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The simultaneous study of multiple measurement types is a frequently encountered 
problem in practical data analysis. It is especially common in microbiome research, 
where several sources of data—for example, 16s-rRNA, metagenomic, metabolomic, or 
transcriptomic data–can be collected on the same physical samples. There has been a 
proliferation of proposals for analyzing such multitable microbiome data, as is often the 
case when new data sources become more readily available, facilitating inquiry into new 
types of scientific questions. However, stepping back from the rush for new methods for 
multitable analysis in the microbiome literature, it is worthwhile to recognize the broader 
landscape of multitable methods, as they have been relevant in problem domains ranging 
across economics, robotics, genomics, chemometrics, and neuroscience. In different 
contexts, these techniques are called data integration, multi-omic, and multitask methods, 
for example. Of course, there is no unique optimal algorithm to use across domains—
different instances of the multitable problem possess specific structure or variation that are 
worth incorporating in methodology. Our purpose here is not to develop new algorithms, 
but rather to 1) distill relevant themes across different analysis approaches and 2) provide 
concrete workflows for approaching analysis, as a function of ultimate analysis goals and 
data characteristics (heterogeneity, dimensionality, sparsity). Towards the second goal, 
we have made code for all analysis and figures available online at https://github.com/
krisrs1128/multitable_review.

Keywords: microbiome, data integration, multiomics, dimensionality reduction, heterogeneity

Most methods in statistics expect data to be available as a single table. To a researcher confronted 
with multiple sources of data, it might therefore seem most natural to either analyze each source 
separately, one at a time, or else combine all data into a single, unified table. However, neither of 
these approaches is entirely satisfactory. First, many scientific problems can only be answered by 
collecting several complementary measurement types. Indeed, the situation is analogous to using 
many types of sensors to study a single system from many perspectives. Further, while in certain 
supervised problems, it is enough to predict a single measurement of interest, with other sources 
collected primarily to provide better features, there are often additional relational components to the 
analysis: how do different types of measurements co-vary with one another? Here, it is of interest 
to provide a representation of the data that facilitates comparisons across tables, rather than just 
comparing each table with a single response of interest. This richer scientific question motivates the 
development of methods distinct from those used to analyze a single measurement type at a time.

For more concrete motivation, we consider data from the WELL-China study, which is focused 
on the relationships between various indicators of wellness (Min et al., 2019). In this study, 
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1,969 individuals1 underwent clinical examinations, filled out 
wellness surveys (covering topics such as exercise, sleep, diet, 
and mental health, for example), and provided stool samples, 
used for 16s-rRNA sequencing and metabolomic analysis. To 
date, 16s-rRNA sequencing data are available for 221 of these 
participants. Evidently, various interesting relational questions 
can be investigated using this data source.

For the purpose of illustration, we focus on one relatively 
narrow question that can be addressed using these data: How 
is the distribution of lean and fat mass across the body related 
to patterns of microbial abundance? The measurement types 
most relevant in this analysis are DEXA scans and 16s-rRNA 
sequencing abundances. DEXA scans use relative X-ray 
absorption to gauge the amount of lean and fat body mass within 
a region of the body being scanned. We have access to these lean 
and fat body mass measurements at several body sites—arms, legs, 
trunk, etc.—along with related body type variables, like height, 
age, and android and gynoid fat measurements. In total, there 
are 36 of these variables. 16s-rRNA sequencing is a technology 
for gauging the abundance of different bacterial species in the 
gut by counting the alignments of reads to the 16s-rRNA gene, 
a component of all bacterial genomes with enough variation to 
allow discrimination between different individual species. We 
have counts associated with 2,565 species across 181 genera, 
though the vast majority are present in low abundances.

This question of the relationship between lean and fat mass 
distribution (informally, “body type”) and the microbiome is 
motivated by findings that certain taxonomic groups are over- or 
underrepresented as a function of an individual’s body mass index 
(BMI) (Ley et al., 2005; Ley et al., 2006; Turnbaugh et al., 2009; 
Ley, 2010). Further, since the distribution of fat is often more 
related to underlying biological mechanisms than overall body 
mass (Matsuzawa, 2008), and since this distribution is mediated 
by specific metabolic pathways, there is reason to suspect that a 
joint analysis of DEXA and 16s-rRNA microbial abundance data 
might yield a more complete view of the relationship between the 
microbiome and body type.

We use this motivating dataset in the examples that follow. 
Additional numerical examples, for methods only discussed 
abstractly in this review, are available in the github repository 
associated with this paper.

CLASSICAL MULTIVARIATE METHODS

Methods from classical multivariate statistics are a mainstay of 
single-table microbiome data analysis, so it is natural to revisit 
them before surveying extensions to the multitable setting. 
Here, we explore a few of the classically studied multitable 
methods that fit nicely into the modern microbiome data 
analysis toolbox. We first describe a naive approach based on 
Principal Components Analysis (PCA)—naive because it lifts 
a single-table method to the multiple table setting without 
any special considerations—before studying approaches that 
directly characterize covariation across several tables: Canonical 

1 Though sampling is still ongoing.

Correlation Analysis (CCA), Multiple Factor Analysis (MFA), 
and Principal Component Analysis with Instrumental Variables 
(PCA-IV).

The earliest multitable method (CCA) was published in 
1936, motivated by the problem of relating prices of groups of 
commodities (Hotelling, 1936). There are two notable aspects 
of data analysis in this classical paradigm that no longer hold in 
modern statistics,

• Even when many samples could be collected, there were 
typically only a few features for each sample, and it was 
straightforward to study all of them simultaneously. It is now 
possible to automatically collect a large number of features for 
each observation (or subject).

• Before electronic computers had been invented, it was 
important that all statistical quantities be easy to calculate, 
typically necessitating analytical formulas for parameter 
estimates. This is no longer an important limitation due to 
modern computation.

These changes have driven the development of high-
dimensional methods and facilitated the adoption of iterative, 
more computationally intensive approaches.

Nonetheless, it is worth reviewing these original approaches, 
both to understand the context for many modern techniques and 
to have an easy starting point for practical data analysis. Indeed, 
these more established methods tend to be the most readily 
available through statistical computing packages and can provide 
a benchmark with which to compare more elaborate, modern 
methods.

PCA
The simplest approach to dealing with multiple tables is to 
combine them into one and apply a single-table method, for 
example, PCA. That is, write

X X X L n p= …  ∈ ×( ) ( ) ,1 

where p pl
l

L
=

=∑ 1
, and compute the SVD X = UDV T. The 

K-principal component directions are the first K columns v1 ,…, 
vK, while the associated scores are reweighted rows d1u1,…, dKuK. 
We call this method concatenated PCA.

While this does not account for the multitable structure of the 
data, it does accomplish two goals:

• Through the principal component scores, it provides a 
visualization of the relationships between samples, based on 
all features.

• Through the principal component directions, it gives a way of 
relating features within and across the multiple tables.

However, two drawbacks of this approach are worth noting:

• It does not provide a summary of the relationship between the 
sets of variables defining the tables—it can only relate pairs of 
variables.
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• If some tables have many more variables than others, they can 
dominate the resulting ordination.

These limitations are addressed by CCA and MFA, discussed 
in sections CCA and MFA, respectively.

We provide one geometric and one statistical motivation for 
PCA. The geometric motivation is that, if each row xi of X is 
viewed as a point in p-dimensional space, then the principal 
component directions provide the best K-dimensional 
approximation to the data. The second interpretation is that 
PCA finds a low-dimensional representation of the xi such 
that the resulting points have maximal variance. Qualitatively, 
this is a desirable property, because it means that the simpler 
representation preserves most of the variation present in the 
original data.

PCA is a very widely used technique, and some standard 
references include Mardia et al. (1980), Friedman et al. 
(2001), and Pagés (2014). Nonetheless, it is not ideal in the 
multitable setting.

Example
Figure 1 illustrates this approach on body composition and 
bacterial abundance data from the WELL-China study. Note 
that we have subsetted to only women, since men and women 
have very different body compositions, and we have slightly 
more data for women. Further, the 16s-rRNA data have been 
variance stabilized according to the methodology proposed in 
Anders and Huber (2010) and filtered to only those species that 
have count ≥5 in at least 7% of samples.

The left panel of Figure 1 displays the loadings associated 
with this concatenated PCA approach, where body composition 

(36 columns) and 16s-rRNA abundances (372 columns) 
were combined into one dataset (408 columns). Columns 
associated with bacterial species are displayed as points, 
shaded by taxonomic family, while columns associated with 
body composition variables are labeled with text. Note that 
the fraction of variance explained by each axis is on the order 
of a few percent—this is to be expected, considering that the 
baseline proportion would be 1

408
0 25≈ . % in the orthogonal 

case.

Most body composition variables lie close to the vertical 

axis, in a direction approximately orthogonal to the main 
direction of variation among species. Columns that are highly 
correlated—e.g., right (R) and left (L) leg fat mass (FM)—have 
loadings nearly equal to one another. Among species, the most 
notable pattern is the concentration of Ruminococcaceae on 
the right.

To identify relationships between species and body 
composition variables, it would be of interest to isolate those 
species with large contributions along the axis defined by 
linking the center of the variables and the origin. Relatively 
few such species stand out, though note that there is nothing 
in this algorithm’s objective that would seek covariation across 
tables directly, so the fact that such associations seem weak with 
respect to the top two principal components does not mean such 
relationships do not exist.

We can study individual samples with respect to these 
loadings, by plotting their projections onto the top two 
principal components. This is the content of the right panel 
of Figure 1, which displays samples in the same positions, but 
shaded by android (i.e., abdominal) fat mass. This shading 

FIGURE 1 | The loadings (left) and scores (right) obtained by applying Principal Components Analysis (PCA) to the combined body composition and microbial 
abundance data. For the loadings, species are points, and are shaded in by taxonomic family. Body composition variables are plotted as text. The size of points and 
words measures the contribution of the third PC dimension. For scores, each point corresponds to a sample.
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confirms the observations from the loadings directly using 
observed data. Indeed, the increasing android fat mass 
among samples in the top of the scores in that panel exactly 
corresponds to the fact that related variables lie at the top in 
the left panel.

In this approach, the loadings provide a description of the 
relationship between variables across datasets. Further, scores 
summarize variation in samples across multiple datasets. Hence, 
this heuristic is a natural first step in analyzing multiple table 
data. However, considering the difficulty in directly interpreting 
the covariation across datasets, as well as the method’s failure to 
use any sense of covariation in the dimensionality reductions 
strategy, suggests that this method should not be the last 
step of an analysis workflow. Nevertheless, we now have a 
baseline with which to compare the more elaborate methods of 
subsequent sections.

CCA
CCA is a close relative of PCA, designed to compare sets of 
features across tables. Like PCA, it provides low-dimensional 
representations of observations, but it also allows comparisons 
at the table level. Suppose for now that there are only two 
tables of interest, X n p∈ × 1 and Y n p∈ × 2 . Let ˆ , ˆ∑ ∑XX YY,  
and ∑̂XY be the associated covariance estimates. Take the 

SVD, ˆ ˆ ˆ∑ ∑ ∑ =
− −

XX YYXY
TUDV

1
2

1
2

  . The canonical correlation 

directions associated with the two tables are u uk k
p

XX
∑ ∈

− 1
2 1


  
and v vk k

p
YY

= ∑ ∈
− 1

2 2



. These directions give two sets of low-

dimensional representations for each sample, one for each table: 
z Xu z Yvk k

n
k k

n( ) ( )1 2= ∈ = ∈ and . If the two tables are closely 
related, then the zk

( )1  and zk
( )2  will be very correlated. The singular 

values dk are called the canonical correlation coefficients. Like the 
eigenvalues in PCA, they characterize the amount of covariation 
across tables that can be captured by each additional pair of 
directions.

As with PCA, there are many ways to view this procedure—here 
we discuss geometric, statistical, and probabilistic interpretations. 
Unlike the geometric interpretation of PCA, the geometric 
interpretation for CCA identifies point locations with features, 
not samples. Specifically, the columns of X and Y are thought of 
as points in ℝn. Consider two subspaces spanning the columns of 
X and Y, respectively. These subspaces correspond to the linear 
combinations of features within each table. Place two ellipses on 
the respective subspaces, centered at the origin and with size and 
shape depending on the within-table covariances ∑̂XX  and ∑̂YY . 
The first canonical correlation directions are the pair of points, one 
lying on each ellipse, such that the angle from the origin to those 
two points is smallest. In this sense, it finds a pair of variance-
constrained linear combinations of features within the two tables 
such that the two combinations appear “close” to one another. The 
second pair of canonical correlation directions identify a pair of 
points with a similar interpretation, except they are required to 
be orthogonal to the first pair, with respect to the inner product 
induced by the covariances in each table.

For a statistical interpretation, the idea of CCA is to find the 
low-dimensional representations of the two tables with maximal 

covariance—this is analogous to the maximum variance 
interpretation. Formally, rows of the two tables are imagined to be 
i.i.d. draws from ℙXY, which has marginals ℙX and ℙY. Consider 
arbitrary linear combinations z u u xi

T
i

( )( )1 =  and z v v yi
T

i
( )( )2 =  of 

samples from the two tables. The first pair of CCA directions ui
∗ 

and vi
∗  are chosen to optimize

 
maximize ( ), ( )

,

( ) ( )

u v
i ip p

XY z u z v
∈ ∈

 
 

1 2

1 2Cov

s



uubject to Var

Var




X

Y

z u

z v

i

i

( )

( )

( )

( )

1

2

1

1

( ) =

( ) =

 (1)

To produce subsequent directions, the same optimization is 
performed, but with the additional constraint that the directions 
must be orthogonal to all the previous directions identified for 
that table. Of course, in actual applications, we estimate these 
covariances and variances empirically.

This perspective makes it easy to derive the algorithm given at 
the start of this section. The empirical version of the optimization 
problem (1) is

 

maximize ˆ

ˆ
,u v

T
XY

T
XX

p p
u v

u u

v

∈ ∈
∑

∑ =
 

1 2

1subject to
TT

YY vˆ .∑ = 1

 (2)

Consider the transformed data, u uXX= ∑̂
1
2  and v vYY= ∑̂

1
2 . The 

optimization can be now be expressed as

 
maximize ˆ ˆ ˆ

,




 

u

T
XX XY YYp p

u v
∈ ∈

− −
∑ ∑ ∑

 1 2

1
2

1
2

υ

suchh that || ||

|| || .





u

v
2
2

2
2

1

1

=

=

 (3)

The optimal u1 and v1 for this problem are well known—
they are exactly the first left and right eigenvectors of 
ˆ ˆ ˆ∑ ∑ ∑ =

−
XX XY YY

TUDV
1
2

1
2   , respectively.

A probabilistic interpretation of this procedure views it as 
estimating the factors in an implicit latent variable model. In 
particular, (Bach and Jordan, 2005) supposes that xi and yi are 
drawn i.i.d. from the model,

 

ξ ξ ξ ξ
ξ µ ξ ξ

i i
S

i
x

i
y

i i x X i
S

X i
x

Id

x W B

: ( , , ) ( , )

| (

= ∼

∼ + +





0

,, )

| ( , )

I

y W B I
d

i i Y Y i
S

Y i
y

dξ µ ξ ξ∼ + +

That is, each sample is associated with a d-dimensional latent 
variable ξi, drawn from a spherical normal prior. A few of the 
coordinates of these latent variables, ξi

s, contribute to shared 
structure, through WX and WY. The remaining coordinates model 
table-specific structure, through BX and BY. It can be shown that 
the posterior expectations of the latent ξi

s given the observed 
tables must lie on the subspace defined by the CCA directions.
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Example
We next apply CCA to the WELL-China body composition and 
microbiome data, with particular interest in how the results 
compare with those of section Example. We provide analogous 
loadings and scores plots in Figure 2. However, note that 
the data are not quite the same between the two analysis—we 
have filtered down to species passing a filter, which reduces the 
number of species to 66, from 2,565. This very aggressive filtering 
is necessary because CCA requires estimation of covariances 
matrices, and ΣXX, ΣXY, and ΣYY, which is impossible for p > n 
and highly unstable when p is a large fraction of n. Besides this 
stronger filtering, all preprocessing steps remain the same as in 
section Example.

The left panel of Figure 2 provides the analog of CCA loadings. 
To be precise, let X ∈ ℝ102×36 be the matrix of body composition 
measurements and Y ∈ ℝ102x66 be the variance-stabilized microbial 
abundances. As before, write uk ∈ ℝ36, vk  ∈ ℝ66 for the kth 
canonical correlation directions. Text labels from column j of the 
body composition variables are displayed at position ( , )u uj j j1 2 1

36
=  

and shaded points for the jth species at position ( , )v vj j j1 2 1
66

= .
As in the concatenated PCA, we find that the groups of 

variables occupy separate spaces. Our interpretation is that 
sequences further to the left are correlated with the body 
variables further to the left, which are all in some way variants 
of body mass. Note that age is negatively correlated with total 
fat mass, which is why it appears on the opposite end. Among 
the abundant species that remain, there is limited clustering 
according to taxonomic group, though the Bacteroideceae and 
Ruminoccocus do appear restricted to the bottom right and 
left, respectively.

In the right panel of Figure 2, we plot the corresponding scores. 
Note that in CCA, there are two sets of scores for each k, the Xuk and 
Yvk. Indeed, the CCA objective finds directions that maximize the 
correlation between these scores. We use a different color legend 

for the two panels, each of which represents one set of scores. The 
legend for scores from species abundances are colored by family, 
while those for the body composition associates samples with 
android fat mass. The pairs of scores for each individual sample are 
drawn with small links. Since most links are relatively short, linear 
combinations of the two tables could be found that optimized 
the objective—indeed, the top two canonical correlations are 
0.968 and 0.957. However, some caution is necessary here, and 
a more honest evaluation would be based on scores obtained by 
projecting new samples onto the original CCA directions. This 
is especially important in this nearly high-dimensional setting, 
where covariance estimation may be unreliable.

Aside from the fact that samples appear as pairs, interpretation 
proceeds as in a PCA scores plot, as in Figure 1. The association 
between these variables and the sample positions is not as strong 
as when performing PCA on the combined table. This is to be 
expected, however, as PCA maximizes variance without any 
thought to covariance, and the body composition table alone has 
a large portion of its variance related to android fat mass.

Co-Inertia Analysis
Co-inertia Analysis (CoIA) emerged in ecology to facilitate analysis 
of variation in species abundance as a function of environmental 
conditions (Dolédec and Chessel, 1994). It can be viewed as a 
slight modification of CCA. Again, we seek sets of orthonormal 
directions ( )uk k

K
=1 and ( )vk k

K
=1 such that the associated projections 

Xuk and Yvk explain most of the covariation between the tables. 
Unlike CCA, CoIA finds its first directions by maximizing the 
covariance—not the correlation—between scores,

maximize
u v

T T
p p

u X Yv

such that u

v

∈ ∈

=

=

 

 

 

1 2

1

1

,

,

FIGURE 2 | The Canonical Correlation Analysis (CCA) analog of the PCA biplot in Figure 1, obtained by applying CCA to the combined body composition and 
microbial abundance data. Since each sample is associated with a pair of scores, one from each table, we use a different symbol to represent the scores: two points 
joined by an edge, where each point gives the score from one of the tables. Aside from this exception, the PCA biplot interpretation still applies. The higher the CCA 
objective, the shorter the links between pairs. The first two CCA dimensions suggest smooth variation across samples, according to amount of android fat mass.
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with subsequent directions found by the same optimization, 
after adding the constraint that they are orthogonal to the 
previously derived directions.

The only difference with the objective in equation (2) is that 
norm constraint is imposed on u and v directly, rather than their 

transformations ∑XX u
1
2  and ∑YY v

1
2 . It is in this sense that the 

CCA objective maximizes the correlation between scores, while 
CoIA maximizes the covariance.

The solution ( )uk k
K

=1  and ( )vk k
K

=1  can be obtained as the first 
K left and right eigenvectors from the SVD of XTY, as opposed to 
the first K generalized eigenvectors, as in CCA. The proof of this 
fact is almost identical to the derivation in section CCA, for CCA.

Example
We apply CoIA to the same data as used in section Example, as 
CoIA also needs to estimate the covariance between tables, which 
is difficult when the number of species is large. We find that the 
associated scores are quite different from those found using CCA. 
Compare Figure 3, which shades samples by android fat mass with 
Figure 2 for CCA. The scores for CoIA are not so closely aligned 
across tables, but they exhibit a clearer gradient across android fat 
mass. We find that the scores are not nearly as closely aligned as 
they are for CCA, but that they are more strongly associated with 
variation in android fat mass, as in the concatenated PCA result 
of Figure 1. It is not clear whether this phenomenon—the CoIA 
scores being more similar to those from PCA than CCA—holds in 
general, or what it is about the change in inner products between 
CoIA and CCA that is responsible for this difference.

MFA
MFA gives an alternative approach to producing scores and 
relating features across multiple tables (Pagés, 2014). It can 
be understood as a refined version of the concatenated PCA 
described in section PCA that reweights tables in a way that 
prevents any one table from dominating the resulting ordination. 
Specifically, MFA is a concatenated PCA on the matrix

X
X

X
X

XL
L:

( )
| |

( )
,( )

( )
( )

( )= …










1 1

1
1

1

1λ λ

which reweights each table X(k) by its largest eigenvalue, 
λ(X(k)). This procedure is the multitable analog of the 
common practice of standardizing variables before 
performing PCA.

The resulting MFA directions and scores can be interpreted 
in the same way as those from PCA—the MFA directions still 
specify the relationship between measured features, and the 
position of each sample’s projection describes the relative value 
of each feature for that sample. Moreover, MFA gives a way 
of comparing entire tables to each other, called a “canonical 
analysis” (Pagés et al., 2004). A K-dimensional representation of 
the lth group is given by

 z X z Xl
K

l
1, , , , ,( ) ( )( ) … ( ) 

where zk = dkuk ∈ ℝn is the kth column of principal component 
scores and

  z X X
X

X X z z X
k

l k
l

l l T
k k

T k, ( )
( )

(( )
( )

( ) ( )( ) = ( ) =λ
λ

λ
1

tr ))
( )( )

( )

λ1
2
2

X
X zkl

l T
 

is a measure of aggregate similarity between the coordinates 
in the lth table and the kth column of scores. According to this 
definition, if the samples, as represented by the lth table, have high 
correlation with the kth dimension of scores, then the canonical 
analysis displays positions the lth table far in the kth direction. 
Plotting these table-level coordinates helps resolve which tables 
measure similar underlying variation.

PCA-IV
PCA-IV adapts the dimensionality reduction ideas of PCA to 
the multivariate regression setting (Rao, 1964). It can also be 

FIGURE 3 | The Co-inertia Analysis (CoIA) analog of the PCA and CCA biplots in Figures 1 and 2. There seems to be a clearer gradient across android fat mass 
variables, though the scores are not so well aligned, since the links are somewhat longer.
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viewed as a version of PCA that chooses a dimension reduction 
of X based on its ability to predict Y. In this sense, it anticipates 
methods like Partial Least Squares, Canonical Correspondence 
Analysis, the Curds & Whey procedure, and the Graph-Fused 
Lasso, which are described in sections Partial Least Squares, 
CCpnA, Curds & Whey, and Graph-Fused Lasso.

Formally, suppose we are predicting yi
p∈ 

1 from xi
p∈ 

2. 
Since p2 may be large, it might be useful to work with a lower-
dimensional representation z V xi

KT
i= ∈  , which is potentially 

more interpretable but still as (or more) predictive of yi. As in 
PCA, we require that V be orthonormal.

The criterion that PCA-IV uses to identify the loadings V 
and scores Z mirrors the maximum variance criterion for PCA. 
Instead of choosing V to maximize the variance of the zi, we 
choose it to minimize the residual covariance of yi given zi. That 
is, suppose that y1 and x1 are jointly normal with mean 0 and 
covariance
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If zi = VTxi, then the joint covariance of yi and zi is
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so the residual covariance of y1 given z1 is

 Σ Σ Σ ΣΤ
YY YX XX

T
XYV V V V− ( )−1

.  (4)

Rao (Rao, 1964) uses the trace to measure the “size” of this 
matrix. The true population covariances are unknown to us, 
so we replace them by their empirical estimates. The formal 
optimization for PCA-IV then becomes

 
minimize tr

orthonormalV
YY YX

T
XXp K

V V V
∈ ×

−


2

ˆ ˆ ( ˆ )Σ Σ Σ −−( )1V T
XYΣ̂  (5)

The optimal V are the top K generalized eigenvectors of 
ˆ ˆΣ ΣXY YX with respect to Σ̂ XX, that is, the orthonormal set of 
(vk) satisfying

ˆ ˆ ˆ | | ˆ ˆ ,Σ Σ Σ Σ Σ ΛXY YX XX k XX k XXV v v V= …( ) =λ λ1 1

where Λ = diag (λk) ∈ ℝK×K. A derivation for why this choice 
is optimal is provided in section Derivation Details for PCA-IV.

For a geometric interpretation of PCA-IV, view each column 
yj in Y and xj in X as a point in ℝn. Assuming X and Y are full 
rank, the collections (yj) and (xj) span p1- and p2-dimensional 
subspaces. A set of independent regressions of yj on X projects 
each individual yj onto the span of the (xj), and the squared 
residuals are the distance to this subspace. The PCA-IV procedure 
is an attempt to find a further K-dimensional subspace within the 
span of the (xj) such that the residuals of the regressions from yj 

onto this further subspace is not much worse. This is displayed 
in Figure 4.

Example
Continuing our WELL-China case study, we now illustrate 
results from PCA-IV. The idea of scores and loadings in this 
context requires some clarification. By PCA-IV scores, we mean 
the coordinates of projections zi of samples onto the subspace 
defined by V, and by loadings, we mean the correlation between 
columns2 of X and Y with the PCA-IV axes defining V.

The scores and loadings are given in Figure 5. Interpretation 
of the species loadings is simple, since species seem well separated 
by taxa. Interpretation of the body composition variables is less 
clear—pairs of variables that would be expected to be near to one 
another are not, in many cases. Indeed, leg fat mass (leg_fm) and 
left leg fat mass (l_leg_fm) should have a small angle between 
one another, but they do not. It is possible that by approximating 
the covariation across tables, the quality of within-table 
approximations deteriorates.

We find that the scores, displayed in figures, are similar 
to those that found by the concatenated PCA of section PCA. 
One possible explanation for this behavior is that the PCA-IV-
generalized SVD of X is similar to an ordinary PCA of X, and 
that in the concatenated PCA of (Y X), the fact that X has many 
more columns than Y means that the result is similar to a PCA 
on X alone.

Partial Triadic Analysis
Partial Triadic Analysis (PTA) gives an approach for working 
with multitable data when each table has the same dimension, 
p1 = p2 (Kroonenberg, 2008; Thioulouse, 2011). Specifically, it 
gives a way of analyzing data of the form ( .. )X l l

L
=1, where each X..l 

∈ ℝn×p. This is called a data cube because it can also be written as 
a three-dimensional array X ∈ ℝn×p×L. We denote the jth feature 
measured on the ith sample in the lth table by xiji, and the slices 
over fixed i, j, and l by Xi.., X.j., and X..l. This type of data arises 
frequently in longitudinal data analysis, where the same features 
are collected for the same samples over a series of L times. 
However, the actual ordering of the L tables is not ever used by 
this method: if we scrambled the time ordering for L tables, the 
algorithm’s result would not change.

The main idea in PTA is to divide the analysis into two steps:

• Combine the L tables into a single compromise or consensus 
table.

• Apply any standard single-table method, e.g., PCA, on the 
compromise table.

A naive approach to constructing the compromise table 
would be to average each entry across the L tables. Instead, 
PTA upweights tables that are more similar to the average table, 
as these are considered more representative. Formally, the 
compromise is defined as X X Xc l

L
l l

n p= = ∈=
×Σ 1 α α.. 

, where α 
(constrained to norm one) is chosen to maximize ∑ =l

L
l lX X1 α , .. ,  

2Geometrically, the angle between original columns and the subspace, in the sense 
of Figure 4.
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a weighted average of inner-products3 between each of the L 
tables and the naive-average table, X L

Xl
L

l= ∑ =
1

1 .. .
The optimal α can be derived using Lagrange multipliers (see 

Derivation of PTA α) and leads to the compromise table,

 X
X X

X X
Xc

l

l
l

L l
l

L

=

′
′=

= ∑
∑ , ..

, ..
.. .

2

1
1

 

We can try to interpret the compromise matrix geometrically. 
Suppose the X..l define an orthonormal basis, so that 
X X l ll l, ( )′ = = ′ . Then, we can write the compromise table as

 X L X X X L Xc l
l

L

l= =
=

∑ , .. .. ,
1

 

a scaled version of the mean.

3 We are using 〈A, B〉 = tr(ATB).

If, however, the tables are not orthonormal, then we place 
more weight on directions that are correlated. For example, if 
X(1) = X(2), but the rest of the tables are orthogonal to each other 
and to these first two tables, then the compromise double counts 
the direction X(1). Therefore, compared to the naive average X , Xc 
upweights more highly represented tables.

Statico and Costatis
In the multivariate ecology literature, it is common to have a pair of 
data cubes, giving species abundances and environmental variables 
over time, respectively. We write these as Y n p L∈ × ×



1  and Y n p L∈ × ×


2 .  
Costatis and Statico are two approaches for analyzing such data 
(Thioulouse, 2011). They are easiest to understand as divide-and-
conquer approaches, where the general problem of analyzing 
a pair of data cubes is divided into two steps, one designed for 
analyzing individual cubes, and another for studying covariation 
across tables. In Statico, the covariation problem is dealt with first, 
then followed by a data cube analysis, while in Costatis, that order 
is reversed.

Specifically, in Statico, an empirical cross-covariance matrix 
is constructed at each time point, Z

n
Y Xl

l

T
l l

= 1
.. .. . For example, 

this is the correlation between the environmental variables and 
species counts at a specific time point l. The L matrices Zl are then 

FIGURE 5 | The PCA-IV biplot can be interpreted like biplots from previous methods, for example, Figure 1. Some of the relationships between variables seem less 
intuitive than those observed previously.

FIGURE 4 | A geometric view of Principal Component Analysis with Instrumental Variables (PCA-IV). The columns of the response Y are views as n-dimensional 
vectors. The gray plane is the span of X. Multivariate OLS simply projects the columns of Y onto the plane, while PCA-IV searches for a further subspace V on which 
to project all responses.
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input into a PTA, yielding a compromise table Zc that can then be 
studied with PCA.

Alternatively, in Costatis, a compromise table is constructed 
for each of the data cubes Y and X, using PTA. Call these Yc and 
Xc. These are now simply two matrices, each with n rows, and 
they can be analyzed by any two-table dimensionality reduction 
method, for example, CoIA.

Hence, we see that the only difference between these methods 
is the order in which CoIA and PTA are applied. Indeed, this is 
reflected in the names of the methods: Statis is an abbreviation 
for a PTA, and Statico performs a CoIA before a Statis while 
Costatis does the reverse.

MODERN MULTIVARIATE METHODS

Compared to classical approaches, modern multivariate methods 
are typically designed for more high-dimensional, heterogeneous 
settings. The two methods reviewed in this section are examples 
of this trend: Partial Least Squares (PLS) is well-suited for 
finding predictors in the presence of high-dimensional response 
matrices, while Canonical Correspondence Analysis (CCpnA) 
was designed to facilitate joint analysis of heterogeneous 
continuous and count data necessary. Unlike traditional 
statistical methods, neither approach is explicitly model-based, 
and both are iterative, requiring more extensive computation 
than earlier techniques.

Partial Least Squares
PLS sequentially derives a set of mutually orthogonal features 
( )zk k

K
=1 that characterizes the relationship between two tables, Y and 

X (Wold, 1985). To obtain the first PLS direction, z1, compute the 
first left singular vector u1 of the cross-covariance matrix between 

the two tables, Σ̂YX
T

n
Y X= 1 . Then, for each of the p2 columns 

of X, compute the univariate (i.e., partial) regression coefficient 
ˆ

. .ϕ j
j

T

x
x u

j
= 1

2
2 1

 

, for j = 1,…, p1. The first PLS direction is defined 

as z xj
p

j j1 1
2= ∑ =

ˆ .ϕ  a weighted average of x.j according to their 
partial correlation with u1. To generate subsequent directions zk, 
orthogonalize both Y and X with respect to the current directions 
z1,… zk–1, and repeat the process.

This procedure is appealing because, like PCA, it reduces a 
potentially high-dimensional matrix X with many correlated 
columns into a smaller set of orthogonal directions. Moreover, 
it achieves this reduction in a way that accounts for correlation 
with columns in Y: columns of X that are uncorrelated with Y will 
have no contribution to the PLS directions, even if they account 
for a large proportion of variation in X.

We have stated the procedure in the form it was originally 
proposed, but this algorithmic description is difficult to understand 
geometrically or probabilistically. However, interpretational 
aids have since been developed. Frank and Friedman (1993) and 
Stone and Brooks (1990) studied the case where p1 = 1, so y is a 
single column vector. By assuming that the rows of y and X are 
drawn i.i.d. from distribution ℙYX, with marginals ℙY and ℙx, 

they found that the kth PLS direction zk is the z that solves the 
optimization

 

maximize Corr Var

th

z
i
T

k i iYX Xx z y z x , ( )

such

T 

aat for all jz X Xz k

z

T T
j = ≤ −

=

0 1

12  .

 (6)

If the covariance term is omitted, the optimization is identical 
to the maximum variance problem that gives the principal 
component directions based on X. This formulation makes 
precise the idea that PLS is a version of principal components 
that accounts for correlation with Y.

An alternative interpretation, due to (Gustafsson, 2001), is that 
PLS fits a particular latent variable model. Suppose ξ ξ ξi i

s
i
X= ( , ) are 

drawn i.i.d. from a K1 + K2 = K dimensional spherical normal. PLS 
assumes the observed tables Y and X have rows drawn i.i.d. from

 
y W I
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i i Y Y i
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X
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2
1

22
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Ip ).
 

That is, each table is the sum of two components, one that is a 
table-specific linear combination of a shared latent variable, and 
another that is an arbitrary linear combination of a table-specific 
latent variable. The shared feature ξs is the object of interest, and 
is what PLS implicitly estimates.

Sparse Partial Least Squares
PLS suffers from two of the same problems as PCA:
• It can be unstable in high-dimensional settings, since it 

requires estimation of covariances, and isn’t well defined when 
p > n.

• PLS directions are linear combinations of all features in xi, 
which can be difficult to interpret when there are many features.

Different regularized, sparse modifications of PCA have been 
proposed to remedy these issues in the PCA context (Jolliffe 
et al., 2003; Zou et al., 2006; Witten et al., 2009). For PLS, similar 
analysis leads to sparse PLS (Lê Cao et al., 2008; Chun and Kele, 
2010), and we briefly review this method here.

Directly regularizing the multiresponse version of the PLS 
optimization (6) leads to the problem

 

maximize Cov

such that
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  λ,

 

which can be applied to real data by replacing the objective with 
its sample version, z Mzk

T
k, where M = XTYYTX. This version 
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of the problem falls into the Penalized Matrix Decomposition 
framework of Witten et al. (2009), reviewed in the section 
penalized matrix decomposition.

However, Chun and Kele (2010) argue that this formulation 
does not lead to “sparse enough” solutions. Instead, they adapt 
the SPCA approach of Zou et al. (2006) to PLS. The resulting 
objective identifies two sets of directions, a set (ak) that 
maximizes the PLS-defining covariance and another, (zk), that 
approximates the first set by a sparser alternative. Formally,

 

maximize

such that
z a

k M k k M
k k

a z a
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z
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1 1
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1=
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≤

λ

λ ,
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where we have defined  x x MxM
T=  and κ, λ1, and λ2 are 

tuning parameters. The first term in the objective is the PLS-
defining covariance, the second ensures that the solutions zk 
and ak are similar, and the norm constraints induce sparsity and 
stability on zk. Note that while this objective is not convex, for 
fixed ak, it is an elastic-net regression, while for fixed zk, it is a 
type of eigenvalue problem.

Example
Next we apply the sparse partial least squares (SPLS) 
implementation of Chung et al. (2012) to the WELL-China 
body composition data. We use the body composition variables 
as the response Y and the microbiome community composition 
as X. In this direction, a well-fitting model would allow the 
microbiome community measurements X to serve as a proxy for 
the variables in Y, in case those data were not easily accessible. 
To an extent, however, this choice of directionality is arbitrary—
regressing abundances on body composition variables would 
also be sensible—and reflects the basic limitations of using an 
asymmetric method to study a symmetric problem.

We subset to female subjects and filter species, keeping 
only those species with a count of at least 5 in at least 7% of 
samples. This leaves 372 species over 119 participants. All 
species abundances are variance-stabilized using the approach 
of Anders and Huber (2010). We cross-validate with five folds, 
searching through a grid over K ∈ {4,…,8} and λ1∈ {0, 0.05,…, 
0.7}. This grid is used to prevent the model from regularizing to 
the point that there is no information to visualize. For example, 
if we set K = 1, every row of Figure 6 would look identical. The 
predictive accuracy is poor, which is unsurprising considering 
the spike at 0 in the abundances histogram—the held out 
error is ≈ 1.29, after having scaled and centered the body 
composition variables.

Figure 6 displays fitted coefficients relating body composition 
variables with species abundances. By fitted coefficients, we 
mean we display B̂ ZQT= , where Z are the SPLS directions and 
a multiresponse linear regression model is used. Specifically, 
Y  = XB + E = XZQT + E where X is a matrix with rows xi, Y is a 
matrix with columns yj, and Z is a matrix with columns zk.

Positive associations tend to occur across all responses 
simultaneously, while negative associations can be unique to 
either lean or fat mass. Most taxonomic families seem to have 
slightly more negative than positive associations, with the 
possible exception of Porphyromonodaceae.

To interpret these coefficients in the raw data, we can visualize 
individual species with strong associations to body composition. 
Specifically, we study associations with the android and gynoid 
fat mass variables. In the left panel of Figure 7, we display the 
abundances X for species against android fat mass, respectively. 
The species are chosen according to whether the two-dimensional 
coefficient across android and gynoid fat mass has large norm4. 
The main associations that are visible are those between the body 
composition and species presence or absence. That is, there don’t 
seem to be any cases where a body composition feature varies 
smoothly as a species becomes more or less abundant. Instead, 
SPLS has identified species whose samples have lower or higher 
android or gynoid fat mass, depending on whether that species 
is present or absent.

CCpnA
CCpnA is a method, originally developed in ecology, useful 
for joint analysis of count and continuous data. The canonical 
application has a site-by-species count matrix Y n p∈ ×



1  and an 
environmental features matrix X n p∈ ×



2, for example, historical 
rainfall and temperature measurements. In the WELL context, Y 
would be the samples by community abundance matrix, while X 
would contain the body composition measurements.

The scientific goal might be to identify species that are more 
abundant in sites with more rainfall or higher temperature. If 
these environmental variables were uncorrelated, it would be 
enough to fit a separate regression to each. This, however, is 
rarely the case, motivating the development for CCpnA.

Translating to the language of the WELL-study, individual 
samples can be thought of sites, and the supplemental data—
that is, the body composition variables—are analogous to 
environmental variables.

CCpnA produces low-dimensional representations of both 
the rows and columns of Y (the samples and species), along with 
latent subspaces on which these representations are defined. 
Algorithmically, CCpnA first constructs the following matrices, 
where 1r denotes a column vector of r ones,

 1. An overall frequency matrix,

F
n

YY= 1

..

,

where nY
..  is the sum of all counts in matrix Y.

 2. A diagonal matrix of row (site) proportions,

D Fr p
n n= ∈ ×diag( )1

1
 .

4 Specifically, 
β

β
android
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2
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 3. A diagonal matrix of column (species) proportions,

D Fc
T

n
p p= ∈ ×diag( 1 ) 

1 1 .

 4. A projection onto the columns of the supplemental matrix X, 
reweighting samples according to their species counts,

P D X X D X X DX r
T

r
T

r
n n= ( ) ∈

− −− ×
1

2
1

21
 ,

With this notation, compute an SVD,

D F F F D P USVr p p
T

C X
T− −= −( ) =

1
2 1 1

1 1

1
2 ,

and define row and column scores Z and Q by

Z D US

Q D V S

r

c
T

=

=

−

−

1
2

1
2 .

There are several ways to interpret this procedure. CCpnA 
was originally proposed as the solution to a fixed-point 

FIGURE 6 | Coefficients learned by SPLS. Each row is a response dimension, which is a body composition variable. Each column is associated with a species. The 
shading within each cell corresponds to the SPLS coefficient for that species–response pair. Green and purple cells are positive and negative coefficients, respectively. 
Species are grouped first according to their taxonomic family, marked by grouping panel colors, and then by a hierarchical clustering on coefficient values.

FIGURE 7 | A more focused view of the species with high loadings according to SPLS (left) and sparse CCA (right). Each panel corresponds to a species. Points are 
shaded according to each species’ taxonomic family. The x-axis within panels corresponds to variance-stabilized species abundance, while the y-axis gives android 
fat mass. A linear smooth is provided to summarize the direction of associations. Panels are arranged according to the size of that species’ absolute SPLS coefficient 
value or loading onto the first sparse CCA axis. The presence of certain species seems to correspond to increased or decreased levels of android fat mass.
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iteration called reciprocal averaging (Ter Braak, 1986). Later, 
Greenacre (1984) and Greenacre and Hastie (1987), provided a 
geometric view and Zhu et al. (2005) gave an exact probabilistic 
interpretation.

The intuition for the reciprocal averaging procedure is simple: 
the scores for different samples should be a weighted average of 
the species scores, with larger weights for the species that are 
more common at those sites. Similarly, species scores can be 
defined according to a weighted average of sample scores. That is,

z
f

f qi
i

ij ij
j

P

∝
=

∑1

1

1

.

q
f

f zi
j

ij ij
i

n

∝
=

∑1

1.
,

or, in matrix form,

Z F p FQT∝ −diag ( )1 1
1

Q F ZT
n∝ −diag ( )1 1 .

This formulation suggests an algorithm for finding Z and 
Q—arbitrarily initialize one and iterate these calculations until 
convergence.

As is, this is not yet the setup that yields CCpnA—it does not 
use information in the supplemental table X. To recover CCpnA, 
a projection step needs to be inserted before the calculation 
of row scores,

 1. Arbitrarily initialize Z.
 2. While not converged,

 a. Solve diag (′ ∝ −Q F F ZT
n

T1 1) .
 b. Project = .Q P QX ′
 c. Solve diag ( 1 )

1
Z Z FQp

T∝ −1 .

The fixed point of this iteration is the previously described 
CCpnA solution.

A second interpretation is due to Zhu et al. (2005). Suppose 
first that we are only interested in a one-dimensional score 
for rows and columns. Let α be a latent gradient, for example, 
between warm-dry and cold-wet sites, or low and high android-
fat mass samples. For each of the p1 species, define a normal 
density over the supplemental variables, f x xj i i j j( ) ( | , )=  µ Σ . 
The mode of this density represents the preferred environment 
for species j. Next, project these densities onto the gradient, giving 
a univariate f z zj i i

T
j

T
j

α α µ α α( ) ( | , )=  Σ  for each species. The zi 
represent the scores for species i along the gradient α.

The generative model views species–sample pairs one at a 
time. For each pair involving sample i and species j, draw a score 
according to f zj i

α ( ). Hence, each site i draws species according 
to a p1-class linear discriminant (LDA) model.

To use this idea to compute scores, we need to estimate the 
gradient α, which is also of interest in its own right. This is done 
by supposing equal covariances across species, Σj = Σ for all j, 

and finding the α̂  maximizing the between vs. total variance 
across species,

α α
α α

T
B

T

∑
∑

,

where

∑ = − −
=

∑B j
j

p

j j
Tf . ( )( )

1

1

µ µ µ µ

is a between-species covariance matrix. Estimating α̂  in this way 
and writing z xi

T
i= α̂  gives the original site scores from CCpnA.

We have omitted a detailed numerical example of this method 
in this review, but note that codes for applying this method are 
available in the github repository associated with this review.

Penalized Matrix Decomposition
In high-dimensional settings, sparsity is a desirable property, 
for both qualitative interpretability and statistical stability. A 
regression model using only a few features is easier to understand 
than one involving a linear combination of all possible features. 
Further, regularized models typically outperform their 
unregularized counterparts in terms of both predictive accuracy 
and inferential power (Buhlmann and Van De Geer, 2011). In 
fact, it is impossible to fit an unregularized linear regression when 
the number of features is greater than the number of samples.

The Penalized Matrix Decomposition (PMD) is a general 
approach to adapting the regularization machinery developed 
around regression to the multivariate analysis setting (Witten 
et al., 2009). The CCA and MultiCCA instances of PMD have been 
particularly well-studied (Witten et al., 2009; Witten et al., 2013).

The general setup is as follows. Suppose we want a one-
dimensional representation of the samples (rows) in X ∈ ℝn×p. 
Recall that the first k-eigenvectors recovered by PCA span a 
subspace that minimizes the ℓ2-distance from the original data 
to their projections onto that subspace. In particular, when k = 1, 
the associated PCA coordinates u ∈ ℝn and eigenvector v are the 
optimal values in the problem

minimize

subject to

u v d

T
n p

X duv

u
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−

  

 

 

, ,
2
2

2
2 == = v 2

2 1.

The PMD generalizes this formulation of rank-one PCA to 
enforce additional structure on u and v. The PMD solutions u 
and v are defined as the optimizers of

 

minimize

subject to
u v d

T
n p

X duv

u
∈ ∈ ∈

−
  

 

 

, ,
2
2

2
2 == =

≤
≤

 v
u
v

u

v

2
2

1

2

1.
( )
( )

Pen
Pen

µ
µ

 (8)

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Multitable Methods for Microbiome DataSankaran and Holmes

13 August 2019 | Volume 10 | Article 627Frontiers in Genetics | www.frontiersin.org

where Penu and Penv are arbitrary constraints u on and v.
To choose the regularization parameters μ1 and μ2, Witten et al. 

(2009) applied cross-validation to the reconstruction errors after 
holding out random entries in X. To obtain a sequence of scores 
( )uk k

K
=1 and ( )vk k

K
=1 for K > 1, define uk and vk as the optimizers of 

the problem (equation 8) on the residual: X X d u vk k
k k k

T:= −−
− − −

1
1 1 1 

where d u X vk k
T k

k=  and X1 = X.
This view can be specialized to develop regularized versions 

of a number of multivariate analysis problems. We consider 
applications to the CCA and MultiCCA problems. Recalling that 
 A A AF

T2 = tr( ) along with the linearity and the cyclic properties 
of the trace, the objective in equation (8) can be rewritten, using ≡ 
to mean equality up to terms constant in u and v,

 X duv X duv X duv

d X uv d
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T T T

T T
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2
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tr 22
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T T

T T
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where for the last equivalence we used that vTv = uTu = 1.
From this expression, and by partially minimizing out 

d = v TXTu, we see that the PMD solutions u and v in equation (8) 
can be found as the optimizers of

maximize
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Notice that, as long as the penalties are convex in u and v, the 
optimization is biconvex, so a local maximum can be found by 
alternately maximizing over u and v.

From this form, we can derive a sparsity-inducing version of 
CCA. Recall the maximal-covariance interpretation of CCA,

maximize
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T
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p p
u v

u u v

∈ ∈
∑

∑ =

 

1 2,

ˆ

ˆ ˆ̂∑ =YY v 1

Witten et al. (2009) argue for diagonalized CCA, in which the 
variance constraints are replaced by unit norm constraints, and 
sparsity-inducing ℓ1 constraints are added,

maximize

subject to ||
u u
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XYp p

u v
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which is exactly of the form of equation (9) where X XY= ∑̂ .
Multiple CCA can also be described in this framework, by 

replacing the objective with the sum over all pairwise covariances, 

∑ ′′=
′

l l
L l T l T lc X X l,

( ) ( ) ( )( )1 1 1c , and introducing constraints for each of  
the c l

1
( ).

Example
We apply the PMD formulation of sparse CCA to the WELL-
China data. As before, we k-over-A filter the microbiome data, 
requiring species to have counts of at least 5 in at least 7% of 
samples. Further, we first variance-stabilize, center, and scale 
these species abundances. For the regularization parameters, we 
set μ1 = 0.7 for the body composition data and μ2 = 0.3 for the 
species count data. The reasoning behind the relative values of 
these two tuning parameters is that sparsity in species loadings is 
more important than sparsity across body composition variables, 
because the microbiome data are more high-dimensional. The 
choice of the tuning parameters’ overall magnitude was guided 
by the overall number of factors that we wanted to retain.

We only compute the first three PMD directions, and the 
associated correlations between scores are (d1, d2, d3) = (0.700, 
0.435, 0.632). Note that the correlation can increase in subsequent 
directions, since directions are computed iteratively and cannot 
be defined and sorted all at once.

The learned loadings and scores are displayed in Figure 8. 
The x-axis in the loadings differentiates between high android 
and gynoid fat mass. The y-axes in the loadings reflect a gradient 
between overall right and left body mass. The size of points 
corresponds to the third PMD direction, and it seems to highlight 
high BMI, ratio of fat to lean mass, and overall weight. We 
interpret species based on their positions relative to these body 
composition variables, as in an ordinary biplot. For example, 
genus 492, located in the center-top, seems to be more common 
among people with higher android and lower gynoid fat mass.

The associated scores are displayed in the right panel, shaded 
according to android fat mass. The gradient between android and 
gynoid fat mass suggested by the loadings is clearly visible from this 
display. The length of links reflects the correlation between sets of 
scores. They are somewhat longer in the sparse CCA compared to the 
ordinary CCA on a subset of species, but this is likely a consequence 
of regularization and overfitting on the part of ordinary CCA.

We can follow up these displays by focusing on species that 
seemed related to the CCA axes. In the right panel of Figure 7, 
we isolate species with loa dings a distance of at least 0.15 from 
the origin. These are the same ones that are labeled by text in 
Figure 8. We can see associations between abundance and 
android fat mass, as suggested by the loadings. Generally, there 
is a difference between android fat mass among people with and 
without particular species—there is no smooth function between 
the quantity of a species android fat mass, even in these cases 
where an association exists. Further, no individual taxonomic 
group seems to dominate the set of associated species.

Multitable Mixed-Membership
In section CCA, a latent variable interpretation of CCA was 
provided as an alternative to the standard covariance maximization 
perspective. Since likelihood-based methods are easily adapted to 
different data types, it is natural to consider versions of CCA designed 
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for non-Gaussian data, using section CCA as a starting point. We are 
particularly interested in data with the same structure as the WELL-
China body composition and microbiome data, namely, two table 
data where one table is continuous with Gaussian marginals and 
correlated columns and the other is a high-dimensional collection 
of counts, where many entries are exactly zero.

As before, define a set of shared scores ξi
s K∈ , and two sets 

of within-table scores ξi
X L∈ 1 and ξi

Y L∈ 2. As before, we model 
the body composition variables using essentially a Gaussian 
factor analysis model, y B W Ii i

X
i
Y y

i
s y

i
y

p| , ( , )ξ ξ ξ ξ σ∼ + 2
2

 with 
a spherical Gaussian prior ξ ξi

X
i
Y,  on. For the counts matrix, we 

might consider a few different approaches:

• Bayesian Exponential Family PCA (Mohamed et al., 2009): 
By requiring low-rank structure on the natural parameters 
of an exponential family model, we could naturally model 
high-dimensional count data, using a Poisson or multinomial 
likelihood, for example.

• Nonnegative Matrix Factorization (Lee and Seung, 2001): A 
variant of the exponential family approach is to model the 
counts matrix as a Poisson likelihood over a low-rank product 
of Gamma random matrices.

• Latent Dirichlet Allocation (LDA) (Blei et al., 2003): We can model 
the observed samples as Dirichlet mixtures of a few underlying 
“topics,” which are themselves drawn from a Dirichlet prior.

Here, we focus on the LDA approach, though we suspect 
that the other two approaches are potentially interesting as well. 
Formally, this model supposes that counts are drawn according to

x x Ni k i i ik k
k
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p
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1  is the total count in sample i. This has 

the flavor of a factor analysis where ( )θik k
K

=1 are scores for the ith 
sample and (βk) are K underlying topics.

The only complexity with using an LDA model of X together 
with a Gaussian factor analysis on Y is that the shared scores ξi

s

typically have different priors—a Dirichlet for LDA and a 
spherical Gaussian for factor analysis. In any formulation of 
probabilistic CCA that uses both models, this must be reconciled. 
One approach is to continue to place Dirichlet priors on all the 
scores, ξ ξi

s
i
x, , and ξi

y. While the model for the Gaussian data is no 
longer exactly traditional factor analysis, it has a similar 
interpretation. Alternatively, we could use a spherical Gaussian 
prior on all scores and then recover probability vectors by 

applying the softmax function, [ ( )] exp( )
exp( )
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It is this second model that we use in our experiments below.

Example
We illustrate this multitable mixed-membership approach on the 
WELL-China data. We choose K = 2 for the number of shared 
topics and L1 = L2 = 3 for the number of unshared topics per 
table. We initialize scores and loadings using results from the 
PMD formulation of sparse CCA. While the use of shared ξi

s and 
unshared ( , )ξ ξi

x
i
y  scores gives more flexibility in modeling, it also 

leads to additional complexity in interpretation—there are both 
more scores and more loadings that need to be visualized.

Consider the loadings WX and WY, provided in the left panel 
of Figure 9 and bottom three rows of Figure 10. Note that there 
is no notion of variance explained by different axes in this case.

The loadings WX of Figure 9 summarize table-specific variation 
in bacterial abundances. Invariance under rotation and reflection 

FIGURE 8 | A sparse CCA biplot, for variables with at least one nonzero coordinate. In the loadings (left), each point corresponds to a species, and is shaded in by 
tax onomic family. Species with loadings far from the origin are also annotated with their names. Black text are loadings for body composition variables. The size 
of points and text reflects the contribution of the third CCA dimension. Many loadings have at least one dimension that is exactly zero, due to ℓ1-regularization. For 
the sample scores (right), each point is a sample, positioned at their coordinates with respect to the first two learned sparse CCA directions. Points are shaded 
according to android fat mass, and their sizes are set according to the third sparse CCA direction’s contribution. Evidently, the first two directions reflect a gradient 
across android fat mass, suggesting that this is a substantial contributor to covariation across microbiome and body composition tables.
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complicates interpretation of these estimates. If we flip the sign of 
all the loadings axes, then the more abundant species have larger 
loadings, so the direction of different trends is irrelevant. The 
main distinction between the first and second loadings is the rate 
of decay in frequencies, especially among Lachnospiraceae and 
Ruminococcaceae. For example, topic 1 seems to include species 
from these taxonomic families that are not very abundant. The 
main characteristic of the third loading is that it has higher values 
for Porphyromonadaceae, so samples with high weight on this 
loading have decreased levels of these taxa.

Next, consider within-table body composition loadings, given in 
the bottom three rows of Figure 10, which suggests that the first and 

third axes of WY capture variation between overall and android vs. 
gynoid fat mass. The first axis has high loadings for weight, BMI, 
and total fat mass, and the third contrasts areas with high android 
and high gynoid fat mass. The second axis distinguishes between 
right and left total lean and fat mass variation, while the third axis 
captures difference between mass in the trunk versus arms and legs.

These summaries could have been obtained by analyzing each 
table separately. Covariation between the two tables is captured 
by the shared scores ξi

s and loadings BX, BY. The shared body 
composition loadings are given in the top two rows of Figure 10. 
These loadings again differentiate between android and gynoid 
fat mass, learning contrasts between body mass in arms and legs, 

FIGURE 9 | Table-specific (left) and cross-table (right) loadings for different species. Each row is a loading dimension, columns are features (species in this case), 
and intervals summarize posterior samples for the associated loading parameter, Wjk

X  for table-specific loadings, and Bjk
X for cross-table loadings. Species are sorted 

from most to least abundant, within each taxonomic family. Caution must be exercised when interpreting these loadings, as loadings are invariant under rotations 
and reflections.

FIGURE 10 | Table-specific and shared loadings, for the body composition variables, corresponding to the parameters Wjk
Y and Bjk

Y  As in Figure 9, each row is one 
loading dimension, columns are features, and boxplots summarize posterior samples for the associated loading parameters. Colors distinguish between parts of the 
body. We note that loadings learn specific contrasts between types of fat mass and parts of the body.
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for example, though the effects are less pronounced than in the 
table-specific loadings.

The shared bacterial abundance loadings are given in the right 
panel of Figure 9. The most notable observation is that the first 
axes places more weight on rarer species, while the second places 
proportionally more weight on abundant species. Further, the 
two axes seem to have very different behaviors with respect to 
Prevotellaceae and Veillonellaceae.

In general, we find the results from the LDA–CCA approach 
less satisfying than those of the sparse CCA of section Penalized 
Matrix Decomposition. It seems that inference of a probabilistic 
model with shared and unshared parameters is more difficult 
than optimization of a single set of shared parameters. It may be 
possible to improve this approach through the following strategies:

• Applying LDA–CCA only to those species that are not sent 
entirely to zero by sparse CCA.

• Placing a sparsity-inducing prior on the scores BX, BY, WX, and 
WY, respectively, in the spirit of Archambeau and Bach (2009).

Curds & Whey
The Curds & Whey (C&W) procedure is a “soft” version of 
reduced-rank regression, differentially shrinking the ordinary 
least squares (OLS) fits with respect to the response canonical 
correlation directions (Breiman and Friedman, 1997). This is 
in contrast to reduced-rank regression, whose projection onto 
the first K response canonical correlation directions is a hard-
thresholding analog. Hence, C&W is to reduced-rank regression 
what ridge regression is to principal component regression.

More precisely, the C&W algorithm fits a table Y according to

 ˆ ,Y P YVX= −Λ 1  (10)

where again V p p∈ ×


1 1 are the CCA directions associated with 
the response Y and Px is the projection operator onto the column 
space of X. Λ is defined to be a diagonal matrix that determines 
the degree of shrinkage for the different canonical directions.

The main difficulty in C&W is the choice of Λ, and Breiman 
and Friedman (1997) suggest several possibilities. One choice is 
derived from a generalized cross-validation point of view, and 
results in shrinkage towards the response canonical correlation 
directions, without assuming the form of equation (10) a priori. 
This derivation is provided in section Derivation of Curds & 
Whey Shrinkage.

Graph-Fused Lasso
An approach to multiresponse regression, introduced by Chen 
et al. (2010), incorporates prior knowledge about the relationship 
between responses. Specifically, they use the correlation network 
between responses to induce structured regularization on the 
regression parameters.

Let Y n p∈ ×


1 and X n p∈ ×


2 and assume a correlation network 
between the p2 tasks. This is denoted by G = (V, E), where V = 
{1,…,p1}. Each edge e is associated with a weight, r (e), giving the 
correlation between the pair of responses.

The graph-fused lasso estimates a coefficient matrix B p p∈ ×


2 1 
whose columns β(r) are the regression coefficients across tasks, 
but which have been pooled together, with the strength of the 
pooling depending on the separately computed strength of the 
relationship between tasks. Formally, β̂ is defined as the solution 
to the optimization,

 

minimize || || || || | |
B

F e
j

p

p p
Y XB B r

∈
=

×
− + +



2 1

21
2

2
1

1

λ γ ∑∑∑ + −

∈

−β βj
e

e j
e

e E

r( ) ( ) ,sign( )

 (11)

where ||B||1 is the sum of the absolute values of all entries of 
B, βj is the jth row of B, and e− and e+ denote the nodes at either 
end of the edge e. The last regularization term in the objective is 
called the graph fused-lasso penalty, and it is this element that 
encourages pooling of information across regression problems.

Example
We apply the graph-fused lasso to the body composition problem 
and compare it to a naive version of the lasso that does not share 
any information across responses. We consider predicting the 
body composition variables, many of which are strongly correlated 
with one another, using variance-stabilized bacterial abundances.

We filter away species that do not appear in at least 7% 
of samples, as in the original PCA approach. We set the 
smoothing parameter to μ = 0.01, while the ℓ1 and graph-
regularization parameters are set to λ = 0.1 and γ = 0.01, 
respectively, after they were heuristically found to provide 
interpretable levels of sparsity and smoothness in the fitted 
coefficients.

The graph-fused lasso requires a correlation graph between 
response variables. We estimate such a graph using the graphical 
lasso (Friedman et al., 2008), since there are only ~100 with 
which to estimate the 36-dimensional covariance matrix. The 
estimated correlation matrix is displayed in Figure 11.

The fitted coefficients from the graph-fused lasso are given 
in the top panel of Figure 12. The analogous display when the 
problem is decoupled into parallel lasso regressions is given in 
the bottom panel of the same figure.

Generally, both approaches highlight the same directions and size 
of association between individual species and the response variables, 
though those returned by the graph-fused lasso are smoother 
across responses. This smoothing may obscure true variation—for 
example, the stronger association between height_dxa and a few 
Ruminoccocus species—that appears in the parallel-lasso approach. 
On the other hand, regularization reduces the number of one-off 
nonzero coefficients, which are likely just noise.

There appear to be real associations between Lachnospiraceae 
and Ruminococcaceae and the body composition 
measurements. The strongest negative association between 
species abundance and fat mass occurs among a few species of 
Ruminococcaceae. Most species that have any association tend 
to have the same direction and magnitude of association across 
all body composition variables, not just those restricted to one 
mass type. This seems to be the case even in the parallel-lasso 
context, where such structure has not been directly imposed.
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DISCUSSION

In this work, we have studied the problem of multitable data 
analysis, reviewing both the algorithmic foundations and 
practical applications of various methods. We have described 
approaches that are usually confined to particular literature areas 
and highlighted certain similarities in the process—for example, 
PCA-IV (section PCA-IV) and the graph-fused lasso (section 
Graph-Fused Lasso) were proposed in very different contexts, but 
have similar goals. By writing short, self-contained descriptions of 
various methods, we hope to contribute to an effort to distill ideas 
from the wide multitable data analysis literature to make them 
easily understandable to researchers interested in entering this field 
and useful for scientists hoping to apply these methods. A “cheat-
sheet” summarizing some of the key properties of these methods 
is given in Table 1, and relevant packages can be found in Table 2.

In developing our WELL-China case study, we have both 
1) described the types of interpretations facilitated by different 
approaches and 2) provided accessible implementations that can be 
incorporated into practical scientific workflows. Though our focus 

on a single application has allowed side-by-side comparisons of 
methods, we do not want to leave the reader with the impression that 
these methods are tied in any way to this particular biological analysis 
task. Indeed, the value of mathematical abstractions is that they can 
be applied to situations outside the imaginations of the original 
method designers. For example, consider these potential use cases:

• Microbiome and metabolites: If we replace the body composition 
table with the concentrations of different metabolites across 
samples, we can begin to make claims about covariation between 
microbiome community composition and host metabolic 
processes (Chong and Xia, 2017; Fukuyama et al., 2017).

• Microbiome and metagenomics: In addition to a species 
composition matrix, we might have data quantifying the presence 
of various genes. The methods in this review could be used to 
understand the relationship between community composition 
and functional capacity (Gill et al., 2006; Kurokawa et al., 2007).

• Microbiome and perturbations: If we had a matrix tracking 
the application of various perturbations to the host—the 
use of various medications, for example—we could use 

FIGURE 11 | Correlation matrix used as the input graph R for the graph-fused lasso, estimated itself according to the graphical lasso.
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multitable methods to describe ways these (multidimensional) 
perturbations are related to microbiome community structure 
(Dethlefsen and Relman, 2011).

Our case study includes carefully thought-through 
visualizations of model results, a step that is crucial in scientific 

study but often overlooked in methodological research, where 
model results are reduced to tables of performance metrics. 
Recognizing that a good deal of effort in statistical work goes 
into data preparation and visualization of model results, we have 
ensured that codes for all steps are available, so that our work is 
fully reproducible.

FIGURE 12 | Coefficients for the graph-fused (top) and decoupled (bottom) lasso fits highlight groups of species with similar profiles across response variables. 
Colored rectangles demarcate taxonomic families. Individual cells give the coefficient for a particular species (column) for a given response variable (row). Purple 
and green denote negative and positive coefficients, respectively. Note that coefficient graph-fused panels have been smoothed according to correlation network 
between variables, as given in Figure 11. Species with similar coefficients are placed near one another. Note that even in the decoupled case, where there is no 
sharing across response problems, the coefficients nonetheless seem to be similar within lean and fat mass response groups, respectively. However, they are 
not as smooth as in the graph-fused lasso. As there is some consistency within these groups of variables, the form of structured regularization imposed by the 
graph seems appropriate.
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We have found that multitable data analysis problems have 
motivated a wide range of analysis approaches. This is not 
surprising, considering the variety of contexts in which it arises, 
and it speaks to the richness of this methodological problem. As 
new data sources arise and as science evolves, we expect these ideas 
will inspire future generations of multitable research advances.

AUTHOR CONTRIBUTIONS

SH and KS conceived and designed the review, drafted the 
manuscript, and prepared all figures. KS implemented code for 
data analysis.

FUNDING

KS was supported by a Stanford University Weiland fellowship and 
the National Institutes of Health T32 grant 5T32GM096982-04. SH is 
supported by the National Institutes of Health TR01 grant AI112401.

ACKNOWLEDGMENTS
We thank the WELL-China study team for sharing the 
data appearing in this study and Yan Min for useful discussions.

An earlier version of this work first appeared in KS’s PhD 
thesis (Sankaran, 2018).

TABLE 1 | A high-level comparison of the multitable analysis methods discussed in this review. The purpose of this table is to give rules-of-thumb that can guide 
practical application, where choices invariably depend on the scale and structure of the data, the goals of the analysis, the expected number of future workflow 
applications, and availability of programming computation time.

Property Algorithms Consequence

Analytical solution Concat. PCA, CCA, CoIA, MFA, PTA, 
Statico/Costatis

Methods with analytical solutions generally run much faster than those that require 
iterative updates, optimization, or Monte Carlo sampling. They tend to be restricted to 
more classical settings, however.

Require covariance estimate Concat. PCA, CCA, CoIA, MFA, PTA, 
Statico/Costatis

Methods that require estimates of covariance matrices cannot be applied to data with 
more variables than samples, and become unstable in high-dimensional settings.

Sparsity SPLS, Graph-Fused Lasso, Graph-Fused 
Lasso

Encouraging sparsity on scores or loadings can result in more interpretable, results for 
high-dimensional data sets. These methods provide automatic variable selection in the 
multitable analysis problem.

Tuning parameters Sparsity: Graph-Fused Lasso, PMD, SPLS
Number of Factors: PCA-IV, Red. Rank 
Regression, Mixed-Membership CCA Prior 
Parameters: Mixed- Membership CCA, 
Bayesian Multitask Regression

Methods with many tuning parameters are often more expressive than those without 
any, since it makes it possible to adapt to different degrees of model complexity. 
However, in the absence of automatic tuning strategies, these methods are typically 
more difficult to use effectively.

Probabilistic Mixed-Membership CCA, Bayesian Multitask 
Regression

Probabilistic techniques provide estimates of uncertainty, along with representations 
of cross-table covariation. This comes at the cost of more involved computation and 
difficulty in assessing convergence.

Not Normal or Nonlinear CCpNA, Mixed-Membership CCA, Bayesian 
Multitask Regression

When data are not normal (and are difficult to transform to normality) or there are sources 
of nonlinear covariation across tables, it can be beneficial to directly model this structure.

>2 Tables Concat. PCA, CCA, MFA, PMD Methods that allow more than two tables are applicable in a wider range of multitable 
problems. Note that these are a subset of the cross-table symmetric methods.

Cross-Table Symmetry Concat. PCA, CCA, CoIA, Statico/Costatis, 
MFA, PMD

Cross-table symmetry refers to the idea that some methods don’t need a supervised 
or multitask setup, where one table contains response variable and the other requires 
predictors. The results of these methods do not change when the two tables are 
swapped in the method input.

TABLE 2 | Pointers to R package that can be used to implement methods discussed in this survey. The vignettes in these packages go into more depth on the 
capabilities of these packages than do the short scripts used in our case study, available at https://github.com/krisrs1128/multitable_review.

Package Methods Documentation Link

ade4 PCA, CCA, CoIA, Statico, Costatis, PCA-IV Average https://cran.r-project.org/web/packages/ade4/
FactoMineR PCA, MFA High https://cran.r-project.org/web/packages/FactoMineR/
vegan CCA, CCpnA High https://cran.r-project.org/web/packages/vegan/
spls SPLS High https://cran.r-project.org/web/packages/spls/
PMA PMD High https://cran.r-project.org/web/packages/PMA/
pls PLS High https://cran.r-project.org/web/packages/pls/
Base R PCA, CCA High https://cran.r-project.org/
GFLasso Graph-Fused

Lasso
Low https://github.com/krisrs1128/gflasso

bayesMult Bayesian
Multitask
Regression

Low https://github.com/krisrs1128/bayesmult
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APPENDIX

This appendix includes derivations and technical discussion of 
several methods surveyed in the main text: PCA-IV, PTA, and 
the C&W algorithm. While these methods can be understood 
and applied based on their computational description, these 
mathematical discussions provide motivation and context for 
their particular form.

DERIVATION DETAILS FOR PCA-IV

In this section, we provide the argument for why the generalized 
eigendecomposition ˆ ˆ ˆ∑ ∑ = ∑XY YX XX

TV VΛ  provides the optimal 
V used in PCA-IV.

First consider k = 1. For any v, the objective in equation (5) 
has the form

tr ˆ ˆ ˆ ˆ ˆ
Σ Σ Σ Σ Σ

YX XX YX

T T
XY YXv v v v v

   

( ) ( )





=
−1
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 (12)

where we change variables 
 w vXX= ∑

1
2 . But to maximize 

equation (12), just choose w to be the top eigenvector of 

∑ ∑ ∑ ∑
− −
XX XY YX XX

1
2

1
2 , which implies that v is the top generalized 

eigenvector of ΣXY ΣYX with respect to ΣXX. Indeed, in this case,

∑ ∑ = ∑ ∑ ∑
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Hence, in the case K = 1, the criterion is maximized by the 
top generalized eigenvector. For larger K, recall that the problem 

of maximizing v Av
v

T

|| ||2
 over v subject to being orthogonal to the 

first K − 1 eigenvectors of A is solved by the Kth eigenvector of A, 
and applying this fact in step 12 of the argument above gives the 
result for general K.

DERIVATION OF PTA α
The Lagrangian of the optimization defined by PTA is

( , ) , .. ( ),α λ α λ α= + −
=

∑ l
l

L

lX X
1

2
2 1|| ||

Which, when differentiated with respect to α, yields 

α
λl lX X= − 1

2
, ..  for all l. The constraint that || ||α 2

2 1=  implies 
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4

12 1

2
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X X l
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X X

X X
=
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, ..

, ..1
2

.

DERIVATION OF CURDS & WHEY 
SHRINKAGE

Consider prediction across many related response variables. 
One way to pool information across responses is to define new 
fitted values from a linear combination of independent OLS fits. 
That is, to predict a response yi

p∈ 1, we set ˆ ˆy Byi
cw

i= ols for some 
square matrix B p p∈ ×



1 1. But how to choose B?
One reasonable idea is to choose a B that has the best 

performance in a generalized cross-validation (GCV). The 
GCV approximation is that the hii can be approximated by their 
average across all diagonal elements of H: h h

n
Hii ≈ =: 1 tr ( ) for all 

i. In this spirit, define g
h

=
−
1

1
 and approximate

 
ˆ ( ) ˆy g y gyi i− ≈ − +1 1  

Then, the leave-one-out CV error can be simplified to

|| ||y By y B g y gyi
i

n

i i i
i

1 2
2

1
2
21− = − − +−

=
−

=
∑ ˆ || (( ) ˆ || ,

11

n

∑

and differentiating with respect to B, we find that the optimal 
B̂cw in this GCV framework must satisfy
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which in matrix form is

( ) ˆ ( ) ˆ) ( ) ˆ) ,1 1 1− + = − +( ) − +( )g Y Y gY Y B g Y gY g Y gYT T
i i

T
 (13)

where Ŷ n p∈ ×


1 has ith row ŷ i− .
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Next, we can represent these cross-products in a way that is 
suggestive of CCA,

 

Y Y n
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Substituting this into equation (13) and ignoring the scaling 
n yields
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Postmultiplying by ∑̂YY  gives

 ( ) ˆ [( ) ( ) ˆ ],1 1 21 1
2− + = − + −g I gQ B g I g g Qp

T
p

T  (14)

where
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Now, we claim that we can decompose Q̂ VD V= −2 1, where 
V p p∈ ×



1 1 is the full matrix of CCA response directions and D is 
diagonal with the canonical correlations. Indeed, the usual CCA 

response directions V can be recovered by setting V VYY= ∑
−ˆ

1
2 , 

where V  comes from the SVD of A
XX XX

UDVXY
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where we are able to write V V T
YY

− −
= ∑1

1
2  because V  is the full 

(untruncated) matrix of eigenvectors, so  VV IT =  in addition to 
the usual  V V IT = , which holds even for the truncated SVD.

Therefore, equation (14) can be expressed as

V g I gD V BV g I g g VT
p

T T
p

− −− + = − + −[( )] ] [( )] ( )D ]1 1 2
1 1

2 2 2 TT

and the B satisfying the normal equations has the form

ˆ ,B V VTTcw = − Λ

where Λ is a diagonal matrix with entries

 λ jj
jjg

jj

g d
g g g d

=
− +

− + −
1

1 2

2

2 2( )  

Notice that when n is large, 1
n

PXtr  will be small, leading to a 

smaller g ≈ 0 and less shrinkage. Recall that B̂cw is used to pool 
across OLS fits, ˆ ˆ ˆy B yi i

olscw cw= . That is,

 ˆ ˆ ˆY Y B Y V VTcw ols ols= = −Λ 1  

which we can also view as ˆ ˆY V Y Vcw ols= ( ) Λ. This means that the 
C&W coordinates along the canonical directions V are set as 
the OLS fits Ŷ ols along the canonical directions V, with weights 
defined by Λ. The actual Ŷ cw are recovered by transforming back 
to the original coordinate system. A similar way to view the 
C&W fits is to note ˆ ( )Y V P YVX

cw = Λ, which is the original data 
Y according to the canonical directions, then projects the shrunk 
data onto the subspace defined by the columns of X. In any case, 
we see that C&W pools across regression problems through a soft 
shrinkage weighted along canonical response directions.
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