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Background: Healthcare-associated infections (HAIs) are a serious public health problem. 
They can be associated with morbidity and mortality and are responsible for the increase 
in patient hospitalization. Antimicrobial resistance among pathogens causing HAI has 
increased at alarming levels. In this paper, a robust method for analyzing genome-scale 
metabolic networks of bacteria is proposed in order to identify potential therapeutic 
targets, along with its corresponding web implementation, dubbed FindTargetsWEB. 
The proposed method assumes that every metabolic network presents fragile genes 
whose blockade will impair one or more metabolic functions, such as biomass 
accumulation. FindTargetsWEB automates the process of identification of such fragile 
genes using flux balance analysis (FBA), flux variability analysis (FVA), extended Systems 
Biology Markup Language (SBML) file parsing, and queries to three public repositories, 
i.e., KEGG, UniProt, and DrugBank. The web application was developed in Python 
using COBRApy and Django.

Results: The proposed method was demonstrated to be robust enough to process even 
non-curated, incomplete, or imprecise metabolic networks, in addition to integrated host-
pathogen models. A list of potential therapeutic targets and their putative inhibitors was 
generated as a result of the analysis of Pseudomonas aeruginosa metabolic networks 
available in the literature and a curated version of the metabolic network of a multidrug-
resistant P. aeruginosa strain belonging to a clone endemic in Brazil (P. aeruginosa 
ST277). Genome-scale metabolic networks of other gram-positive and gram-negative 
bacteria, such as Staphylococcus aureus, Klebsiella pneumoniae, and Haemophilus 
influenzae, were also analyzed using FindTargetsWEB. Multiple potential targets have 
been found using the proposed method in all metabolic networks, including some 
overlapping between two or more pathogens. Among the potential targets, several have 
been previously reported in the literature as targets for antimicrobial development, and 
many targets have approved drugs. Despite similarities in the metabolic network structure 
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BACKGROUND

Healthcare-associated infections (HAIs), previously called hospital 
infections, are a serious public health problem and can develop 
either as a direct result of medical or surgical treatment or from 
being in contact with a healthcare setting. These infections 
include central line-associated bloodstream infections, catheter-
associated urinary tract infections, ventilator-associated pneumonia 
(VAP), and surgical site infections. Among the pathogens related 
to HAI, the group of bacteria is the one that stands out. More 
than 2 million HAIs occur each year in the USA (Stone et al., 
2005), with 50–60% being caused by antimicrobial resistant 
bacteria. In 2014, the World Health Organization (WHO) 
published the report “Antimicrobial resistance: global report on 
surveillance” (WHO, 2014) warning of the growing increase in 
antimicrobial resistance in the world. Antimicrobial resistance 
among hospital pathogens has increased at alarming levels, 
both in developed and developing countries. It is estimated that 
there will be a worldwide spread of untreatable infections both 
inside and outside hospitals. According to a bulletin published 
in 2017 by WHO (WHO, 2017), there are 12 major antibiotic-
resistant bacteria that deserve attention and urgently need more 
research and development (R&D) of new and effective antibiotic 
treatments. Gram-negative bacteria are the most involved in HAI 
(carbapenem-resistant Acinetobacter baumannii, Pseudomonas 
aeruginosa, and Enterobacteriaceae family), and R&D on new 
antibiotics against these is considered to be of critical priority 
(WHO, 2017). In humans, P. aeruginosa is an opportunistic 
pathogen that causes severe infections in immunocompromised 
individuals. This pathogen is the main cause of morbi-mortality 
in patients with cystic fibrosis (Kerr and Snelling, 2009) and is a 
major cause of VAP.

Given the potential severity of multidrug-resistant bacteria 
and the lack of treatment options, the identification and 
implementation of effective strategies to prevent such infections 
are urgent priorities.

The integration of mathematical, statistical, and computational 
methods for biological data analysis to enable the discovery of 
new therapeutic targets for any bacteria is extremely relevant. The 
combination of bioinformatics, system modeling, and heterogeneous 
data integration can be a powerful tool for this purpose.

Several strategies have been proposed to search for drug 
targets from genome-scale models of bacterial metabolism. 
More often, essential genes are identified from single virtual 

knockouts where flux balance analysis (FBA) (Orth et al., 2010) 
is used to assess if this gene deletion is able to halt a selected 
function of bacterial metabolism. Usually, such function is 
biomass production (Rienksma et al., 2014). Other criteria can 
be combined to prioritize genes among candidate drug targets, 
such as existence of druggable pockets (Kozakov et al., 2015) or 
specificity to the bacteria as compared to the host proteins.

The construction of genome-scale metabolic network is a 
laborious endeavor. It combines automated steps with manual 
curation. The most used protocol, proposed by Thiele and Palsson 
(2010), lists a total of 94 steps. Nevertheless, the process is error-
prone, and normally the resulting network may correctly predict 
some phenomena while disregarding others, which are less relevant 
to the study related to the reconstructed metabolic network.

The BioCyc database (Caspi et al., 2015) classifies pathway/
genome databases (PGDB), each containing the full genome and 
predicted metabolic network of one organism, into three tiers. 
Tier 1 corresponds to PGDBs that have received at least 1 year of 
manual curation and are updated continuously. Tier 2 includes 
PGDBs that have received moderate (less than a year) amounts of 
review and are usually not updated on an ongoing basis. Finally, 
Tier 3 refers to PGDBs that were created computationally and 
received no subsequent manual review or updating.

In this work, the same classification for genome-scale 
metabolic network models is adopted. The focus here is on 
metabolic network models that can be classified as Tier 2 and 
Tier 3, according to the BioCyc database classification. In this 
manuscript, draft metabolic reconstructions are considered Tier 
3 models. Published curated metabolic models are classified as 
Tier 2, unless the model is identified in the literature as Tier 1.

Herein, a method for analyzing genome-scale metabolic 
networks of bacteria is proposed in order to identify potential 
therapeutic targets, along with its corresponding web 
implementation, dubbed FindTargetsWEB. The proposed 
method is computationally efficient, user-friendly, and robust to 
errors in reconstructed genome-scale metabolic networks, which 
are more frequent in Tier 3 (draft) metabolic networks. The web 
interface of the application is straightforward, and results are sent 
directly to an email address informed by the user. To demonstrate 
the flexibility of FindTargetsWEB, 10 genomic-scale metabolic 
networks of bacterial strains are analyzed in this paper. Nine of 
the 10 networks are available in the literature, all classified as 
Tier 2 models in this work: P. aeruginosa PAO1—version 2008 
(Oberhardt et al., 2008), P. aeruginosa PAO1—version 2017 

for closely related bacteria, we show that the method is able to selectively identify targets 
in pathogenic versus non-pathogenic organisms.

Conclusions: This new computational system can give insights into the identification 
of new candidate therapeutic targets for pathogenic bacteria and discovery of new 
antimicrobial drugs through genome-scale metabolic network analysis and heterogeneous 
data integration, even for non-curated or incomplete networks.

Keywords: systems biology, flux balance analysis, metabolic network, COBRA analysis, Python (programming 
language)
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(Bartell et al., 2017), P. aeruginosa PA14 (Bartell et al., 2017), 
Klebsiella pneumoniae (Liao et al., 2011), Haemophilus influenzae 
(Schilling and Palsson, 2000), a host-pathogen genome-scale 
reconstruction based on the Mycobacterium tuberculosis 
metabolic network (Bordbar et al., 2010), Staphylococcus aureus 
(Becker and Palsson, 2005), and Pseudomonas putida (Puchałka 
et al., 2008). Results are also presented for two metabolic networks 
of P. aeruginosa CCBH4851, which is a multi-drug resistant strain 
belonging to a clone endemic in Brazil (P. aeruginosa ST277) 
(Silveira et al., 2014). Both reconstructions of P. aeruginosa 
CCBH4851 were made by our group. One reconstruction can be 
classified as Tier 3, and the other is the corresponding curated 
version, classified as Tier 2.

The web application proposed in this work combines FBA, 
flux variability analysis (FVA) (Gudmundsson and Thiele, 2010), 
extended Systems Biology Markup Language (SBML) parsing, 
and heterogeneous data integration in order to identify the 
most promising therapeutic targets. All SBML files processed 
in this work are available as Supplementary Material. The 
underlying hypothesis related to FVA is that reactions which 
the maximum flux is equal to the minimum flux (i.e., flux range 
equal to zero), given the optimal biomass production, are less 
robust to potential perturbations. Indeed, a high rigidity for a 
given reaction flux (i.e., flux range equal to zero) may indicate 
that the flux through this reaction is crucial for sustaining 
optimal growth, while a lower rigidity (i.e., flux range greater 
than zero) indicates that there might be alternate pathways to 
carry the reaction flux (Oberhardt et al., 2010). Flux ranges 
fell into three categories: i) inflexible fluxes (flux range equal 
to zero), ii) fluxes with bounded flexibility (flux range greater 
than zero, but bounded), and iii) infinitely flexible fluxes (flux 
range greater than zero, unbounded). The FVA analysis carried 
out by FindTargetsWEB aims to identify potential targets 
associated with inflexible fluxes, i.e., flux range equal to zero. 
The genome-scale metabolic network analysis is combined with 
several queries to multiple public repositories, such as KEGG 
(Ogata et al., 1999), UniProt (UniProt, 2018), and DrugBank 
(Wishart et al., 2008), to assess the druggability and toxicology 
of potential targets. FindTargetsWEB has identified potential 
targets for all networks. Several of the potential targets have 
been described in the literature. Other targets are candidates for 
future experimental investigation.

IMPLEMENTATION

Some of the main requirements related to the implementation 
of the general method described in this work, dubbed 
FindTargetsWEB, were ease of use, availability, robustness, 
and performance. After careful consideration, Python was 
selected as the implementation language. Python is a high-level, 
interpreted, scripted, imperative, object-oriented, dynamic, and 
strongly typed programming language created by Van Rossum 
and Drake (2003). Its many advantages favor the fulfillment of 
the main requirements of the application. Another advantage 
is the availability of the COBRApy package. COnstraint-Based 
Reconstruction and Analysis Toolbox (COBRA) (Hyduke et al. 2011) 

methods are widely used for genome-scale modeling of 
metabolic networks in prokaryotes and eukaryotes. The COBRA 
Toolbox for MATLAB is a leading software package for analyzing 
metabolism on a genomic scale. On the other hand, COBRApy 
(Ebrahim et al., 2013) is a Python module that provides support 
for basic COBRA methods. COBRApy is designed in an object-
oriented way, which facilitates the representation of the complex 
biological processes of metabolism. COBRApy does not require 
MATLAB to work; however, it includes an interface to the 
COBRA Toolbox for MATLAB to facilitate the use of legacy 
codes. To improve performance, COBRApy includes parallel 
processing support for computationally intensive processes. 
FindTargetsWEB is implemented as a web application. Therefore, 
the user only needs a web browser to access the system. The system 
interface is intuitive: the user needs to provide the SBML file 
describing the metabolic network reconstruction, the organism 
species associated with the metabolic network reconstruction, 
which defines a filter to KEGG queries, and information such 
as name and e-mail address (Figure 1). It should be emphasized 
that the FindTargetsWEB list of analyzable species is easily 
expandable and can include both gram-negative bacteria, gram-
positive bacteria, and bacteria that cannot be classified as either 
gram-positive or gram-negative. In the following screen, the 
user decides if he/she wants to analyze the network using the 
FBA method alone or a combination of the FBA+FVA methods 
(Figure 2). The FBA+FVA method pinpoints reactions and 
associated genes in which knockout completely stops (zeroes) 
biomass generation and has an FVA range of zero. Therefore, the 
FBA+FVA method is more restrictive than the FBA-only option. 
It should be highlighted that the targets found by the FBA+FVA 
method compose a proper subset of the set of targets found by 
the FBA-only method. Robustness is provided by the design of 
the method itself, as described in the following paragraphs.

FIGURE 1 | FindTargetsWEB user interface—SBML file input.
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Target identification is carried out through a computational 
workflow that runs the metabolic network analysis and pinpoints 
genes whose virtual knockout interrupts the generation of 
biomass. Therefore, the minimum level of curation required for 
a metabolic network model to be processed by FindTargetsWEB 
is to have a biomass reaction flux greater than zero. The list 
of potential targets is filtered using FVA (if the user decides 
to do so), and the workflow retrieves possible inhibitors for 
the identified genes, verify if such inhibitors are available 
as approved drugs, and evaluate their toxicity to humans by 
querying several repositories.

The workflow was implemented using the Python 
programming language, version 3.6.3, and the COBRApy 
framework version 0.9.0. This framework has the necessary 
methods for reading the SBML (Hucka et al., 2015) file that 
describes the genome-scale metabolic network of the bacterium 
under analysis. The solver used for FBA and FVA analysis is 
GLPK (https://www.gnu.org/software/glpk/), which is the 
COBRApy default solver that is easily deployable on Linux 
platforms. The system is deployed in an Ubuntu v18.04 server 
with 64GB RAM. Prior to processing, when needed, SBML 
files were converted to the SBML level 3 format using the 
command cobra.io.sbml3.write_sbml_model from 
COBRA. The SBML files processed in this manuscript were 
retrieved from the BioModels repository (Glont et al., 2017) 
or directly from the supplementary material of the associated 
reference. The main steps of the method are described below. 
The whole method is depicted in Figure 3.

 1. Validation of the SBML file describing the genome-scale 
metabolic network—In this step, the system first creates 
a table containing gene/reaction/metabolite data obtained 
from the SBML file and then checks if the metabolic network 
reconstruction generates biomass. This is done through the 
FBA method, considering the biomass reaction as the target 
for maximization. If the biomass value is zero, the system 
outputs an error to the user and halts processing. If the 
maximum flux of the biomass reaction is greater than zero, 
the workflow proceeds to the next step.

 2. Use of FVA to filter reactions—After validating the metabolic 
network, reactions are filtered using the FVA method, if the 
user has decided to analyze the metabolic network using a 
combination of the FBA+FVA methods. The objective is to 
consider, in the following processing steps, those reactions 
which the range of possible flux values is equal to zero, given 
the optimal biomass generation value determined in the 
previous step. The underlying assumption is that reactions with 
a range equal to zero are less robust, i.e., more susceptible to 
perturbations, as stated in the introduction. Note that the FVA 
method can be implemented in a computationally efficient 
way (Gudmundsson and Thiele, 2010), and the cost of FVA 
analysis on the overall execution time of FindTargetsWEB is 
negligible.

 3. Simulation of reaction knockout—In this step, single reaction 
knockouts are performed. The process is done by zeroing 
the maximum and minimum reaction flux constraints and 
running FBA again, for each reaction in the network. If biomass 
generation is zeroed when knocking out a given reaction, its 
information is stored in a list for further processing. If gene 
IDs are available in the SBML file, the workflow proceeds to 
step 4. Otherwise, it jumps directly to step 6b.

 4. Simulation of gene knockout—In this step, the system 
performs single knockouts for each gene described in the 
model, where the COBRApy framework queries the reactions 
that are linked to the selected gene and zeroes the minimum 
and maximum value of each reaction bound to the gene, 
taking into account gene-protein-reaction (GPR) relations. In 
the same way as the previous step, if the value of the generation 
of biomass has zeroed, the corresponding gene information is 
stored in a second list. It is worth noting that one gene can be 
associated with more than one reaction, and one reaction may 
require the expression of several genes.

 5. Consolidation/unification of knockouts results—In this 
step, both lists generated in the previous steps are unified, 
i.e., the list of reactions generated in step 3 and the gene list 
generated in step 4. In order to a gene to be included in the final 
list, it should be included in the list of step 4 and be associated 
with at least one reaction stored in step 3 (see Algorithm 1). 
These are the candidate genes that the workflow is going 
to consider in the following steps. It should be highlighted 
that the final list is filtered according to the FVA processing 
performed in step 2, if the option FBA+FVA is selected by the 
user.
Algorithm 1: Consolidation of knockout results (SBML with 

mapped genes)

FIGURE 2 | FindTargetsWEB user interface—choice of analysis method.
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Input: List of genes from knocked-out reactions/list of 
knocked-out genes

Output: Unified list of target genes in a text file
 1: procedure UnificationTargetsList(targetGeneListFromRe

act, targetGeneList)
 2:   read targetGeneListFromReact
 3:   read targetGeneList
 4:   open file “targetgenes.txt”
 5:   for all targetgene in targetGeneListFromReact do
 6:    if targetgene in targetGeneList then
 7:    write targetgene in file “targetgenes.txt”
 8:    end if
 9:   end for
 10:   close file “targetgenes.txt”
 11: end procedure
6a. Search for EC numbers of consolidated genes. In this step, 

the system queries the KEGG repository to obtain the EC 
number of each gene included in the final gene list obtained 
in the previous step (file “targetgenes.txt”). KEGG (Kyoto 
Encyclopedia of Genes and Genomes) is a knowledge base 
for systematic analysis of gene functions, linking genomic 
information with higher order functional information (Ogata 
et al., 1999). This step is important because drug retrieval in 
DrugBank requires the associated EC number. The result of 
this step is a list of EC numbers associated to their respective 
genes. The workflow then proceeds to step 7.

6b. Search for EC number using reaction information. If gene 
IDs are not available in the SBML file, which may be the case 
in draft (Tier 3) metabolic network models, EC numbers 
are retrieved from KEGG based on reaction information. 
This step is particularly important for incomplete metabolic 
reconstructions that do not include GPR relations and is 
directly related to the application’s requirement of robustness 
to incompleteness on metabolic network data. The KEGG 
search is performed using all the compounds involved in 
the corresponding reaction. See Algorithm 2 for a detailed 
description of the processing related to this step. It is worth 
emphasizing that this step is executed only for incomplete 
descriptions of genome-scale metabolic networks. The 
complexity of Algorithm 2 is O(C), where C is the number of 
compounds included in the SBML file.
Algorithm 2: Search for EC numbers using reaction 

information (SBML without mapped genes)
Input: List of chemical compounds of reaction
Output: List of EC numbers found

 1: procedure alternativeStepToGetECNumberWithoutGenes
(listCompoundFromSBML)

 2: # file with all compounds in SBML.
 3: read listCompoundFromSBML
 4:
 5: # Instance of biomodels python module
 6: k <- KEGG instance

FIGURE 3 | Description of the computational workflow.
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 7:
 8: # setting timeout in seconds
 9: k.timeout <- 200000
 10:
 11: # All compounds in SBML file. Ex.: 2 A –> B
 12: for all compound in listCompoundFromSBML do
 13:
 14:    # find all stoichiometric values with regex method in 

compound. Ex.: A –> B
 15:    compound_no_stoich <- remove all stoichiometric 

values in compound
 16:   param_splt <- empty
 17:
 18:   # Verify if reaction is reversible or irreversible
 19:   if “< = >“ in compound_no_stoich then
 20:    param_splt <- “< = >“
 21:   else
 22:    param_splt <- “–>“
 23:   end if
 24:
 25:    # Separate compounds in reactant and product. Ex.: 

compound_splt = [‘A’, ‘B’]
 26:   compound_splt <- compound_no_stoich.split(param_splt)
 27:
 28:    # If compound belongs to a transport reaction (influx 

or eflux), jump to next iteration
 29:   if compound_splt.length < 2 then
 30:    continue
 31:   end if
 32:
 33:   list_ec_number_0 <- initialize empty list
 34:   list_ec_number_1 <- initialize empty list
 35: 
 36:    # Start iterating compound_splt list with reactant and 

product
 37:   for (x = 0,1) do
 38:
 39:    # Get reactant or product in this variable
 40:     item_compound <- compound_splt[x] without 

spaces
 41:   list_id_cpd_KEGG <- initialize empty list
 42:  
 43:    # If reactant or product contains “+”, find ID in KEGG 

for components.
 44:   # Else, find ID in KEGG for only one component.
 45:   if “ + “ in item_compound then
 46:     item_compound_splt <- item_compound.

split(“ + “)
 47:    for all cpd_item in item_compound_splt do
 48:      # find id compound in KEGG for 

cpd_item
 49:     # and insert in ids list
 50:      result_id_cpd <- k.find(“compound”, 

cpd_item)
 51:      insert result_id_cpd in list_id_cpd_ 

KEGG
 52:    end for

 53:   else
 54:     result_id_cpd <- k.find(“compound”, item_ 

compound)
 55:    insert item_compound in list_id_cpd_KEGG
 56:   end if
 57:  
 58:   # Here, all list_id_cpd_KEGG are concatenated
 59:   # found to search the reaction in KEGG.
 60:   # In Python, if list_id_cpd_KEGG length is less than 2,
 61:   # don’t put the “+” in end of string.
 62:    str_item_compound_in_cpd <- list_id_cpd_KEGG 

concat with “+”
 63:  
 64:   # find all reactions in KEGG with IDs of compounds
 65:    result_link_reactions_cpd <- k.link(“reaction”, str_

item_ compound_in_cpd)
 66:  
 67:    # All results of result_link_reactions_cpd are inserted 

here
 68:    set_id_reaction_KEGG <- insert all reactions found in 

KEGG.
 69:  
 70:   # find all EC numbers in KEGG with reactions IDs
 71:   # in set_id_reaction_KEGG and insert in result_list_ec
 72:    result_list_ec = k.link(“enzyme”, set_id_reaction _ KEGG)
 73:   if x = 0 then
 74:    insert result_list_ec in list_ec_number_0
 75:   else
 76:    insert result_list_ec in list_ec_number_1
 77:   end if
 78:
 79:  end for
 80:
 81:  list_ec_number_intersect <- initialize empty list
 82:  txt_file <- initialize txt file
 83: 
 84:  # Starts to iterate the list of ECs to identify intersections
 85:  # If found, related EC numbers are written in a text file
 86:  for all ec_number_0 in list_ec_number_0 do
 87:   if ec_number_0 in list_ec_number_1 then
 88:    record ec_number_0 in a txt_file
 89:   end if
 90:  end for
 91: 
 92: end for
 93:
 94: end procedure
 7. Search for EC numbers on DrugBank—With the EC 

numbers obtained in the previous steps, the system queries 
the DrugBank repository to verify if this database has any 
record of the listed EC numbers. The DrugBank database 
is a repository that combines detailed drug data with 
comprehensive drug target information (Wishart et al., 2008). 
If an exact match is found, the system retrieves the values of 
the name of the protein, organism, and UniProt ID.

When executing this query, the protein retrieved can 
be mapped in another organism, distinct from the target 

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


FindTargetsWEB: Identification of Therapeutic TargetsMerigueti et al.

7 July 2019 | Volume 10 | Article 633Frontiers in Genetics | www.frontiersin.org

bacterium. Thus, the next step (step 8) is necessary to confirm 
whether the protein retrieved has a homologue in the target 
bacterium. Clearly, exact matches are also possible. In any 
case, the retrieved data is validated in the next step.

 8. Search for homologues on UniProt—Finally, the system 
searches for sequence similarity between the proteins 
described by UniProt IDs retrieved in the last step and the 
proteins encoded by the genome of the target bacterium using 
the BLAST (basic local alignment search tool) (Altschul et al., 
1990) application deployed in the UniProt server. If there is 
a hit (i.e., sequence similarity above 30%), all corresponding 
data concerning the homologue found is stored.

In this step, the homology between the target protein and 
human proteins is also considered. If the sequence similarity 
with a human protein is greater than the similarity with the 
target bacterium, the protein under analysis is discarded, since 
the inhibition of that protein could be harmful to the host. 
Otherwise, several data are stored, such as metabolic pathway, 
function, and catalytic activity, among others. This step of the 
workflow is the most time-consuming, since BLAST is executed 
for all proteins identified in the previous step.

 9. Search for existing inhibitors—The last step is to query the 
DrugBank repository, using the stored UniProt IDs, in order 
to retrieve known inhibitors, if available. After this last step, 
the system generates spreadsheets containing all results that 
are sent to the user in a compressed file.

This method presents as results candidate genes that, 
when knocked-out, will cease the biomass production of the 
microorganism. Candidate genes must be associated with 
potential drug targets in DrugBank, and their sequence similarity 
to human proteins is also checked. The application then identifies 
available ligands, most often inhibitors, to the selected genes.

System Output
Results of FindTargetsWEB’s analysis are sent to the user as a 
compressed file, to the e-mail address informed at the start of 
execution. Five spreadsheets are included in the compressed file:

- 08-filter_ECNumbers_DrugBank—This spreadsheet 
contains  the EC number of putative targets, along with 
product, organism name, UniProt ID, and DrugBank ID

- 11- hits_Uniprot—This spreadsheet contains additional 
information related to UniProt queries, such as 
percentage of sequence similarity, BLAST e-value, gene 
name, pathway, function, and catalytic activity.

- 13-list_inhibitors_per_target—This spreadsheet lists all 
inhibitors found for all targets. Included information 
are drug name, drug group (e.g. experimental, 
approved, investigational), and drug action.

- 14-list_inhibitors_approved—This spreadsheet lists all 
inhibitors with approved drugs found for all targets. 
Included information are drug name, drug group 
(approved), and drug action.

- model_data—This spreadsheet lists data related to 
the input SBML file, such as gene IDs and associated 

reactions. The complete information of which reactions 
are associated with each gene in the metabolic network 
model is included in this file.

- summary_results—This spreadsheet contains a summary  
of data included in the previous files. Included fields 
are EC numbers, product, organism name, gene name, 
pathway, function, catalytic activity, drug name, drug 
group, and drug action.

RESULTS

In this section, analysis results for several strains of P. aeruginosa, 
K. pneumoniae, H. influenzae, S. aureus, P. putida, and a host-
pathogen genome-scale reconstruction based on the M. tuberculosis 
metabolic network are presented. It should be highlighted that 
FindTargetsWEB can carry out analysis for other bacterial species, 
as indicated by the list box on the initial web page of the application. 
Indeed, even this list can be easily expanded to include additional 
species of interest, through a user request to FindTargetsWEB 
support team.

Analysis of Metabolic Network Models 
of P. aeruginosa
To evaluate the accuracy of results for several metabolic networks, 
initially, the analysis of four metabolic networks of P. aeruginosa 
is discussed. A survey of the literature is also presented to confirm 
the feasibility of the candidate genes as antibacterial drug targets. 
Gene function and related pathways are also considered in the 
evaluation of results.

The four metabolic networks of P. aeruginosa strains analyzed 
by FindTargetWEB were: PAO1 version 2008—iMO1056 
(BioModels ID 1507180020) (Oberhardt et al., 2008), PAO1 
version 2017—iPAE1146 (Bartell et al., 2017), PA14—iPAU1129 
(Bartell et al., 2017), and a curated version (Tier 2) of the 
metabolic network of P. aeruginosa CCBH4851 (Silveira et al., 
2014). The SBML level 3 file describing the Tier 2 P. aeruginosa 
CCBH4851 network is available as supplementary material, as 
well as the SBML files of the other networks considered in this 
paper. It is worth noting that each metabolic network model 
presents a different value for the growth rate after validation of 
biomass generation by FBA; for PA01 version 2008, the growth 
rate corresponds to 1.047929 h-1; PA01 version 2017 has a growth 
rate of 15.509635 h-1; for the PA14 model, the growth rate is 
15.508373 h-1, and the Tier 2 CCBH4851 model has a growth 
rate of 1.036524 h-1. Differences in growth rate among metabolic 
network models are due to the distinct biomass equations, as well 
as variation in the number of genes, reactions, and metabolites in 
each of the metabolic network models.

It should be mentioned that the growth rates associated with 
the PA14 and PAO1-2017 (Bartell et al., 2017) models depart by far 
from the observed growth rates of P. aeruginosa spp., which may 
vary between 0.3 and 0.8 h-1, depending on cultivation conditions 
(Brown, 1957) (Seto and Noda, 1982) (Yang et al., 2008). 
Nevertheless, FindTargetsWEB can still process those networks. 
The only requirement is to have a growth rate greater than zero.
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Description of Common Targets for 
P. aeruginosa Networks
In this subsection, common targets for all Tier 2 P. aeruginosa 
networks are listed. The metabolic network models of P. aeruginosa 
analyzed in this subsection are described at Oberhardt et al., 2008 
(PAO1) and Bartell et al., 2017 (PAO1 and PA14). The P. aeruginosa 
CCBH4851 metabolic network is being modeled by our group and 
represents a bacterium found in a catheter of a patient hospitalized 
at the Brazilian state of Goiás (Silveira et al., 2014). It is worth 
highlighting that the Bartell et al. (2017) networks focused on 
modeling virulence factors. Due to this fact, the biomass equation 
received less attention and the growth rate is not inside the range 
observed for Pseudomonas spp. Nevertheless, the workflow was 
able to process both networks and found several targets common 
to other metabolic reconstructions. The number of unique targets 
found in each network, for both FAB+FVA and FBA-only methods, 
are listed in Table 1. The spreadsheet detailing all targets found is 
available as supplementary material.

For the FBA-only method, 25 targets are common to all four 
networks. For the FBA+FVA method, 11 targets are common to 
all four networks.

It is important to highlight some of the genes identified 
as common targets for all four metabolic network models 
of P.  aeruginosa (Table 2). The murA (EC 2.5.1.7) and murB 
(EC 1.3.1.98) genes encode enzymes involved in bacterial cell 
wall synthesis and have been identified as essential in both 
Pseudomonas spp. and Escherichia coli (Benson et al., 1996). 
The folP gene product (EC 2.5.1.15) is important for folic acid 
biosynthesis, which is fundamental for bacterial growth and 
reproduction (Dallas et al., 1992). The folA gene product (EC 
1.5.1.3) is related to the biosynthesis of cofactors, being an 
important intermediary of folate metabolism. It is considered the 
key enzyme of this process and essential for microbial growth 
(Myllykallio et al., 2003). Another target worth mentioning is the 
aroE gene (EC 1.1.1.25), which has been described as a potential 
therapeutic target of both P. putida and E. coli (Peek et al., 2014).

Table 3 shows common targets with approved drugs. It is worth 
mentioning that several approved drugs have been identified; 
some of them are potential candidates for drug repositioning. 
Another relevant remark is the fact that most targets are also 
associated with experimental drugs.

Another noteworthy observation is that a considerable number 
of approved drugs in Table 3 are most probably artifacts from the 
DrugBank database. For instance, flavin adenine dinucleotide 
(FAD), listed as an approved drug related to gene murB, is in 
fact approved for use in Japan under the trade name adeflavin 

as an ophthalmic treatment for vitamin B2 deficiency, it  is just 
a cofactor for the product of gene murB, the enzyme UDP-N-
acetylenolpyruvoylglucosamine reductase. All similar cases are 
highlighted with double asterisks in Table 3. This observation 
only reinforces a known limitation of all computational methods 
relying on databases at least partially annotated using automated 
workflows.

Analysis of the Metabolic Network Model 
of the Multidrug-Resistant Strain 
P. aeruginosa CCBH4851
Considering the curated version of the metabolic network of 
multidrug-resistant strain P. aeruginosa CCBH4851, 17 unique 

TABLE 1 | Number of unique targets found in the Tier 2 metabolic networks of 
P. aeruginosa. 

FBA-Only FBA+FVA

PAO1-2008 53 50
PAO1-2017 50 42
PA14 44 42
CCBH4851 50 17

TABLE 2 | Potential targets common to all Tier 2 P. aeruginosa metabolic 
network models. Common targets identified by both FBA-only and FBA+FVA 
methods are marked with asterisks (*). The other targets were identified by the 
FBA-only method but not by the FBA+FVA method.

EC 
Number

Gene 
Name

Product DrugBank 
Inhibitor

1.1.1.100 fabG 3-oxoacyl-[acyl-carrier-protein] 
reductase FabG

E

1.1.1.25 aroE Shikimate dehydrogenase E
1.17.1.8 dapB 4-hydroxy-tetrahydrodipicolinate 

reductase
E

1.3.1.98 murB UDP-N-acetylenolpyruvoylglucosamine 
reductase

A/E

1.5.1.3 folA Dihydrofolate reductase A/E
2.1.1.45 thyA* Thymidylate synthase E
2.3.1.41 fabB 3-oxoacyl-[acyl-carrier-protein] synthase 

1
A/E

2.4.1.227 murG UDP-N-acetylglucosamine–N-
acetylmuramyl-(pentapeptide) 
pyrophosphoryl-undecaprenol 
N-acetylglucosamine transferase

E

2.4.2.14 purF* Amidophosphoribosyltransferase E
2.5.1.15 folP* Dihydropteroate synthase A
2.5.1.6 metK* S-adenosylmethionine synthase E
2.5.1.7 murA UDP-N-acetylglucosamine 

1-carboxyvinyltransferase
A/E

2.6.1.16 glmS Glutamine—fructose-6-phosphate 
aminotransferase [isomerizing]

E

2.6.1.85 pabB Para-aminobenzoate synthase 
component 1

A

2.7.4.25 cmk Cytidylate kinase E
2.7.7.23 glmU* Bifunctional protein GlmU E
3.1.3.1 phoA* Alkaline phosphatase E
4.1.3.38 pabC* Aminodeoxychorismate lyase E
4.2.1.24 hemB* Delta-aminolevulinic acid dehydratase A/E
4.2.3.5 aroC Chorismate synthase A
5.3.1.1 tpiA Triosephosphate isomerase E
5.3.1.6 rpiA Ribose-5-phosphate isomerase A A/E
6.3.2.13 murE* UDP-N-acetylmuramoyl-L-alanyl-D-

glutamate–2,6-diaminopimelate ligase
E

6.3.2.8 murC* UDP-N-acetylmuramate–L-alanine ligase E
6.3.2.9 murD* UDP-N-acetylmuramoylalanine–D-

glutamate ligase
E

The EC (Enzyme Commission) numbers represent the classification of P. aeruginosa 
enzymes according to the Nomenclature Committee of the International Union 
of Biochemistry and Molecular Biology (IUBMB). Gene, product, and DrugBank 
Inhibitor Status were retrieved from UniProt and DrugBank databases, respectively. 
Abbreviations: experimental (E) and approved (A).

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


FindTargetsWEB: Identification of Therapeutic TargetsMerigueti et al.

9 July 2019 | Volume 10 | Article 633Frontiers in Genetics | www.frontiersin.org

targets were identified using the FBA+FVA method, while the 
FBA-only method returned 50 unique potential targets. Among 
those results, it is important to highlight four potential targets: 
asd, ispE, fabA, and dapA. Both asd and dapA are involved in 
the L-lysine biosynthesis via DAP pathway, which synthesizes 
L-lysine from aspartate and pyruvate. In bacteria, the lysine 
biosynthesis pathway yields the important metabolites meso-2,6-
diaminopimelate (meso-DAP) and lysine. Lysine is utilized for 
protein synthesis in bacteria and forms part of the peptidoglycan 
cross-link structure in the cell wall of most gram-positive species, 
whilst meso-DAP is the peptidoglycan cross-linking moiety in 
the cell wall of gram-negative bacteria (Dogovski et al., 2012). 
This pathway is utilized by most bacteria, some archaea, some 
fungi, some algae, and plants (Liu et al., 2010b), and therefore 
are suitable candidates for therapeutic targets. Only experimental 
drugs are available to both targets.

ispE encodes a cytoplasmic kinase of the MEP pathway that 
is involved in the biosynthesis of the isoprenoids used by many 
gram-negative bacteria (including P. aeruginosa) (Heuston 
et al., 2012). Because isoprenoids are involved in a wide variety 
of vital biological functions, the seven enzymes without close 
human homologs that participate in their metabolism (encoded 
by dxr, ispC, ispD, ispE, ispF, ispG, ispH genes) are favorable 
candidate drug targets and several inhibitors have been already 
reported (Masini and Hirsch, 2014). Specifically for ispE, only 
experimental drugs are available.

fabA participates in fatty acid synthesis (FAS) processes, which 
includes also fabB, fabD, fabI, and fabH. The proteins encoded 
by these genes have an essential role during the synthesis of 

bacterial phospholipid membranes, lipopolysaccharide (LPS), 
and lipoproteins, thus representing attractive targets due to the 
structural differences between the human and bacterial proteins 
and the essentiality of FAS (Zhang et al., 2006; Leibundgut et al., 
2008). Only experimental drugs are available to this target.

All four potential targets described above are reported to be 
overexpressed in K. pneumoniae when the pathogen is exposed 
to polymyxin B (Ramos et al., 2018), which is considered as a 
“last resort” antibiotic for infections caused by Carbapenem-
resistant Enterobacteriaceae. Indeed, it has been shown that 
P. aeruginosa CCBH4851 is sensible only to polymyxin B 
(Silveira et al., 2014). This observation can be of interest in a 
combination therapy perspective when dealing with resistant P. 
aeruginosa infections, possibly acting synergistically with other 
drugs. An interesting observation is that the same target may 
be associated with similar reactions in both Tier 2 P. aeruginosa 
CCBH4851 and K. pneumoniae. For instance, asd is associated 
with the aspartate-semialdehyde dehydrogenase reaction in both 
metabolic networks, but reactants, products, and directionality 
differ. On the other hand, reactions associated with fabA differ 
in both metabolic network models. The gene fabA is associated 
to 13 reactions in K. pneumoniae and nine reactions in Tier 2 
P. aeruginosa CCBH4851.

Another interesting observation is that the above targets have 
been identified by the FBA-only method. Only dapA is included 
in FBA+FVA results. One possible inference from this fact is that 
dapA should be prioritized over the other targets. Nevertheless, 
it also highlights the importance of considering both methods 
when looking for new potential targets.

A fifth target worth mentioning is algC, which encodes a highly 
reversible phosphoryltransferase. The phosphomannomutase 
activity produces a precursor for alginate polymerization; 
the alginate layer causes a mucoid phenotype and provides 
a protective barrier against host immune defenses and 
antibiotics. It is involved in core LPS biosynthesis due to its 
phosphoglucomutase activity and is essential for rhamnolipid 
production, an exoproduct correlated with pathogenicity 
(Olvera et al., 1999). It is also required for biofilm production 
(Davies and Geesey, 1995). This particular target was identified 
using the FBA-only method. Only experimental drugs are 
available to algC.

Analysis of the Tier 3 P. aeruginosa 
CCBH4851 Metabolic Network
To evaluate the robustness of FindTargetsWEB regarding 
Tier 3 networks, which generally are networks generated 
automatically without manual curation, FindTargetsWEB 
processed a preliminary version of the metabolic network model 
of P. aeruginosa CCBH4851, which precedes the Tier 2 network 
described previously. This network is the only one in this paper 
which was processed using step 6b (algorithm 2) of the overall 
method. The growth rate of the Tier 3 version of the P. aeruginosa 
CCBH4851 network is 1.757 h-1, which is less consistent to the 
biology of P. aeruginosa spp. than the growth rate obtained by 
the Tier 2 version of the network. The processing of this Tier 
3 network generated 32 targets in the FBA+FVA analysis, and 

TABLE 3 | Putative targets with approved drugs common to all Tier 2 metabolic 
network models of P. aeruginosa. Targets marked with asterisks are also 
associated with drugs in the experimental stage. Drugs marked with double 
asterisks are most probably artifacts inherited from DrugBank.

EC number Gene name Approved drug

1.3.1.98 murB* Flavin adenine 
dinucleotide**

1.5.1.3 folA* Levoleucovorin
1.5.1.3 folA* Isoniazid
2.3.1.41 fabB* Cerulenin
2.5.1.15 folP Sulfacytine
2.5.1.15 folP Sulfaphenazole
2.5.1.15 folP Sulfamethoxazole
2.5.1.15 folP Sulfanilamide
2.5.1.15 folP Sulfacetamide
2.5.1.15 folP Sulfamethazine
2.5.1.15 folP Sulfamethizole
2.5.1.15 folP Sulfisoxazole
2.5.1.15 folP Sulfamerazine
2.5.1.7 murA* Fosfomycin
2.6.1.85 pabB Formic acid**
4.2.1.24 hemB* Formic acid**
4.2.3.5 aroC Riboflavin 

monophosphate**
5.3.1.6 rpiA* Citric acid**

The EC (enzyme commission) numbers represent the classification of P. aeruginosa 
enzymes according to the Nomenclature Committee of the International Union of 
Biochemistry and Molecular Biology (IUBMB).Gene and associated drug names were 
retrieved from UniProt and DrugBank databases, respectively.
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48 targets using the FBA-only method. It is remarkable that 
this less curated version of P. aeruginosa CCBH4851 network 
generated more potential targets in the FBA+FVA analysis than 
the corresponding Tier 2 network.

Among targets identified using the FVA+FBA method, 10 
targets are common between the Tier 2 and Tier 3 networks. 
For the FBA-only analysis, 21 targets are common between the 
two versions. It is worth mentioning that many targets found 
in Tier 2 networks are present in the analysis of the CCBH4851 
Tier 3 network, which corroborates the relevance of the targets 
found even in draft versions of metabolic networks. This 
comparison also highlights the importance of careful curation of 
automatically generated metabolic networks. For instance, from 
the targets discussed in the previous subsection, only dapA is 
present as a potential target in the Tier 3 network.

Analysis of Metabolic Network Models  
of K. pneumoniae and H. influenzae
Metabolic networks of bacteria other than P. aeruginosa 
were also processed using FindTargetsWEB. In the previous 
subsections, results for P. aeruginosa metabolic network models 
were presented, but it is also possible to analyze networks of 
other species of bacteria. In this subsection, FindTargetsWEB 
results for a metabolic network reconstruction of K. pneumoniae 
MGH78578—iYL1228 (BioModels ID 1507180054) (Liao et al., 
2011) and H. influenzae—iCS400 (BioModels ID 1507180053) 
(Schilling and Palsson, 2000) are presented (Table 4).

For K. pneumoniae, a total of 45 unique potential targets were 
found using the FBA+FVA method and also 45 for the FBA-
only method. Some of the more representative targets are listed 

in Table  4 (complete results are available as Supplementary 
Material).

Several targets identified in Table 4 are worth mentioning. 
For instance, the cytoplasmic enzyme encoded by lpxA gene 
is involved in the initial steps of lipid A production through 
the Raetz pathway. As stated in the previous subsection, fabA, 
fabB, and fabF participate in FAS processes and represent 
attractive targets due to the structural differences between the 
human and bacterial proteins and the essentiality of FAS. The 
cytoplasmic protein N-acetylglutamate (NAG) kinase (encoded 
by argB), which promotes phosphorylation of NAG in a rate-
limiting step of bacterial L-arginine production, occurs through 
acetylated intermediates, unlike mammals which use non-
acetylated intermediates, and for this reason, it was previously 
considered a candidate drug target (Marcos et al., 2010). Indeed, 
Ramos et al. (2018) identified several potential targets found by 
FindTargetsWEB as priority targets for K. pneumoniae. Examples 
are dapD, lpxA, fabA, fabB, tmk, murE, and murD. Their analysis 
included a reconstruction of the metabolic network model of K. 
pneumoniae Kp13 and an essentiality analysis based on literature 
search. A target prioritization pipeline was proposed that takes 
into account gene essentiality, topological measures, literature 
information, and gene expression data. It is worth noting that 
neither FBA nor FVA were used in their analysis.

For the metabolic network model of H. influenzae, 16 unique 
potential targets were found by FindTargetsWEB for both 
FBA+FVA and FBA-only methods (Table 4). Complete results 
are available as Supplementary Material.

It is worth mentioning that the genes folA, tmk, kdsB, metG, thrS, 
and guaA were identified as essential for H. influenzae growth and 
survival by Akerley and colleagues (2002), using a high-density 

TABLE 4 | List of EC numbers, product, and DrugBank inhibitor status for putative targets for metabolic network models of K. pneumoniae and H. influenzae. All 
targets listed in this table are included in the results of both FBA+FVA and FBA-only methods.

EC number Gene name Product DrugBank 
inhibitor

Species

1.3.1.98 murB UDP-N-acetylenolpyruvoylglucosamine reductase A/E K. pneumoniae
2.3.1.117 dapD 2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase E K. pneumoniae
2.3.1.129 lpxA Acyl-[acyl-carrier-protein]–UDP-N-acetylglucosamine O-acyltransferase E K. pneumoniae
2.3.1.179 fabF 3-oxoacyl-[acyl-carrier-protein] synthase 2 A/E K. pneumoniae
2.3.1.41 fabB 3-oxoacyl-[acyl-carrier-protein] synthase 1 A/E K. pneumoniae
2.7.2.8 argB Acetylglutamate kinase E K. pneumoniae
2.7.4.9 tmk Thymidylate kinase E K. pneumoniae
4.2.1.59 fabA 3-hydroxydecanoyl-[acyl-carrier-protein] dehydratase E K. pneumoniae
6.3.2.13 murE UDP-N-acetylmuramoyl-L-alanyl-D-glutamate–2,6-diaminopimelate ligase E K. pneumoniae
6.3.2.8 murC UDP-N-acetylmuramate–L-alanine ligase E K. pneumoniae
6.3.2.9 murD UDP-N-acetylmuramoylalanine–D-glutamate ligase E K. pneumoniae
1.5.1.3 folA Dihydrofolate reductase A/E H. influenzae
2.7.4.9 tmk Thymidylate kinase E H. influenzae
2.7.7.38 kdsB 3-deoxy-manno-octulosonate cytidylyltransferase E H. influenzae
6.1.1.10 metG Methionine–tRNA ligase E H. influenzae
6.1.1.2 trpS Tryptophan–tRNA ligase A/E H. influenzae
6.1.1.21 hisS Histidine–tRNA ligase E H. influenzae
6.1.1.3 thrS Threonine–tRNA ligase E H. influenzae
6.3.5.2 guaA GMP synthase [glutamine-hydrolyzing] A H. influenzae

The EC (Enzyme Commission) numbers represent the classification of K. pneumoniae and H. influenzae enzymes according to the Nomenclature Committee of the International 
Union of Biochemistry and Molecular Biology (IUBMB). Gene, product, and DrugBank Inhibitor Status were retrieved from UniProt and DrugBank databases, respectively. 
Abbreviations: experimental (E) and approved (A).
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transposon mutagenesis strategy. Another relevant observation is 
the presence of potential targets common to K. pneumoniae (tmk) 
and P. aeruginosa (folA). Both methods, FBA+FVA and FBA-only, 
generate exactly the same results. Therefore, the FVA ranges for all 
targets in Table 4 are equal to zero.

Analysis of a Host-Pathogen Integrated 
Metabolic Network Model
FindTargetsWEB is also capable of processing integrated 
metabolic network models. The analysis presented in this 
subsection used a host-pathogen genome-scale reconstruction, 
iAB-AMØ-1410-Mt-661 (BIOMODELS ID 1011090001), which 
integrates a cell-specific alveolar macrophage model, iAB-
AMØ-1410, from the global human metabolic reconstruction, 
with an M. tuberculosis H37Rv model, iNJ661 (Bordbar et al., 
2010). The integrated host-pathogen network enables simulation 
of the metabolic changes during infection.

A total of 35 unique potential targets was identified by 
FindTargetsWEB on the integrated model by both the FBA+FVA 
and FBA-only methods (complete results are available as 
Supplementary Material). Several potential targets found by 
FindTargetsWEB in the host-pathogen integrated model have 
been previously reported in the literature as essential to M. 
tuberculosis survival (Bordbar et al., 2010; Sassetti and Rubin, 
2003). Examples are nrdE, mmaA2, mmaA3, aroQ, and ahcY, 
from which only mmaA2 and mmaA3 have approved drugs. It 
is worth highlighting that the selection of potential targets of 
FindTargetsWEB depends not only on network analysis, but also 
on data retrieved from DrugBank and additional filters, such as a 
low level of similarity with human proteins.

Analysis of the Metabolic Network Model 
of a Gram-Positive Bacterium
None of the results presented in the previous subsections 
include gram-positive bacteria. To emphasize FindTargetsWEB 
flexibility, in this subsection, we present results from the 
metabolic network model analysis of a gram-positive pathogen. 
S. aureus is a pathogenic gram-positive bacterium that causes a 
variety of disease conditions both in hospital settings and in the 
community at large. The metabolic model iSB619 (BIOMODELS 
ID 1507180070) (Becker and Palsson, 2005), reconstructed 
from the strain N315, was processed using FindTargetsWEB. 
Complete results for both FBA-only and FVA+FBA are available 
as Supplementary Material.

A total of 27 unique potential targets were generated using 
the FBA-only method. The FBA+FVA analysis returned 22 
unique targets. Some potential targets are common to gram-
negative bacteria (such as murB, aroC), while others such as 
mvaA (locus tag SA2333 for the N315 strain, SAOUHSC_02859 
for the NCTC8325 strain), tkt (SA1177, SAOUHSC_01337), and 
dfrA (SA1259, SAOUHSC_01434) are defined as essential for S. 
aureus in both minimal and rich medias (Becker and Palsson, 
2005). Regarding the metabolic network models analyzed in this 
manuscript, the potential targets mvaA, tkt, and dfrA only appear 
in the S. aureus metabolic network model.

Analysis of the Metabolic Network Model 
of a Non-Pathogenic Bacteria
The pseudomonads include a diverse set of bacteria whose 
metabolic versatility and genetic plasticity have enabled their 
survival in a broad range of environments. Many members of this 
family are able to either degrade toxic compounds or to efficiently 
produce high value compounds and are therefore of interest for 
both bioremediation and bulk chemical production. P. putida is 
a representative of those industrially relevant pseudomonads. 
In this subsection, an analysis of the metabolic network model 
of the P. putida KT2440 (Puchałka et al., 2008), named iJP815 
(BIOMODELS ID 1507180044), is compared to the previous 
analysis of a pathogenic member of the family, P. aeruginosa. 
Complete results for the analysis of the P. putida metabolic 
network model is available as supplementary material.

A first comparison between P. putida e P. aeruginosa 
metabolic network models is the number of potential targets. 
The analysis of the metabolic network model of P. putida 
returned a comparable number of potential targets: 52 for 
FBA-only, 50 for the FBA+FVA method (see Table 1). Indeed, 
the size of the metabolic network model iJP815 is comparable 
with other P. aeruginosa metabolic networks: 824 intracellular 
and 62 extracellular metabolites connected by 877 reactions. 
Other interesting observation is that some targets present in 
the multidrug-resistant P. aeruginosa CCBH4851 are absent in 
P. putida, despite the comparable number of potential targets. 
Remarkable examples are asd, ispE, fabA, dapA, and algC. 
Indeed, from the 25 targets common to all Tier 2 P. aeruginosa 
metabolic network model displayed in Table  2 (FBA-only 
method), only 18 are also potential targets for the P. putida 
KT2440 metabolic network model.

DISCUSSION

Several advantages of the proposed method can be highlighted: 
first the robustness of the system, which can identify potential 
targets even for draft (Tier 3) networks, pointing out that such 
metabolic network models are very common and are the only 
models available for some organisms. The system is deployed as 
a web application and is asynchronous: the user is notified when 
results are available. The performance of the system is optimized, 
since the COBRApy framework can make use of multiple cores 
available in the host machine, and it is able to process the metabolic 
network of various bacteria, as described in the previous section. 
The only requirement is the availability of an SBML level 3 file 
describing the corresponding genome-scale metabolic network. 
The user interface is straightforward (see Figures 1 and 2), 
and the user should only provide a name, an e-mail address, 
and the corresponding SBML file. The user should also indicate 
the species of bacterium associated with the metabolic network 
model. FindTargetsWEB is a highly flexible tool, capable of 
processing genome-scale metabolic network models of gram-
negative bacteria, gram-positive bacteria, bacteria not classified 
as either gram-positive or gram-negative, and even integrated 
host-pathogen genome-scale metabolic network models.
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Other proposals for the analysis of metabolic networks at 
genomic scale are available in the literature. Chavali et al. (2012) 
used FBA and FVA for identification of potential targets, but 
their application does not propose any drugs for the targets found 
neither describes the potential targets in detail. The procedure 
reported in (Oberhardt et al., 2010) describes a processing similar 
to the one proposed in this work up to the EC number mapping 
step, and then uses graphical tools to identify the potential 
targets for E. coli and Bacillus subtilis, without pinpointing any 
potential drug. Ramos et al. (2018) propose a method to identify 
drug targets in metabolic network model of K. pneumoniae. 
However, their method is not automated, and it was not applied 
to other species of bacteria. None of these works go as far as 
FindTargetsWEB, which can process metabolic network models 
of several species of bacteria, identify potential targets, confirm 
homology with the analyzed gene, and identify all available drugs 
for the potential target in a fully automated manner.

Regarding the options to identify potential targets, i.e., FBA+FVA 
and FBA-only, one can conclude that the FBA+FVA method 
represents a way to prioritize the targets identified by the FBA-
only method, since the set of targets identified by FBA+FVA is a 
proper subset of the set of targets identified by FBA-only. However, 
as stated in the detailed description of the targets of the Results 
section, potential targets that are associated with the FBA-only 
method and do not appear as results of the FBA+FVA method 
should not be disconsidered. Many important targets described 
in the literature have a FVA range greater than zero, and a careful 
analysis of both sets of potential targets is advised.

Several of the approved drugs identified by FindTargetsWEB 
are already used against P. aeruginosa and other bacteria and can 
be effective against non multidrug-resistant strains. As expected, 
for the multidrug-resistant strain, most of the approved drugs 
are not effective. For instance, it is known that P. aeruginosa 
can be resistant to both to trimethoprim and sulfamethoxazole 
(see Table 3) due to the MexAB-OprM multidrug efflux system 
(Köhler et al., 1996). Nevertheless, FindTargetsWEB also pinpoints 
a large number of experimental drugs that can be effective. 
Actually, most of the targets identified by FindTargetsWEB for all 
strains are associated to experimental drugs and may represent 
new therapeutic options. Clearly, additional in vitro and in vivo 
testings are needed in order to confirm the experimental drugs as 
new therapeutic options.

Additional information provided by FindTargetsWEB can 
also be considered in the definition of new strategies to fight 
multidrug-resistant bacteria. Information such as pathway, target 
function, and catalytic activity can be considered in order to 
devise a multi-target strategy, which can be very effective in some 
scenarios. As an example of a multi-target strategy, in bacteremia 
caused by P. aeruginosa, the combination of efflux pump inhibitors 
and iron chelators has been proposed to control the infection 
process in view of the overexpression of the MexAB-OprM efflux 
system during iron deprivation (Liu et al., 2010a). Indeed, several 
targets in the analysis of results for P. aeruginosa are related to 
different cellular functions. Targeting several cellular functions 
and processes at the same time can be a more promising strategy 
than considering only one isolated target. For instance, it is 
known that inhibiting bacterial growth can accelerate the process 

of biofilm formation (Xu et al., 2013). Therefore, the pathogen 
can form a biofilm before it is eliminated. Multi-target therapies 
are already commonplace in treating bacteria infections, and the 
wealth of information provided by FindTargetsWEB can be used 
to define new multi-target treatments not considered before. For 
instance, algC (P. aeruginosa CCBH4851, PA14, and PAO1-2017 
metabolic networks) is both essential to metabolic growth and 
biofilm formation, according to the FUNCTION field returned 
by FindTargetsWEB and literature sources (Davies and Geesey, 
1995). Therefore, a targeting strategy based on other genes may 
consider also targeting algC to prevent biofilm formation.

CONCLUDING REMARKS

FindTargetsWEB is a user-friendly web application that combines 
bioinformatics and systems biology, providing insights of new 
therapeutic targets for multidrug-resistant bacteria, increasing 
the available therapeutic options. By identifying more effectively 
potential targets along with candidate active compounds for 
posterior experimental confirmation, this tool prevents exhaustive 
bacterial drug screening. Importantly, FindTargetWEB can also be 
applied to the study of other bacteria due to the flexibility proposed 
by computational modeling, serving as a base for other relevant 
studies. In addition, it will serve as a starting point for the creation 
of even more complete applications in a web environment, such as 
one capable of processing integrated computational models and 
retrieving data from more databases.
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