of 
miRNAs (Wang et al., 2010). Those encapsulated miRNAs are 
able to reach the remote area and affect recipient cells, especially 
various immune cells in the tumor microenvironment, which is 
important for tumorigenesis (Gong et al., 2012; Lässer, 2012). 
miRNAs could participate in a directional transfer from T cells 
to antigen-presenting cells using exosomes as a carrier. Not 
surprisingly, miRNAs in exosomes are induced by immune cells 
different from their parent cells, indicating that miRNAs were 
changed in the process of intercellular communication during 
immune interactions (Mittelbrunn et al., 2011). Other immune 
cells, such as dendritic cells (DCs), were proven to transfer 
signals to neighboring DCs via exosome shuttle miRNAs, and 
the packed miRNAs were different according to the maturation 
of the DCs (Montecalvo et al., 2012). That is to say, exosomal 
miRNAs are one of the complex strategies of immune cell 
communication. Although the exact underlying mechanism of 
exosomal miRNAs in cell communication is still unclear now, 
we have obtained evidence of several hypotheses (Figure 1): 
1) direct fusion of vesicles and receptor cell membranes (Mulcahy 
et al., 2014), 2) active endocytosis or phagocytosis by receptor 
cells, 3) identification of proteins on the surface of exosomes and 
receptors of recipient cells (Munich et al., 2012; Corrado et al., 
2014), 4) cell gap junction-mediated transfer (Lim et al., 2011; 
Aucher et al., 2013). The communication between circulating 
miRNAs and target cells will lead to a series of effects on both 
physiological and pathological conditions (Kosaka et al., 2010; 
Pegtel and Kieff, 2010) and the packed miRNAs make an 
exchange of genetic material additionally (Valadi et al., 2007). 
Some miRNAs exist in exosomes not derived from their parental 
cell. These have confirmed that the gene transfer is mediated by 
exosomes (Valadi et al., 2007; Zhang et al., 2015a). The extracellular 
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miRNAs not only affect the surrounding cells but also the distant 
tissues, thereby leading to the progression of diseases (Mathivanan 
et al., 2012).

Adipose tissue contains a different type of circulating exosomal 
miRNA that can regulate distant cells as a form of adipokine, which 
is confirmed by the experiment that miRNAs expressed in the 
brown adipose in one mouse could regulate its target liver reporter 
in other mouse (Thomou et al., 2017). Additionally, accumulating 
evidence has shown that circulating miRNAs participate in the 
invasion and metastasis of cancer via cell communication with 
recipient cells (Mei et al., 2011). Secreted miRNAs from metastatic 
cells were transported to endothelial cells and promoted 
angiogenesis, which are regulated by neutral sphingomyelinase 
2 (Kosaka et al., 2013a). All of these studies indicate that (Lee 
et al., 1993) sending information via extracellular miRNA is 
another way of intercellular communication (Wightman et al., 
1993), miRNA-dependent cell–cell communication is the best 
explanation for the existence of circulating miRNA, and (Bartel, 
2004) circulating miRNAs secreted by cancer cells can trigger 
tumorigenesis in the recipient cells.

CIRCULATING MiRNAs AS PROMISING 
CANCER BIOMARKERS

miRNAs are a family of endogenous 19-22nt noncoding RNAs 
involved in posttranscriptional regulation and participate in 
various physiological and pathological processes by inhibition 
of translation or by mRNA cleavage. More than 50% of protein-
coding genes are assumed to be the target of miRNAs (Krol et al., 
2010). The miRNA expression is frequently dysregulated in 
cancer, forming tissue-specific expression patterns. In addition 
to their intracellular biology functions, numerous studies have 
documented that the dysregulation of extracellular miRNAs is 
associated with the origin, progression, therapeutic response, and 
patient survival of the disease since the presence of circulating 
miRNAs in serum was first described (Wang et al., 2018; Zhang 
et al., 2018). Mouse prostate cancer xenograft model was used 
to identify whether the abnormal expressed serum miRNA was 
tumor-derived in in vivo experiment. Results showed that the 
levels of miR-620 and miR-629 in the serum were different and 
can distinguish cancer-bearing mice from controls (Mitchell 
et al., 2008). There was a surprisingly distinct miRNA expression 
between endothelial cells cultured with cancer cell lines with 
control, which means the upregulated miRNAs were induced by 
tumor cells (Zhuang et al., 2013). At the same time, this study 
confirmed the hypothesis that stimulated miRNAs were packed 
into microvesicles and delivered to endothelial cells in follow-up 
experiments (Skog et al., 2008; Zhuang et al., 2013). On the other 
hand, the phenomenon that tumor-suppressing miRNAs were 
amplified, whereas oncogenic miRNAs were reduced, reflected 
the fact that circulating miRNAs were not the primary products 
of cancer cells, but the results of global immune response and play 
an important role in cancer defense and cancer therapy (Aucher 
et al., 2013). However, another phenomenon is that cancer cells 
transfer the intercellular tumor-suppressive miRNAs to the 
extracellular environment, modify tumor microenvironment, 

and support cancer progression. In other words, extracellular 
miRNAs can act as both oncomir and suppressor by different 
stimuli. These studies provided the evidence that miRNAs may 
derive from tumor cells in response to specific signals, enter the 
circulation in a stable form as cancer-related molecules, and 
contribute to early diagnosis, prognosis, and individualizing 
therapeutic strategies (Table 1 (Gonzales et al., 2011; Silva et al., 
2011; Zhou et al., 2011; Bryant et al., 2012; Sun et al., 2012; 
Valladares-Ayerbes et al., 2012; Kawaguchi et al., 2013; Ng et al., 
2013; Nguyen et al., 2013; Takeshita et al., 2013; Tanaka et al., 
2013; Wang et al., 2013; Zeng et al., 2013; Enache et al., 2014; 
Geng et al., 2014; Ogata-Kawata et al., 2014; Zanutto et al., 2014; 
Zhang et al., 2014; Chen et al., 2014a; Wang et al., 2014; Antolin 
et al., 2015; Stuckrath et al., 2015; Zhang et al., 2015b; Zhang et al., 
2016; Mirzaei H. et al., 2016; Mirzaei H. R. et al., 2016; Zhang 
et al., 2017; Zhao et al., 2017; Bahrami et al., 2018; Jamali et al., 
2018; Shekari et al., 2018; Wang et al., 2018).

Circulating MiRNAs as Biomarkers for 
Early Diagnosis
The diagnosis of cancer currently suffers from low sensitivity, 
because many tumors cannot be found at the early stage and 
delay the treatment until it is too late. MiRNA expression is 
frequently dysregulated in cancer, forming a particular expression 
profile and, thus, benefits the early detection of cancer. MiRNAs 
associated with tumor growth are highly expressed, whereas 
suppressors are expressed lower. Therefore, these tissue-specific 
miRNAs are becoming emerging candidates in cancer diagnosis. 
Selected plasma/serum circulating miRNAs could be used to 
discriminate various cancer patients from healthy individuals 
such as breast (Antolin et al., 2015), colorectal (Zanutto et al., 
2014), gastric (Zhang et al., 2015b), lung (Zhao et al., 2017), 
pancreatic (Kawaguchi et al., 2013), and hepatocellular (Mirzaei 
H. R. et al., 2016) cancers, making them tools for earlier diagnosis. 
In addition, differential concentrations of miRNAs were detected 
among different cancer subtypes and differentiation grades in 
breast cancer; aberrant levels of miRNAs were associated with 
the HER2 and estrogen receptor status as well, indicating the 
diagnostic and therapy-selecting potential of circulating miRNAs 
(Stuckrath et al., 2015). The expression of miR-21 was associated 
with the clinical stage and molecular subgroup of diffuse large 
B-cell lymphoma (DLBCL), which means that patients in early 
stage have a higher concentration of serum miR-21 than those 
in stage III and IV and patients with different subgroup have an 
obvious differentiation (Chen et al., 2014b). On the other hand, 
miRNAs show a remarkable relationship with tumor derivation, 
which is important in the identification of metastatic tumors with 
unknown primary origin. A microarray of 48 selected miRNAs 
could trace and classify 90% primary tumor in metastatic samples 
(Rosenfeld et al., 2008). The combination of miR-145 and miR-
451 could discriminate breast cancer from healthy individuals as 
well as other types of cancers, including liver cancer, lung cancer, 
and colorectal cancer, which validated the function of circulating 
miRNAs in cancer classification (Ng et al., 2013). Furthermore, 
not only cancers could be distinguished from normal ones 
but also those who suffered from chronic inflammation were 
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TABLE 1 | Values of circulating miRNAs in different cancers.

Cancers Expression 
profile and 
treatment 
value

Diagnostic value Prognostic value Diagnostic and 
prognostic value

RE

Gastric 
cancer

upregulated miR-421 
miR-20a
miR-103
miR-181c

miR-378 miR-
221 miR-744 

miR-192 

miR-199a-3p 
miR-486-5p 
miR-199a-3p
miR-423-5p

miR-107 
miR-194
miR-17
miR-1

miR-34a 
miR-27a
miR-185
miR-210 

miR-148a 
miR-146a 
miR-218
miR-18a 

miR-214 miR-
301a miR-223

miR-16 

miR-100
miR-451
miR-106a
miR-222

miR-21
miR-25

miR-200c

52-56

downregulated miR-195-5p 
miR-17-5p 

let-7a miR-106b miR-375 miR-320a miR-218 
miR-203 

miR-93
miR-92b

miR-19b-3p
miR-16-5p

miR-196a
miR-122

Esophageal 
cancer

upregulated miR-223-3p
miR-192-5p
miR-28-3p 

miR-223
miR-22
miR-21

miR-127-3p
miR-296-5p
miR-20b-5p

miR-10a
miR-100

miR-148b
miR-133a

miR-367 miR-200c miR-1246
miR-146a

57-60

downregulated miR-100-5p miR-375 miRNA-718
Pancreatic 
cancer 

upregulated miR-378* miR-409-3p miR-1290 miR-26a miR-18a miR-146b-3p miR-200a miR-200c
miR-210 miR-221 miR-21 miR-194

miR-141 miR-375 61-63

downregulated let-7b-5p let-7c-5p miR-409-3p
Breast 
cancer

upregulated miR-195 miR-376c miR-
409-3p miR-148b

miR-299-5p

miR-145 miR-
191 miR-382

miR-215

miR-133a 
miR-133b
miR-92a 
miR-192

miR-1
miR-411
miR-195
miR-202 

miR-122
miR-141

miR-21 
miR-34a
miR-210
miR-10b

miR-375 
miR-125b
miR-801
miR-155

64-68

downregulated miR-181a-5p miR-34 
miR-92a 

miR-139-5p 
miR-143
miR-133a 

miR-30a
let-7a

miR-145 miR-365 miR-375
miR-30a
miR-205

miR-342-5p
miR-200c

miR-497
let-7b

miR-768-3p

Therapeutic 
target

miR-155 (upregulated) miR-214 (downregulated)

HCC upregulated miR-122 miR-801 
miR-885-5p

miR-192 
miR-223

miR-130b 

miR-18 
miR-15b 

miR-26a miR-27a miR-221
miR-1

69-71

downregulated miR-16 miR-199a miR-21
Prostate 
cancer

upregulated miR-378* miR-409-3p miR-1290 miR-26a miR-18a miR-146b-3p miR-210 miR-21
miR-221 miR-19 miR-200a miR-200c

miR-141 miR-375 72-74

downregulated let-7b-5p let-7c-5p miR-409-3p
NSCLC upregulated miR-20a-5p,

miR-141-3p,
miR-145-5p, 

miR-155-5p,
miR-223-3pmiR-

126-3p

miR-210-3p
miR-16-5p

miR-182-5p,
miR-183-5p, 

miR-320b
miR-23b-3p
miR-10b-3p

miR-195-5p
miR-4257-3p
miR-222-3p

miR-21-5p
39 40 41 30 31

11
75-78

downregulated miR-198 miR-361-3p miR-625 let-7f miR-30e-3p
Therapeutic 
target

miR-181-5p miR-361-5p miR-205-5p miR-10b miR-30a-3p miR-30e-3p miR-15b miR-9-5p

Colon 
cancer

upregulated miR-27a-3p, miR-142-5p
miR-409-3p

miR-223

miR-92a
miR-601 
miR-760
miR-18a

miR-1229
miR-1246
miR-150

let-7a

miR-7
miR-93
miR-29a
miR-23a

miR-29c
miR-200c
miR-20a
miR-130

miR-145
miR-216
miR-372
miR-378

miR-23a-3p 
miR-376c-3p

mi-221
miR-141
miR-21

79-82

downregulated miR-125a-3p
miR-34a

miR-181b
miR-92a

miR-601 
miR-760

miR-203
miR-31

miR-4772-3p
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singled out by a distinct miRNA expression pattern. Recent studies 
suggest that circulating miRNAs are involved in the regulation 
of inflammation, influence the genetic/epigenetic profile, and 
capable of predicting the unhealthy incidents (Olivieri et al., 
2016). For example, a selected miRNA expression panel could 
differentiate pancreatic cancer from chronic pancreatitis with 
relatively high accuracy (Bloomston et al., 2007), whereas it can 
be used as biomarkers in the identification of hepatitis B virus 
(HBV) infection and HBV-positive hepatocellular cancer (Li et al., 
2010). However, what needs to be pointed out is that the same 
miRNA can act as either oncogene or suppressor gene, depending 
on different cancer types (Cortez et al., 2011). MiR-125b could 
suppress cell proliferation and induce cell cycle arrest in ovarian, 
thyroid, and oral cancers (Visone et al., 2007; Nam et al., 2008), 
whereas it functioned oppositely in prostate cancer (Le et al., 
2009). As a result, it is important to find out the corresponding 
abnormally expressed miRNAs in every type of cancers.

On the other hand, the phenomenon illustrated that some of 
the miRNAs are aberrantly expressed in tumors with an obvious 
familial aggregation tendency that can be applied to genetic 
diagnostics. MiR-15 and miR-16 are down-regulated in most of 
the B-cell chronic lymphocytic leukemia (B-CLL) patients due to 
the 30-kb region of loss in chromosome 13q14, which is the most 
frequently deleted genomic region of B-CLL (Calin et al., 2002). 
Similarly, acute myeloid leukemia patients with chromosomal 
translocations were proved together with a low level of miR-223 
(Fazi et al., 2007). Even single nucleotide polymorphisms (SNPs) 
in miRNA genes may affect the biogenesis of miRNAs and thus 
increase the risk of cancer. SNP (rs417309), located in the 3′-UTR 
of DGCR8, was consistently associated with the possibility of 
suffering from breast cancer by the mechanism of interrupting the 
binding of miRNA, whereas an SNP in let-7 complementary sites 
could increase the risk of non-small cell lung cancer (Chin et al., 
2008) as well. These results are also consistent with the studies 
that genes of miRNAs are most often located at fragile sites and 
genomic regions associated with cancers (Calin et al., 2004).

Circulating MiRNAs in the Prediction of 
Prognosis
A large number of studies have suggested the prognostic and 
predictive values of cancer-related circulating miRNAs as they 
participate in the regulation of the development of cancer. 
In the progression of cancer into a more invasive phenotype, 
miRNAs change as molecular labels of tumor cells, and the 
changes can be observed from tumorigenesis throughout the 
following progression. Therefore, circulating miRNAs are one of 
the most reliable candidates in disease monitoring. Circulating 
miR-142-3p correlated with a high risk of recurrence in lung 
adenocarcinoma patients of early stage (Kaduthanam et al., 
2013). The levels of serum miR-155 could reflect the effect 
of surgery and chemotherapy in breast cancer, whereas the 
conventional biomarkers, such as carcinoembryonic antigen 
(CEA) and tissue polypeptide-specific antigen (TPS), were not 
that sensitive (Sun et al., 2012). Altered circulating miRNAs have 
also been proven to be bound up with the metastasis of cancer, 
and miR-141 achieved positive results in a test in prostate cancer 

patients in terms of identification of micro-metastasis (Gonzales 
et al., 2011). Decreasing levels of cir-miRNA-126 were related 
to treatment benefit in metastatic colorectal cancer, as it was 
proven to be associated with angiogenesis by way of paracrine 
(Hansen et al., 2015). Similarly, higher levels of circulating miR-
122 have a positive correlation with the metastatic recurrence in 
stage II–III breast cancer patients (Wu et al., 2012). MiR-375 and 
miR-200b in the serum were significantly upregulated in patients 
with metastatic prostate cancer compared with patients with 
localized cancer (Bryant et al., 2012). Some of the other miRNAs 
that influence the epithelial phenotype of cancer cells were found 
elevated in the blood of gastric patients and induce invasion 
and migration (Valladares-Ayerbes et al., 2012). Additionally, 
circulating miR-214 and miR-373 were related to lymph node 
metastasis as well (Chen et al., 2013). Responsive miRNAs were 
observed valuable in therapy monitoring in head and neck 
squamous cell carcinoma (Summerer et al., 2013).

On the other hand, the changes of circulating miRNAs during 
chemotherapy and radiotherapy of cancer are well appreciated 
in many studies. Non-small-cell lung cancer (NSCLC) patients 
with clinical stage Ib to IIIa often need comprehensive treatment 
including operation and chemotherapy; a prediction for drug and 
chemotherapy sensitivity in advance can reduce the unnecessary 
toxic chemotherapy. A selected serum miRNA panel may serve 
as a predictor for the purpose of the above and found to be 
associated with the overall survival of NSCLC (Hu et al., 2010). 
Serum miR-125 and miR-22 led to the poor response to cisplatin-
based and pemetrexed-based chemotherapy separately in NSCLC 
patients (Cui et al., 2013; Franchina et al., 2014). Serum miR-21 
was associated with the relapse-free survival in DLBCL (Lawrie 
et al., 2008). MiR-150 was sensitive to acute radiation exposure 
and thus useful for the evaluation of treatment and toxic dose, 
which is essential for clinical radiation therapy (Jacob et al., 
2013). All these studies suggested that circulating miRNAs are 
promising invasive biomarkers and are considered to be valuable 
in tumor classification, treatment strategy selection, cancer 
prognostication, and monitoring.

Circulating MiRNA-Based Cancer Therapy
Currently, more and more studies focus on the biological behavior 
of circulating miRNAs. It was found that not only mRNAs and 
proteins that are packed into the MVs or exosomes, but also 
miRNAs are proved to be existing in the MVs and exosomes 
abundantly. These exosomes secreted by donor cells containing 
packed miRNAs could be taken by recipient cells, both in the 
surrounding and remote area, which is the theoretical basis of 
miRNA-based targeted cancer therapy via vesicles. However, the 
delivery method of miRNA is an essential problem to resolve for 
RNAi therapy. Compared with carriers of targeted therapy, such 
as viruses, lipid, and polymeric nanoparticles, microvesicles 
serve as a natural carrier and could avoid attack from the 
immune system (Cheng, 2015), which is quite important in the 
persistence of drug intervention. Therefore, MVs and exosomes 
are used for the delivery of therapeutic RNAi as a more effective 
strategy in cancer therapy (Kosaka et al., 2013b). In other words, 
the transfer of synthesis tumor-suppressive miRNAs or antisense 
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of tumor oncogenesis miRNAs into target tumor cells through 
MVs or exosomes deserves continuing concern. MiR-150 is 
an immune-related miRNA and participates in the secreting 
of vascular endothelial growth factor via the regulation of 
tumor-associated macrophages and plays positive role in tumor 
growth. Experts transfer antisense miR-150 to MVs and inject 
“modified” MVs to mice via tail. Results showed that MVs 
could deliver the antagonucleotide for onco-mirna into tumor 
efficiently, and  thus prevent tumorigenesis (Liu et al., 2013). 
Using GE11, a kind of peptide that can bind to the epidermal 
growth factor  receptor, miR-let-7a reached the breast cancer 
tissue of xenograft mice model specifically and inhibited 
tumor development in vivo successfully (Ohno et al., 2013). 
MVs derived from human adult liver stem cells containing 
several anti-miRNAs could inhibit the growth of the tumor 
(Valentina et  al., 2012). Furthermore, anti-mRNAs were also 
effective in drug resistance. For example, miR-9 was associated 
with the drug efflux transporter and was found upregulated 
in  temozolomide-resistant glioblastoma multiforme (GBM) 
cells, whereas mesenchymal stem cells (MSCs)-derived exosomes 
complete the key biological processes of transferring anti-miR-9 
from MSCs to GBM cells and reverse the chemoresistance finally 
(Munoz et al., 2013). Taken together, tumor-suppressive miRNAs 
could be delivered to target cancer cells in vivo and can be promising 
small RNAs for cancer therapy. However, the decomposition by 
the reticuloendothelial system and the inappropriate immune 
responses are the major issues of miRNA-relevant cancer therapy 
before their application.

CHALLENGES IN USING CIRCULATING 
MiRNAs AS CANCER BIOMARKERS

As we discussed above, circulating miRNAs are becoming 
potential non-invasive biomarkers for the prediction, prognosis, 
and therapeutic targets for cancers. Despite their many advantages, 
there are still challenges to overcome before clinical application.

Technical Challenges
The fundamental technical constraint to solve is the isolation 
and purification of samples, as the integrity and purity of 
RNA are the basic of detection and quantification. Unlike 
intercellular miRNAs, circulating miRNAs are interference by 
other components in serum easily and need to be cautious when 
centrifuged from serum (Cheng et al., 2013). It is necessary to 
add a step for purification as cell-free miRNAs are modified 
with exosomes, microvesicles, AGO2/NPM1, and HDL (Lee et al., 
1993). Besides, the storage time and conditions also impact 
the composition of miRNAs; the level of several miRNAs, 
including miR16, is changed after 24 to 72 h storage either in 
the situation of 4°C or −20°C (McDonald et al., 2011) and brings 
another challenge in sample processing. That is to say, different 
experimental setups and processes all lead to the bias in the final 
output of miRNAs (Cortez et al., 2011; Schwarzenbach et al., 
2014; Lee et al., 2016). Validated and optimized experimental 
protocols are needed urgently.

Second, the source of samples is also one of the most critical 
aspects of the ultimate results of circulating miRNAs (Wang 
et al., 2012). The expression of miRNAs is different between the 
samples extracted from the serum and plasma even in the same 
individual. The total RNA concentration is higher in the serum 
than in the plasma, which may be due to the RNA released from 
blood cells and platelets (Wang et al., 2012). However, analysis 
results from studies did not distinguish sample types (serum/
plasma) when grouping.

Third, it is still hard to measure circulating miRNAs accurately 
because of its low concentration and existing form. The major 
quantifiability detection of circulating miRNAs are qPCR, 
microarray, and next-generation sequencing (NGS). Quantitative 
PCR is limited by low throughputs. It is now widely used for 
the verification of sequencing data. Microarray is influenced 
by the short length and similar sequence among clusters and 
families of mature miRNAs. Its requirement of pre-amplification 
step has a risk of alliterating the actual concentration of 
circulating miRNAs (Chen et al., 2009). NSG can meet the low 
concentration of circulating miRNAs due to its low input request 
and become a preferred method because of its lower cost and 
higher throughputs. Therefore, it is indispensable to unify the 
measurement methods and eliminate the deviation.

Additional obstacle lies in the normalization of data, especially 
the selection of internal control. U6 is widely used for intracellular 
miRNAs, but it is restricted due to its low expression in body fluids 
(Singh et al., 2016). Mir-16 was mentioned in many studies, and 
the inconsistent results also appear in multiple myeloma (Wang 
and Chen, 2014). Other internal controls, such as UNR6B (Xiang 
et al., 2014) and miR39 (Wulfken et al., 2011), are not trustworthy 
yet. The additive artificial non-human miRNAs external control 
like cel-miR-39 and cel-miR-54 (Zhong et al., 2018) could be a 
choice to solve this problem. However, it is hard to balance the 
amount among different samples. On the other hand, because 
of the expression of extracellular miRNAs in healthy individuals 
and the variability in acute/chronic inflammation/injury, 
the identification of a range of negative and cancer-specific 
“diagnostic” miRNAs is necessary before miRNAs can become 
clinical test indicators (Zhao et al., 2010; Xiang et al., 2014).

Cognitive Challenges
In addition to the technical challenges, the unclear understanding 
of the function and biology characteristics of circulating miRNAs, 
such as the secretion and transportation mechanisms, the cell to 
cell communication, the complicated network between miRNAs 
and coding gene, and the effects in upstream/downstream 
pathways are great barriers before clinical transformation (Wang 
and Chen, 2014). In the past few years, many researchers have 
devoted to the precise mechanisms of the secretion and uptake of 
miRNAs. However, it is still not clear if the package of miRNAs 
is random or specific; the release of cell-free miRNAs is passive 
or active. Besides, molecules and signals that are involved in the 
regulation of miRNAs, the precise role of circulating miRNAs in 
oncogenesis, the great heterogeneity of miRNAs in each type of 
cancer, different tumor stages, treatment response, and survival 
are all tasks that require more investigations.
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At the same time, there are still challenges in the usage of 
circulating miRNAs in targeted therapy. Packaged artificial and 
modified miRNAs in exosomes could increase the stability of 
miRNAs in vivo (Cortez et al., 2011). However, the restricted tissue 
specificity and permeability is a big problem. Ligand, antibody, 
and nanoparticles that carried miRNAs are designed nowadays 
with improved specificity and decreased immunotoxicity (Chen 
et al., 2015). Nevertheless, a large number of preclinical studies in 
animals should be considered to verify their effectiveness.

CONCLUSIONS AND PERSPECTIVES

Since the first discovery of circulating miRNAs, there is a large 
amount of studies focused on their biological functions and the 
potential of biomarkers in oncology. As described here, miRNAs 
in the circulation change as molecular labels of tumor cells 
throughout the tumorigenesis and development of cancer. Such 
detectable changes make circulating miRNAs promising non-
invasive biomarkers for early cancer diagnosis and predictor 

of prognosis and cancer treatment. However, several issues 
including technical and non-technical constraint need to be 
solved urgently. The further understanding of existing form in 
circulation and biological function, the deeper exploration of the 
underlying mechanism of release, transport, and uptake, and 
the special status in cell communication are all essential before 
the breakthrough in the application of circulating miRNA-based 
cancer therapy.
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