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Human endogenous retroviruses (HERVs) are ancient retroviral elements, which invaded 
the human germ line several million years ago. Subsequent retrotransposition events 
amplified these sequences, resulting in approximately 8% of the human genome being 
composed of HERV sequences today. These genetic elements, normally dormant within 
human genomes, can be (re)-activated by environmental factors such as infections with 
other viruses, leading to the expression of viral proteins and, in some instances, even to 
viral particle production. Several studies have shown that the expression of these retroviral 
elements correlates with the onset and progression of neurological diseases such as 
multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). Further studies provided 
evidence on additional roles for HERVs in schizophrenia (SCZ). Since these diseases 
are still not well understood, HERVs might constitute a new category of pathogenic 
components that could significantly change our understanding of these pathologies. 
Moreover, knowledge about their mode of action might also help to develop novel and 
more powerful approaches for the treatment of these complex diseases. Therefore, the 
main scope of this review is a description of the current knowledge on the involvement 
of HERV-W and HERV-K in neurological disease specifically focusing on the effects they 
exert on neural cells of the central nervous system.
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INVOLVEMENT OF HERVS IN NEUROLOGICAL DISEASES

Up to 8% of the human genome are of retroviral origin. These retroviral elements, termed human 
endogenous retroviruses (HERVs), invaded the germ line millions of years ago and have been 
permanently integrated into the genome of our primate ancestors (Küry et al., 2018). Following 
integration, retrotransposonal activity led to the amplification of these retroviral elements (Belshaw 
et al., 2004). While most of these retroviral genes contain intragenic deletions or nonsense mutations 
and are therefore presumed to be silent, some of them retained parts of their functionality and 
developed into enhancers of the immune defense (Grandi and Tramontano, 2018). Other genes, 
such as syncytin encoded by ERVWE1, a full length provirus at locus 7q21.2 on chromosome 
7, were domesticated and act in placental development (Mi et al., 2000). HERV elements may 
normally be expressed at low levels, but environmental factors, such as hypoxia (Brutting et al., 
2018), drugs (Liu et al., 2013), other viruses (Liu et al., 2017), and certain mutations (Yu et al., 
2014), were shown to increase their expression. Importantly, several studies were able to show 
that inflammation plays a major role in HERV activation (Mameli et al., 2007; Mameli et al., 2013;  
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Li et al., 2015; Manghera et al., 2015; Manghera et al., 2016b;Hurst 
and Magiorkinis, 2017). However, current research indicates 
that HERVs are also associated with several neurological 
disorders such as multiple sclerosis (MS; Perron et al., 1989), 
amyotrophic lateral sclerosis (ALS; Mccormick et al., 2008), 
and schizophrenia (SCZ; Yolken et al., 2000), which warrants 
research into underlying mechanisms of activation as well as 
into their role in disease etiology. As underlying disease causes 
of many neurological conditions remain elusive, HERV-directed 
research might shed light on new interactions and pathological 
processes implicated into disease onset or progression. These 
entities, which are sensu stricto neither viruses nor physiological 
genes, must therefore be considered as a new category of 
pathogenic elements (Feschotte and Gilbert, 2012). In the 
present review, we will summarize what is currently known 
about the involvement of HERVs in neurological diseases and 
will specifically address functions exerted on neurons and glial 
cells of the central nervous system (CNS).

Of note, HERV-W has been associated, repeatedly and 
based on a larger number of independent studies, with MS as 
recently reviewed in (Dolei, 2018). This demyelinating CNS 
disease of unknown etiology features miscellaneous clinical 
symptoms such as sensory, motor, and cognitive dysfunctions. 
Pathophysiologically, MS is characterized by immune cell 
infiltration, focal inflammation, and loss of myelin sheaths, 
leading to white and gray matter lesions and brain atrophy 
(Reich et al., 2018). Axonal degeneration, observed mainly 
but not exclusively during progression and later disease stages 
(Trapp et al., 1998), is another of its hallmarks and results in 
irreversible deficits. Mechanistically, direct autoimmune attacks 
on neurons (Derfuss et al., 2010) as well as secondary effects in 
response to myelin loss are responsible for axonal impairment 
and loss. In 1989, an association between retroviral elements 
and MS was described based on the analysis of primary 
leptomeningeal cell cultures isolated from MS patients (Perron 
et al., 1989). While these isolated viral particles were initially 
termed multiple sclerosis associated retrovirus (MSRV), it was 
later found that MSRV belongs, in fact, to the HERV family 
(Dolei and Perron, 2009; Perron and Lang, 2010). Follow-up 
studies provided convincing evidence that activation and 
expression of otherwise dormant HERV-W DNA sequences 
and the subsequent production of the encoded envelope (ENV) 
protein can trigger an immune response (Perron et  al., 2001; 
Rolland et al., 2005). Moreover, it was shown that HERV-W 
ENV RNA and protein levels are increased in the cerebrospinal 
fluid (CSF) and serum of MS patients but rarely in healthy 
individuals (Garson et al., 1998; Mameli et al., 2009; Perron 
et al., 2012). Furthermore, it was shown that HERV-W ENV 
activates the innate immunity, priming it against myelin 
proteins. Accordingly, HERV-W ENV can act as an adjuvant 
in a model of experimental autoimmune encephalitis (EAE), 
which, in turn, can be rescued by the application of an 
HERV-W ENV-targeted therapeutic IgG4 antibody termed 
GNbAC1 (EAE; Perron et al., 2013). MS histology then 
revealed that the HERV-W ENV protein is mainly expressed 
by myeloid cells (Kremer et al., 2013; Van Horssen et al., 2016). 
Of note, a similar correlation was observed for HERV-W and 

chronic inflammatory demyelinating polyneuropathy (CIDP), an 
inflammatory, demyelinating disease of the peripheral nervous 
system (PNS; Faucard et al., 2016).

Apart from roles in cancer (Grabski et al., 2019) HERV-K 
also appears to be involved in a subpopulation of patients with 
sporadic ALS. This neurodegenerative disease is characterized 
by the progressive loss of both cortical and spinal motor 
neurons (Mathis et al., 2017). Although first described in the 
19th century, its pathogenesis is still poorly understood despite 
considerable efforts to identify causes and susceptibilities in 
recent decades. Elevated HERV-K reverse transcriptase (RT) 
activity was observed in both blood and CSF from ALS patients 
(Macgowan et al., 2007; Mccormick et al., 2008). So far, two 
loci could be identified in the 7q34 and 7q36.1 regions, leading 
to the expression of HERV-K elements in ALS patients (Frank 
et al., 2005). Initial analysis of brain autopsy tissue revealed the 
expression of several HERV-K transcripts in cortical and spinal 
neurons of ALS but not in healthy control individuals (Douville 
et al., 2011). Although evidence for such an involvement is 
increasing (Meyer et al., 2017), it is currently challenged by 
a recent independent study that was not able to confirm the 
association between elevated cortical HERV-K RNA levels and 
ALS (Garson et al., 2019). Despite these conflicting observations 
related to the detection in ALS, it must be emphasized that 
transgenic mice expressing the HERV-K envelope protein display 
progressive motor dysfunction and motor cortex volume loss (Li 
et al., 2015).

SCZ is a complex neuropsychiatric disorder characterized by 
a variety of cognitive, emotional, and perceptual disturbances. 
Pathophysiologically, SCZ features decreased brain volume, 
loss of myelin, and altered astrocyte function (Archer, 2010). In 
contrast to MS and ALS, both HERV-W and HERV-K have been 
weakly linked to SCZ based on PCR amplification from CSF and 
post-mortem brains as well as on protein antigenemia (Yolken 
et al., 2000; Karlsson et al., 2001; Frank et al., 2005; Perron et al., 
2008), while another study revealed upregulation of HERV-W 
ENV transcripts in plasma samples of SCZ patients (Huang 
et al., 2011). Moreover, a new study provides evidence that, in 
early stages of this disease, HERV-K methylation in peripheral 
blood is reduced (Mak et al., 2019). Of note, these observations 
contradict an earlier report suggesting that HERV-W expression 
is reduced in SCZ patients (Weis et al., 2007). The disparity 
between these reports may reflect different experimental 
approaches or a differential use of anti-psychotic medications 
in SCZ patients.

MECHANISMS OF HERV ACTIVATION

It is known that silenced HERVs can be specifically activated and 
expressed in several neurological conditions based on complex 
underlying activation mechanisms. In this regard, numerous 
studies have established links between HERV activation and 
infections with viruses such as the Epstein Barr virus (EBV). In 
this context, EBV glycoprotein350 (EBVgp350) was found to 
trigger expression of HERV-W ENV in blood cells and astrocytes, 
possibly contributing to the onset of MS (Mameli et al., 2012; 
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Mameli et al., 2013). Likewise, EBV was also shown to trigger 
HERV-K expression (Sutkowski et al., 2001). Similar activation 
mechanisms were demonstrated for Herpesviridae HSV1 and 
HHV6 (Perron et al., 1993; Ruprecht et al., 2006; Brudek et al., 
2007; Charvet et al., 2018), providing a possible underlying 
mechanism explaining the well-established epidemiological link 
between these viruses and the susceptibility for MS. In addition, 
a direct involvement of the human immunodeficiency virus 
(HIV) Tat protein in activating HERV-W ENV in peripheral 
blood mononuclear cells (PBMCs), monocyte/macrophages, 
and astrocytes was described (Uleri et al., 2014). Of note, in 
monocytes, HIV Tat inhibits the expression of syncytin-1, 
whereas in differentiated macrophages it is stimulated (Uleri 
et al., 2014). In this regard it is important to note that HERV-K 
plasma levels were found to positively and negatively correlate 
with HIV infection and antiretroviral therapy, respectively 
(Bowen et al., 2016). Whether HIV infection as such or 
antiretroviral treatment account for this observation is 
currently debated.

Yet, another important activator of HERV expression is 
the nuclear factor kappa-light-chain-enhancer of activated 
B-cells (NF-κB) signaling pathway, based on an earlier report 
demonstrating that the pro-inflammatory cytokine tumor 
necrosis factor (TNF) α can stimulate the, at that time so-called, 
ERVWE1/syncytin promoter via NF-κB (Mameli et al., 2007). 
Similarly, HERV-K expression was also shown to respond to 
TNFα/NF-κB signaling (Li et al., 2015; Manghera et al., 2015; 
Manghera et al., 2016b). Such signaling could be part of a 
regulatory feedback loop, taking into account that HERV long 
terminal repeat (LTR)-sequences act as promoters for pro-
inflammatory cytokine genes (Hurst and Magiorkinis, 2017).

In human SH-SY5Y neuroblastoma cells, caffeine and 
aspirin were shown to induce HERV-W ENV and GAG 
(group-specific antigen) transcription, providing a possible 
link between environmental factors, drugs, and endogenous 
virus activation (Liu et al., 2013). Whether such exogenous 
triggers can also affect HERV-W induction in myeloid cells, 
which are highly relevant for MS (Kremer et al., 2013; Van 
Horssen et al., 2016), remains to be demonstrated. Regarding 
ALS, TAR DNA binding protein 43 (TDP43), which is 
involved in the sporadic form of the disease (Mackenzie and 
Rademakers, 2008), was found to bind to LTR sequences, 
leading to the expression and accumulation of HERV-K (Li 
et al., 2015; Manghera et al., 2016a). A further contribution to 
HERV-W activation in MS was proposed to be mediated via 
endoplasmic reticulum (ER) stress (Deslauriers et al., 2011). 
Finally, progerin, a nuclear protein involved in the accelerated 
aging Hutchinson–Gilford progeria syndrome, was found to 
strongly downregulate transcription of all classes of repetitive 
sequences including HERVs in dopaminergic neurons 
generated from induced pluripotent stem cells (Arancio, 
2019). Whether corresponding lessons can be learned in 
light of neurodegeneration in MS or ALS needs to be shown 
in future. Of note, progerin was also shown to impair the 
nuclear factor erythroid 2–related factor 2 (Nrf2)-mediated 
anti-oxidative response (Kubben et al., 2016), a mechanism 
implicated in MS neuroprotection (Linker et al., 2011).

HERV EFFECTS EXERTED ON NEURAL 
CELLS

Neurons
A potential HERV impact on neurons was studied in mice 
using experimental overexpression of the HERV-K ENV 
protein, mimicking its expression in cortical and spinal neurons 
of ALS patients. These transgenic mice showed severe signs 
of neurodegeneration with progressive motor dysfunction, 
motor cortex volume loss, decreased synaptic activity, and 
spine abnormalities (Li et al., 2015). Such a phenotype implies 
that either endogenous damage pathways are activated or 
ENV protein leakage results in surface receptor activation, 
leading to autocrine or paracrine cell activation. CRISPR/Cas9 
technology was recently used to disrupt the HERV-K ENV gene 
in human prostate cancer cells. By depleting ENV transcripts 
and proteins, this modification led to the downregulation of the 
above-mentioned important regulator TDP-43 (see Figure  1; 
Ibba et  al., 2018). Given the formation of neurotoxic TDP-43 
deposits in ALS neurons and TDP-43’s implication in HERV-K 
activation (Douville and Nath, 2017), this study provides yet 
more evidence for a role of ENV proteins in neurodegeneration. 
This view might, however, be challenged by the observation that 
HERV-K ENV overexpression in neuronal cells increased their 
viability and prevented neurotoxicity mediated by the HIV-1 Vpr 
protein (Bhat et al., 2014). This study was based on the fact that 
HERV-K and TDP-43 constitute an important neuropathological 
overlap between ALS and HIV encephalitis but might not be 
representative for MS- or ALS-related degeneration processes. 
To what degree inactivation of HERV-K might also be achieved 
via epigenetic modulators such as TRIM28 remains to be shown. 
In neural progenitor cells, TRIM28 acts a corepressor mediating 
transcriptional silencing. Its deletion resulted in induction of 
two groups of endogenous retroviruses IAP1 and MMERVK10C 
(Fasching et al., 2015). Finally, in neuroblastoma cells, HERV-W 
ENV overexpression was reported to activate the TRPC3 channel 
to regulate calcium influx and to depress the SCZ relevant DISC1 
protein (Chen et al., 2019). Whether this observation truly 
reflects cellular expression and consequences in neuropsychiatric 
disorders including non-transformed neuronal cells and whether 
it can specifically be attributed to the envelope of HERV-W 
remain to be studied in future.

GLIAL CELLS

Expression of HERV-W ENV has mainly been observed in 
myeloid cells, i.e., monocytes/macrophages and microglia in MS 
patient tissues, while there is scarce evidence pointing to ENV 
expression by astrocytes (Perron et al., 2005; Kremer et al., 2013; 
Van Horssen et al., 2016). As of now, it is still unclear whether there 
is direct astroglial expression or if astroglia only bind or internalize 
ENV protein. However, signs of astroglial expression have also 
been gathered upon activation by EBV (Mameli et al., 2012). 
Observations on the related syncytin-1 revealed induced astrocytic 
release of redox reactants, which are cytotoxic to oligodendrocytes 
(Antony et al., 2004), possibly acting via ASCT1 activation 
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(see Figure  1; Antony et al., 2007). In this regard, however, it 
must be stated that this study did not distinguished between 
the pathological HERV-W and the physiological syncytin-1. 
Furthermore, syncytin-1 overexpression in human microglia and 
astroglia was reported to activate the inflammatory marker CRP 
via TLR3 signaling (Wang et al., 2018), notably a receptor that is 
known to bind double-stranded RNA but is prone to nucleic acid 
artifacts in transfection experiments. In addition to the above-
mentioned observations in neuroblastoma cells, overexpression 
of HERV-W ENV in human glioma cells was reported to 
induce expression of SCZ-linked genes encoding brain-derived 
neurotrophic factor (BDNF) and dopamine receptor D3 (DRD3; 
Huang et al., 2011), whereas the endogenous retroviral insert 
hsERVPRODH was found to act as a tissue-specific enhancer for 
the proline dehydrogenase 1 (PRODH), a candidate gene for SCZ 
susceptibility (Suntsova et al., 2013).

In the context of MS, stimulation of rat oligodendroglial 
progenitor cells (OPCs) with HERV-W ENV protein was found to 
impair their differentiation and to interfere with axon myelination 
(Kremer et al., 2013; Göttle et al., 2019). This effect is based on 
TLR4 activation and the subsequent induction of nitrosative stress 

(see Figure 1). The HERV-W ENV-targeted therapeutic antibody 
GNbAC1 was initially developed to neutralize ENV-dependent 
activation of immune cells, yet was also revealed to be active in 
rescuing oligodendroglial differentiation (Kremer et al., 2015) as 
well as myelination in vitro (Göttle et al., 2019). Of note, in relapsing 
MS patients, a phase 2b clinical trial using GNbAC1 has been 
conducted (CHANGE-MS, NCT02782858). It therefore remains to 
be shown to what degree clinical results reflect these preclinical 
findings and whether MS patients show beneficial effects on 
remyelination or attenuated neurodegeneration. Moreover, 
interfering with TLR4 surface exposition by blocking of the vascular 
ATPase was also found to neutralize the ENV-dependent effect on 
OPC differentiation and axonal myelination (Göttle et al., 2019). 
With regard to peripheral nervous system inflammatory damage, 
HERV-W ENV protein can also be detected in Schwann cells of 
CIDP patients. Cultured human Schwann cells exposed to or 
transfected with an ENV expression vector showed increased IL-6 
and decreased CXCL10 transcript levels (Faucard et al., 2016), hence 
showing signs of altered immunocompetence in the peripheral 
nerve (Tzekova et al., 2014). Likewise, this activation could be 
neutralized via the GNbAC1 antibody (Faucard  et  al., 2016).  

FIGURE 1 | HERV-mediated effects on neural cells. This illustration summarizes origin and observed molecular effects of HERW-W and HERV-K on cells of the central 
nervous system. Arrow starting points indicate cellular sources of HERV particles or proteins (red dots), whereas arrowheads point to influenced cell types. Modulated 
processes are shown in gray boxes, and regulated molecules are highlighted in red next to each cell type. The question mark next to TDP-43 refers to its postulated 
regulation in neurons. Whether microglia and astroglia respond to HERVs in an auto- and/or paracrine way and whether neurons react to internal and/or extracellular 
HERVs remains to be shown. OPCs: oligodendroglial progenitor cells; NO: nitric oxide; CRP: C-reactive protein; BDNF: brain-derived neurotrophic factor; DRD3: 
dopamine receptor D3; TRPC3: short transient receptor potential channel 3; DISC1: disrupted in schizophrenia 1; TDP-43: TAR DNA-binding protein 43.
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To what degree HERV-W ENV protein-mediated activation 
also modulates the capacity of Schwann cells to de- and 
redifferentiate and whether it could therefore affect PNS repair 
remains to be shown.

Although microglial cells are currently viewed as a relevant 
source of HERV-W ENV protein in the diseased CNS, additional 
autocrine/paracrine effects on these myeloid cells cannot be 
excluded and warrant further investigations. In this regard, it is 
worth mentioning that nitric oxide (NO) production and cellular 
migration were found to be affected in response to stimulation of 
rat microglia with a recombinant ENV protein (Xiao et al., 2017).

Finally, a role of HERV-W ENV in diminishing myelin repair 
is also important in light of the reproduced documentation on its 
expression in MS but also considering recent findings implying 
an implication in molecular mimicry. In this regard, several 
groups provided evidence of similarities between HERV-W 
ENV and myelin oligodendrocyte glycoprotein (MOG). This 
molecular mimicry may be an underlying mechanism leading 
to or fueling autoimmunity (Do Olival et al., 2013; Ramasamy 
et al., 2017; De Luca et al., 2019). To what degree such molecular 
similarities also disturb successful maturation of resident 
OPCs required for myelin repair needs to be investigated  
in future.

CONCLUSION

We here present collected evidence that endogenous retroviral 
elements acting either as viral particles or via their proteins 
influence neural cells in the context of degenerative CNS diseases. 
Once thought to be primarily involved in cell transformation 
(Grabski et al., 2019) and inflammation (Perron and Lang, 2010), 
emerging data suggests a direct role of these elements in glial and 
neuronal injury, which in fact goes beyond previous descriptions 
on the activity of a gliotoxin (Menard et al., 1998). In light of 
additional observations on the role of ERVs in regulating stem cell 
potential and fate acquisition (Gautam et al., 2017), the findings 

describing impacts on committed or mature cells of the CNS are 
probably not too surprising but warrant future investigations, 
even more so since neural stem cells are also involved in brain 
pathology and regeneration. Moreover, the currently still unmet 
clinical need to effectively treat neurodegeneration necessitates 
novel therapeutic approaches. Whether similar mechanisms also 
apply to activation of transposable elements implicated in, for 
example, chronic fatigue syndrome (CFS; Almenar-Perez et al., 
2019) and to what degree currently used neutralizing antibodies 
can be exploited in order to prevent neural cell activation and/
or neurodegeneration needs to be elucidated in the future. In 
this regard, it remains to be shown whether HERV-employed 
signaling pathways and epigenetic silencing mechanisms can be 
used for biomedical translation.
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