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Robin Wellmann* and Jörn Bennewitz

Animal Genetics and Breeding, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany

Population management has the primary task of maximizing the long-term competitiveness 
of a breed. Breeds compete with each other for being able to supply consumer demands 
at low costs and also for funds from conservation programs. The competition for consumer 
preference is won by breeds with high genetic gain for total merit who maintained a 
sufficiently high genetic diversity, whereas the competition for funds is won by breeds 
with high conservation value. The conservation value of a breed could be improved by 
increasing its contribution to the gene pool of the species. This may include the recovery 
of its original genetic background and the maintenance of a high genetic diversity at 
native haplotype segments. The primary objective of a breeding program depends on the 
genetic state of the population and its intended usage. In this paper, we review the key 
genetic parameters that are relevant for population management, compare the methods 
for estimating them, derive the formulas for predicting their value at a future time, and 
clarify their usage in various types of breeding programs that differ in their main objectives. 
These key parameters are kinships, native kinships, breeding values, Mendelian sampling 
variances, native contributions, and mutational effects. Population management 
currently experiences a transition from using pedigree-based estimates to marker-based 
estimates, which improves the accuracies of these estimates and thereby increases 
response to selection. In addition, improved measures of the factors that determine the 
competitiveness of a breed and utilize auxiliary parameters, such as Mendelian sampling 
variances, mutational effects, and native kinships, enable to improve further upon historic 
recommendations for genetic population management.

Keywords: breeding values, Mendelian sampling variance, segment-based kinship, runs of homozygosity, native 
kinship, native contribution, native founder genome equivalent, optimum contribution selection

BACKGROUND

Domestic animal breeds compete with each other. Breeds with highest competitiveness increase 
in size and thereby displace less competitive breeds. Superior breeds are chosen by the owners 
because they are able to supply the demand of the consumers at low costs or achieve high-quality 
standards that are valued by consumers. They are thus well adapted to match consumer preferences 
under the current political and economic framework conditions. Selective breeding can improve 
the adaptation of a breed, provided that the breeding goal fulfills the requirements imposed by the 
consumer demands and the economic framework conditions. High genetic gain can be achieved 
when reliable breeding values are available for the relevant traits at an early age of the selection 
candidates. This requires, however, a population management strategy that achieves high selection 
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intensities and a sufficiently short generation interval but ensures 
the maintenance of a high genetic diversity of the breed.

Strong selection toward an inferior breeding goal or in the 
absence of reliable breeding values often failed to increase 
the competitiveness of a breed but resulted in a substantially 
reduced genetic diversity. This phenomenon is known as the 
popular sire effect. This has happened with many companion 
breeds whose main breeding goal, which is to increase their 
physical attractiveness as pets and to improve personality traits, 
may be not appropriately captured by their breed standards. 
The reduced genetic diversity of these breeds reduced their 
potential to respond to selection toward new improved breeding 
goals and also made inbreeding unavoidable, which often led to 
inbreeding depression. An additional breeding goal for these 
breeds is thus the introduction of new genetic variation or the 
purging of the genetic load to get rid of inbreeding depression 
and to restore competitiveness.

Nowadays, many breeds are no longer able to compete 
with mainstream breeds. This applies to livestock species as 
well as companion animals. The decreasing population size 
causes a decline in selection intensity or a decrease in genetic 
diversity. The reduced genetic diversity could lead to inbreeding 
depression and reduces the response to selection in the long 
term. This further reduces their competitiveness relative to the 
mainstream breeds. Often, this downward spiral was set off by 
inappropriate or absent genetic population management or an 
inappropriate breeding goal. The competitiveness of small breeds 
is further reduced by the introduction of genomic selection, 
which substantially increased genetic gain only in mainstream 
breeds. Many small livestock breeds have been upgraded with 
mainstream breeds, which continued for several decades to keep 
them competitive and genetically diverse (Hartwig et al., 2014; 
Hartwig et al., 2015). This process gradually replaced their native 
haplotype segments, which were present in the breed before 
introgression, with genetic material from a few mainstream 
breeds. This reduced the contributions of the breeds to the 
genetic diversity of the species.

Rescuing endangered breeds from extinction is only 
possible by a conservation effort. As resources available for 
conservation programs are limited, breeds will compete in 
the future not only to match consumer preferences but also 
for funds from conservation programs (Boettcher et al., 2010). 
An optimal allocation of funds from conservation programs 
to specific breeds minimizes the expected conservation value 
of the breeds going extinct (Simianer et al., 2003). In general, 
the higher the value of a breed for conservation is, the more 
the species loses its ability to adapt to new environments 
after the breed has gone extinct. A parameter measuring this 
ability of the species is its adaptivity coverage, defined as the 
expected total merit index the most suitable breed has after 
selecting it for several generations toward a new randomly 
chosen breeding goal (Wellmann et al., 2014). In the future, 
robust and food-efficient breeds with the potential to adapt 
to climate change and new agro-ecological conditions and to 
tolerate new diseases will be needed (Kantanen et al., 2015), 
which requires the maintenance of a high adaptivity coverage. 
The optimal allocation of resources thus depends on the risks 

of the breeds to go extinct and on their contributions to the 
adaptivity coverage of the species.

The simulation study of Wellmann et al. (2014) showed that 
maintaining high adaptivity coverage is similar to conserving the 
genetic diversity of the species if many generations of selection 
are permissible to reach new breeding goals. The genetic diversity 
of a species can be decomposed into within-breed and between-
breed diversity (Toro and Caballero, 2005). A long-standing 
debate is whether between-breed diversity is more important than 
within-breed diversity for prioritizing breeds for conservation 
(Weitzman, 1993; Meuwissen, 2009). The conservation of 
between-breed diversity is important because domestic breeds 
have, on average, an effective size of only 100 (Leroy et al., 
2013), so much of the genetic diversity can be found between 
breeds. Within-breed diversity, on the contrary, is required for 
future selection response. In any case, the conservation value of 
a breed could be increased by prioritizing animals for breeding 
whose genomes are enriched with rare haplotype segments, 
whereby segments carrying signatures of positive selection are 
of particular value (Toro et al., 2009). For rare breeds that had 
been upgraded with mainstream breeds, this could be achieved 
by recovering the original genetic background of the breed, in 
which case the breeding program needs to ensure that enough 
genetic diversity remains in the breed after the introgressed 
genetic material has been removed (Amador et al., 2011).

In summary, population management strategies need to take 
different and often conflicting breeding objectives into account. 
The primary objective of a breeding program depends on the 
genetic state of the population and its intended usage. The 
state of a population with respect to a breeding objective can 
be measured by an associated genetic parameter. The relevant 
genetic parameters are the average breeding value for total merit, 
the genetic diversity of the population, and the genome equivalent 
that is contributed by the breed to the genetic diversity of the 
species. Although these parameters can be target parameters of 
breeding programs, their improvement can be facilitated with 
the help of some further auxiliary parameters. For example, the 
genome equivalent that is contributed by the breed to the gene 
pool of the species could be increased by increasing the genetic 
diversity at native alleles and the proportion of the gene pool 
that is native. Genetic gain can be increased when the Mendelian 
sampling variances are taken into account, which are responsible 
for the variances of breeding values within fulfills, and it can 
be further increased with the help of estimated mutational 
effects. Mutational effects are not only of interest to improve 
the accuracies of genomic breeding values but also for genome 
editing, which can be used to repair deleterious mutations and 
propagate advantageous alleles in the population (Jenko et al., 
2015). The success of a breeding program depends on the 
accuracies with which the relevant genetic parameters have been 
estimated. Pedigree-based estimates are increasingly replaced 
by marker-based estimates, which often have substantially 
higher accuracies.

This review provides an overview of the key genetic parameters 
required for optimal population management but does not aim 
to give a comprehensive overview of the selection methods with 
which these parameters can be optimized. The paper is organized 
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as follows. In the first section (Achieving Genetic Gain), genetic 
parameters are reviewed that can be taken into account to 
accelerate genetic progress. The considered parameters are 
breeding values, Mendelian sampling variances, and mutational 
effects. The second section (Managing Genetic Diversity) reviews 
parameters that are required to manage the genetic diversity of a 
breed and its contribution to the genetic diversity of the species. 
These are kinships and the founder genome equivalent (FGE) 
that is contributed by the breed to the gene pool of the species. 
The third section (Handling Introgression) reviews parameters 
that are important for breeds with severe genetic bottlenecks and 
breeds with historic introgression. These are native contributions 
and the kinship at native alleles. The definition of each parameter, 
and when appropriate a formula for predicting its value at a future 
time, is given. This is followed by a review of different methods 
for estimating the parameter and a discussion of aspects that 
are relevant for population management. The paper ends with a 
general discussion that clarifies the importance of the parameters 
for different types of breeding programs.

ACHIEVING GENETIC GAIN

Making the breed competitive is the most important goal of any 
breeding program, as it enables the maintenance of a sufficient 
population size for long-term survival. The competitiveness of 
a breed depends on its performance, health, fertility, longevity, 
robustness, type, behavior, and food efficiency. These trait 
complexes can be combined into a total merit index. The main 
objective of most breeding programs is to achieve a high genetic 
gain for total merit. This section discusses the genetic parameters 
that can be used for this. Although the target parameter is 
the average true breeding value for total merit, knowledge of 
individual Mendelian sampling variances and of mutational 
effects can help to increase selection response.

Breeding Values
Of interest in animal breeding is not the total merit of an 
individual itself but the average total merit of its offspring. This is 
measured by its breeding value BVi, which is twice the expected 
deviation of the offspring performance from the population 
mean when mated to a large random sample of the population. It 
can be computed as

BVi im m m
m

x p a= −∑( ) ,2
 

where am is the allele substitution effect of quantitative trait 
nucleotide (QTN) m for total merit, xim ∈ {0, 1, 2} is the number of 
copies of the alternative allele carried by individual i at QTN m, and 
pm is the frequency of the alternative allele in a base population. A 
breeding program with focus on genetic gain in total merit aims to 
achieve a high average breeding value in the population at a future 
time t + 1. The expected genetic gain until then equals

∆G E t t= ( ) −+BV BV1

where BVt  is the average breeding value of the population at 
time t. It can be computed as

BVt t
T

t= v BV ,

where BVt is the vector with the breeding values of all individuals. 
Vector vt contains the weights given to the individuals at time t. 
The weight vti of an individual depends on the age × sex - class s 
to which it belongs at time t. Thereby, the same weight is given to 
all individuals from the same age × sex - class. The contribution 
rs

t  of class s to the population at time t is often assumed to be 
proportional to the expected number of offspring from this class 
that is not yet born (Meuwissen and Sonesson, 1998; Woolliams 
et al., 2015), so it is, in general, not proportional to the number of 
animals from the data set that belong to this class. The expected 
mean breeding value at time t + 1 equals

E rt t
T

tBV + +( ) = +1 0 1( ) ,c v BV

provided that no individual that will be born between time t 
and t + 1 has its own offspring in this time interval. In the above 
formula, r0 is the percentage of the population represented by 
the age cohort that will be born in this time interval, and vector 
c contains the genetic contributions of all individuals from 
the current population to the offspring. A primary task for a 
breeding program is to determine the desired frequency of use of 
each selection candidate i, i.e. the vector c. The result depends on 
the method with which the breeding values have been estimated.

Estimates: As most QTN and their allele substitution effects 
are unknown, breeding values need to be estimated from own 
performances, from the performances of close relatives, or from 
marker data.

Breeding values are traditionally obtained as the best linear 
unbiased predictions (BLUP) in a mixed linear model from the 
performances of relatives (Henderson, 1984). The model uses 
the additive relationship matrix A computed from pedigrees as 
the covariance matrix of the breeding values. Breeding values 
have this covariance structure if the randomness of the breeding 
values arises from the random transmission of the paternal 
alleles to the offspring (Fisher, 1918; Crow and Kimura, 1970). 
When genotypes are available, then this covariance matrix 
can be replaced by a covariance matrix G computed from 
genotypes. If the covariance matrix is computed by Method 
1 of VanRaden (2008), then the resulting model is called the 
GBLUP model (Hayes et al., 2009a). This model is equivalent 
to a single nucleotide polymorphism (SNP) model that assumes 
normally distributed marker effects (Goddard, 2009). The direct 
genomic values obtained from a GBLUP model need to be 
blended with BLUP breeding values to obtain the genomically 
enhanced  breeding values on which selection is based 
(VanRaden et al., 2009).

As the sources of the randomness of breeding values in 
different models are different, depending on whether pedigrees 
or genotypes are used to define the covariance matrix of the 
breeding values, it was a challenge to derive a model that enables 
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the estimation of breeding values of genotyped and ungenotyped 
individuals in a single evaluation. One such model is single-step 
GBLUP (ssGBLUP), which integrates the genomic relationship 
matrix G with the additive relationship matrix A into a combined 
relationship matrix H (Legarra et al., 2009; Misztal et al., 2013). 
Fernando et al. (2014) showed that ssGBLUP is equivalent to an 
SNP model with normally distributed marker effects in which the 
genotypes of the non-genotyped individuals are imputed, and 
a random imputation residual is introduced to accommodate 
deviations between true and imputed genotypes. They also 
generalized the model to enable other distributions for the marker 
effects. Attempts have been made to further improve this SNP 
model by improving the imputation method and the covariance 
matrix of the imputation residual (Meuwissen et al., 2015).

Alternatives to GBLUP are Bayesian SNP models such as 
BayesA and BayesB (Meuwissen et al., 2001), BayesC (Verbyla 
et al., 2010), BayesCπ (Habier et al., 2011), BayesR (Erbe et al., 
2012), and BayesRC (MacLeod et al., 2016), which differ in their 
assumptions about the distribution of marker effects. These 
methods are superior to GBLUP if the true distribution of marker 
effects deviates from the normal distribution. In this case, the 
model provides the highest accuracy whose prior assumptions 
match the genetic architecture of the trait best. Usually, MCMC 
algorithms are used to obtain the posterior means of the marker 
effects, which results in long computation times. The direct 
genomic values obtained from these models can then be blended 
with BLUP breeding values. Alternatively, genomically enhanced 
breeding values could be obtained directly with a Bayesian 
single-step method (Lee et al., 2017).

Discussion: While breeding programs use traditionally 
only genealogical information, the incorporation of genomic 
information enables to increase the reliability of breeding values 
of selection candidates at a young age. Unlike BLUP breeding 
values, genomic breeding values account for the Mendelian 
sampling term component of the breeding values of young 
animals, which enables selection within young full-sib families. 
This enables to reduce the generation interval and reduces the 
cost of breeding programs if progeny testing can be omitted 
(Schaeffer, 2006). It also enables to increase the selection 
intensity by large-scale genotyping and by the intense use of 
embryo transfer for young superior females. The latter has great 
potential to increase the selection intensity for some species 
because reliable genomic breeding values can be computed even 
for embryos. These factors reduce the generation interval and 
enable to achieve more genetic gain per generation at the same 
rate of inbreeding (Daetwyler et al., 2007).

As a typical quantitative trait is affected by many quantitative 
trait loci (QTL) with small effects (Mackay et al., 2009; Wellmann 
and Bennewitz, 2011a), QTL frequencies increase only slowly by 
artificial selection and many QTL already existed in the species 
at low frequencies before breed separation (Kemper et al., 2015). 
Most QTL are expected to show little interactions with the genetic 
background because sire by breed interactions are also small for 
most traits (Goddard et al., 2015). Phenotypes and genotypes 
from other breeds could therefore provide valuable information 
that could be used to increase the accuracies of genomic breeding 
values for the breed of interest.

As the LDs between QTL and non-adjacent markers in 
different breeds are different, high-density genotypes or even 
imputed whole-genome sequences are needed to take advantage 
of genomic data from other breeds. In this case, the number 
of markers is much larger than the number of QTL, so most 
marker effects are actually zero. As most true SNP effects are 
zero, a Bayesian SNP model would ideally be used that makes 
this prior assumption. The true distribution of an SNP effect 
depends on the type of control region to which the SNP belongs. 
Typical control regions are promoters, enhancers, insulators, 
and the genes themselves. Consequently, a Bayesian model 
for across-breed genomic prediction should be able to assume 
different distributions of SNP effects for different types of control 
region. One such model is BayesRC (MacLeod et al., 2016). 
This type of Bayesian model in combination with large-scale 
genotyping of females and across-breed genomic prediction is 
the recommended approach for small breeds (Hozé et al., 2014; 
Iheshiulor et al., 2016). Unfortunately, computation time is an 
issue for BayesRC and the software is currently unable to account 
for phenotypes of genotyped and non-genotyped individuals in 
a single evaluation, so the genomic breeding values need to be 
blended with BLUP breeding values.

As blending does not combine the different sources of 
information in an optimal way, a single-step evaluation may be 
advantageous. However, single-step evaluations usually do not 
take data from other breeds into account, so one has to carefully 
consider whether the gain in accuracy that arises from combining 
different information sources in an optimal way outweighs the 
loss of accuracy that arises from evaluating only a single breed. 
Whether or not data from other breeds is needed for genomic 
prediction depends on the population size. Large populations 
enable accurate predictions of genomic breeding values with 
GBLUP or ssGBLUP without data from other breeds if the 
relationships between phenotyped and genotyped individuals in 
the reference population and the selection candidates are high, 
the average relationship within the reference population is low 
(Pszczola et al., 2012), and the size of the reference population 
is large (Hayes et al., 2009b). For large breeds, the method of 
choice for estimating breeding values is therefore ssGBLUP. As 
this model is able to use geneological information and genotype 
information simultaneously, the accuracies of ssGBLUP and 
improvements thereof are usually at least as high as for any 
other method (Legarra et al., 2014). Exceptions are traits that 
are predominantly affected by few QTL with large effect (Lee 
et al., 2017), in which case direct genomic values are more 
appropriately estimated by a Bayesian SNP method or a Bayesian 
single-step method.

Mendelian Sampling Variance
The breeding value BVk of offspring k from sire i and dam j equals

BV MD MDk ij i j= + +µ ,

where µij
i j=

+BV BV
2  is his a priori expected breeding value, 

and MDi is the random deviation from the mean that is caused 
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by parent i. As maternal and paternal alleles are transmitted 
independently to the offspring, the variance of his breeding 
value BVk can be decomposed as σ ij i j

2 = =MV MV , where the 
variance MVi = var(MDi) of the Mendelian sampling deviation 
MDi is called the Mendelian sampling variance in the offspring of 
individual i. The Mendelian sampling variance is thus responsible 
for the genetic variability among full sibs. Offspring of individuals 
that cause a high Mendelian sampling variance has less uniform 
breeding values, so the probability is larger that at least one of 
them is a top-ranking individual, which qualifies for broad use as 
an elite sire or dam. Consequently, individuals should be favored 
for breeding that have not only a high breeding value BVi but also 
cause a high Mendelian sampling variance MVi.

The Mendelian sampling variance in the offspring of individual 
i equals

MVi =








∑var ,h aim m

m

where hi is the vector with the alleles of a randomly chosen 
gamete that is generated from both haplotypes of individual i. As 
alleles him and himʹ at adjacent QTN m and mʹ are not transmitted 
independently, Mendelian sampling variances are affected by 
linkage. Furthermore, him is only random, when individual i is 
heterozygous at QTN m, so individuals with high heterozygosity 
cause higher Mendelian sampling variances. Thus, individual 
differences in the Mendelian sampling variances arise from 
linkage and from individual differences in the inbreeding level.

Estimates: The Mendelian sampling variance in the offspring 
of individual i can be estimated from his pedigree as

MV i = −V FA
i4

1( )

where VA is the additive variance in the base population and Fi is the 
inbreeding coefficient (Foulley and Chevalet, 1981; Dempfle, 1990). 
Note that the additive variance σ At A tV F2 1= −( ) of the current 
population is smaller than VA because the mean inbreeding Ft in 
the current population reduces the additive variance. This estimate 
of MVi accounts for the fact that inbred individuals have lower 
heterozygosity, so all gametes produced by them are similar.

Genomic selection enables to obtain more accurate estimates 
that account not only for inbreeding but also for linkage. Estimates 
of Mendelian sampling variances can be obtained by simulating 
gametes (Segelke et al., 2014) or by a prediction formula such as

MV ,i


i
T= Ωa a

where Ωi = var(hi) is the covariance matrix of the genotypes of 
the gametes that are produced by individual i, and a is the vector 
with allele substitution effects (Bonk et al., 2016).

Discussion: To increase response to selection and the 
probability of breeding a top-ranking individual, breeders aim 
to arrange matings that produce offspring with high breeding 

values. The breeding value of the offspring should surpass the 
average breeding value BVt g

s
+  of his competitors at the time 

t + g when he could be used for breeding. The competitors of the 
offspring are the future breeding individuals of the same sex s. 
The optimal way to account for Mendelian sampling variances 
in mate allocation depends therefore on the desired sex s of the 
offspring. As sexed semen is available for many species, matings 
with female offspring and matings with male offspring can 
indeed be planned independent from each other.

The estimate BVt g
s

+  can be obtained by extrapolating the 
historic development of the average breeding values of breeding 
males or females in the future, whereby the time g that passes 
until the offspring could be used for breeding depends on his sex 
and equals approximately the generation interval.

According to this breeding strategy, matings would be 
arranged such that sire i is chosen for dam j if the breeding value 
BVk of his offspring k surpasses the threshold value BVt g

s
+  with 

the highest probability.
The goal is thus to arrange matings for which the offspring 

k maximizes

P Fk t g
s t g

s

ij

ij

(BV ) ,> = −
−









+

+
BV

BV
1

2

µ

σ

where F is the standardized cumulative distribution function. The 
above formula shows that the probability to produce a superior 
offspring is monotonically increasing in

 

Iij
ij t g

s

ij

=
− +µ

σ

BV
2

,  (1)

so the above approach is equivalent to selecting the male i for 
dam j that maximizes Iij.

To make selection decisions for males and females independent 
from each other, the values μij and σ ij

2  in the above formula can be 
replaced by their average values, whereby the averages are taken 
over all individuals from the opposite sex. If selection candidate 

i is a male, then the average values are µio
i t

f

= +BV BV
2  and 

σ σ
io i

At2
2

4
= +MV , respectively, where BVt

f
 is the current average 

breeding value of potential dams. This provides the index

Iio
io t g

s

io

= − +µ

σ

BV
2

,

on which the selection of breeding males could be based. The 
formula shows that a high Mendelian sampling variance is 
advantageous if the expected breeding value of the offspring μio is 
smaller than the threshold value BVt g

s
+ , but it is disadvantageous 

if μio is larger than the threshold value. The reason is as follows. 
If the expected breeding value μio is higher than the threshold, 
then the realized breeding value BVk is more likely also above the 
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threshold if it deviates little from the expected value. In contrast, 
if the expected breeding value μio is lower than the threshold, 
then the realized breeding value BVk is more likely above the 
threshold if it deviates much from the expected value.

An index may be advantageous that gives the same weight to 
the Mendelian sampling variance, no matter what the expected 
breeding value μio of the offspring is. Such an index can be 
obtained by approximating Iio with a function that is linear in 
μio and σio. As shown in the Supplementary Material, the linear 
approximation of index Iio in the vicinity of the average values for 
μio and σio is a monotone function of

 
Ii i s i

At= + +BV λ σ2
2

2

MV ,  (2)

where the weight λs depends on the desired sex s of the offspring. 
It can be computed as

λ
σs

s s

At

G S= ±2∆ ∆ ,

where ∆Gs is the expected genetic gain for total merit in the 
next generation (i.e. within g years) and ∆Ss is the difference 
between the average breeding values of sires and dams that 
are eligible as parents of individuals with sex s. The value ∆Ss 
is added when a male offspring is desired and subtracted for 
female offspring. As the selection intensity for males is typically 
higher than the selection intensity for females, ∆Ss is positive. 
Consequently, accounting for the Mendelian sampling variance 
is more important for producing superior male offspring than for 
producing superior female offspring.

It can be seen by simulating values for BVi and MVi that the 
variance of the first term in Equation 2 is much larger than the 
variance of the second term. This shows that the Mendelian 
sampling variance is of minor importance in a breeding program. 
However, in a population under selection, the variance of BVi is 
reduced by the Bulmer effect (Bulmer, 1971), and it is further 
reduced because only individuals are taken into consideration 
that seem eligible as parents because of their high breeding values. 
The Mendelian sampling variance is not affected by the Bulmer 
effect (Van Grevenhof et al., 2012), so the high ∆Gs in populations 
under strong selection causes the variance of the second term 
to increase. All these factors increase the relative importance of 
the Mendelian sampling variance for populations under strong 
selection, especially for breeders that aim to breed top-ranking 
individuals. It can thus be recommended to base selection 
decisions for breeding males on the index Iio or on the index Ii.

Bijma et al. (2018) proposed to select individuals for breeding 
based on the alternative but similar index

I xi i p i= +BV 2MV ,

which showed good performance in a simulation study. Here, 
xp is the standardized truncation point belonging to the selected 
proportion p.

Mutational Effects
The mutational effect am of QTN m is the average effect on 
the genotypic value of substituting a “wild-type” allele that is 
randomly chosen from the population by the mutant allele. 
Knowledge of mutational effects is useful not only to improve 
estimates of genomic breeding values and Mendelian sampling 
variances but also for genome management. The aim of genome 
management is to repair deleterious mutations and introduce 
advantageous mutations into the population by genome editing.

Estimates: As livestock breeds have been selected for a long 
time, most QTNs that affect the selected traits have already 
been fixed, are pleiotropic, or have small effects. Hence, the 
QTNs segregating in the population predominantly have small 
effects that are difficult to detect. Establishing a pipeline for the 
discovery of causal QTN and for estimating their effects is an 
active area of research (Hickey et al., 2016).

Mutational effects can be estimated from multi-breed 
sequence data with a Bayesian method such as BayesRC 
(MacLeod et al., 2016). However, as QTN effects are typically 
small, and the effective sizes of single breeds are low, the 
accuracy of the estimates and the mapping precision may not be 
sufficient. The accuracy and mapping precision can be increased 
by accounting for prior knowledge about the probability that 
particular mutations are deleterious or advantageous. Most 
novel mutations are neutral or deleterious (Eyre-Walker and 
Keightley, 2007). The probability that a particular mutation is 
deleterious can be estimated from the conservation scores of 
the SNPs, from the type of control region an SNP belongs to as 
indicated, for example, by histone modifications (Huang et al., 
2017), from the age of the mutation and the probability for 
deleterious mutations to have been purged (Leberg and Firmin, 
2008), and from a lack of homozygous individuals (Pausch et al., 
2015; Derks et al., 2017).

Further methods for the estimation of QTN effects include 
testing mutations in a cell line with massively parallel reporter 
assays (Melnikov et al., 2012) and the prediction of mutational 
effects with deep neural networks (Paggi et al., 2017). This also 
enables the discovery of novel mutations that would increase 
total merit even more than the SNPs that are segregating in the 
population. A further method to improve upon the segregating 
mutations is phage-assisted continuous evolution (Lane and 
Seelig, 2014).

Discussion: Knowledge about mutational effects can be used 
for the estimation of genomic breeding values for genetic load 
and for conventional traits, but it can also be used to repair 
deleterious mutations and propagate advantageous mutations 
by genome editing. The development of low-cost multiplexed 
edits in zygotes makes genome editing affordable (Qin et al., 
2015). Changing specific nucleotides in the genomes of germ-
line cells by genome editing has shown to have great potential to 
increase genetic gain in livestock. For example, turning 20 QTN 
for the top 10 sires into the advantageous alleles per generation 
could almost double genetic gain in a simulation study (Jenko 
et al., 2015). This requires, however, that the causal QTN can 
be identified (Simianer et al., 2018). The methods mentioned 
above may not only be able to find the causal mutations but 
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also may even improve upon the mutations segregating in the 
population, in which case genetic gain would increase even more 
than predicted (Jenko et al., 2015). However, editings that had 
been predicted to be advantageous may in fact be deleterious 
in some cases. Therefore, testing them in the heterozygous and 
homozygous states in living animals, and undoing edits that 
turned out to be deleterious, needs to be part of this breeding 
strategy. Further research is needed to improve upon the existing 
methods for QTN detection.

MANAGING GENETIC DIVERSITY

Domestic species need to adapt to the requirements that arise 
from changes in political and economic framework conditions, 
climate change, changes in consumer preferences, and disease 
dissemination. Genetic diversity enables a species to adapt 
to these changes. The genetic diversity of a domestic species 
depends on the diversity of the gene pool of each breed and on 
the overlap between the gene pools of different breeds. Of interest 
for population management are therefore the genetic diversity 
of the target breed and a measure for the part of its gene pool 
that does not overlap with other breeds. This non-overlapping 
part is a reservoir for advantageous mutations that could be 
detected and brought into other breeds by genome editing or 
conventional breeding methods. It can be measured by the FGE 
that is contributed by the target breed to the gene pool of the 
species. A high contribution ensures genetic uniqueness of the 
breed and keeps it a valuable resource for the detection of rare 
advantageous alleles.

The genetic diversity of many breeds is threatened because 
high genetic gain was realized by a too high selection intensity. In 
a population with high selection intensity, only a few individuals 
are used as parents of the next generation, which results in a 
low effective population size Ne. The sampling of individuals for 
breeding and the random transmission of alleles from parents 
to the offspring cause random allele frequency changes from 
one generation to the next. This genetic drift leads to the loss of 
segregating alleles and thus to the loss of genetic diversity. The 
realization of genetic gain and the maintenance of high genetic 
diversity are therefore conflicting breeding goals.

The loss of genetic diversity that is observed in many breeds 
not only reduces their potential to adapt to changes in their 
environments and reduces selection response in the long term but 
also causes the homozygosity of the individuals to increase. The 
increased homozygosity increases the probability that recessive 
deleterious alleles are homozygous, in which case they have 
an effect on the phenotype. Deleterious mutations outnumber 
advantageous mutations and loss-of-function alleles are usually 
recessive, so the overall effect of an increased homozygosity on 
the phenotype is deleterious. The increased homozygosity causes 
the fitness and fertility of the breed to decrease, which may also 
cause a decrease in performance. The decrease in fitness, fertility, 
and performance that is associated with an increased level of 
inbreeding is called inbreeding depression.

Consequently, breeding programs need to control the genetic 
diversity of the breed to enable response to selection in the long 

term and to enable breeders to avoid inbreeding depression. 
Genetic diversity can be controlled by selecting individuals with 
rare haplotype segments for breeding, which are the individuals 
that have a small average kinship with the population. The 
genetic diversity of a population can therefore be managed by 
maintaining a small average kinship between the individuals. 
The target parameters for population management that enable 
to control genetic diversity are therefore the kinships between 
individuals and the FGE that is contributed by the breed to the 
gene pool of the species. The notions of kinship and FGE both 
rely on the concept of identical by descent (IBD).

Concept of IBD
The concept of IBD was established by Malécot (1948) and 
applied to pedigree data, which is a special case of the general 
concept described in this section. Two alleles from the same locus 
are said to be IBD if they descend from the same haplotype of a 
common ancestor who fulfills specific criteria. Different notions 
of IBD arise depending on the criterion that needs to be fulfilled 
by the common ancestor. The imposed criterion could be

(i) The common ancestor belongs to a predefined set of 
individuals, or

(ii) The ancestral allele and the alleles of interest belong to 
identical haplotype segments, or

(iii) The allele did not mutate in the genetic lineages from 
the ancestor to the descendants.

Genetic parameters that rely on the concept of IBD refer 
to a base population. The base population is assumed to be 
placed so far back in time that any population structure in the 
base population is negligible for the current population. That 
is, all founders, i.e. all individuals from the base population, 
can assumed to be equally related. The base population has the 
property that individuals that lived earlier contribute little to the 
estimates. Hence, a common ancestor of two individuals from 
the current population can be considered older than the base 
population if an allele that was transmitted from the ancestor 
to both individuals via separate paths is not likely to satisfy the 
criterion for being IBD in the descendants. This approach enables 
to define the age of the base population for all notions of IBD. 
As all individuals from the base population are assumed to be 
equally related, the allele frequencies in the base population are 
the actual allele frequencies of a population in which all founder 
alleles have an equal probability for being IBD. The different 
criteria that could be imposed for IBD alleles are discussed in 
detail below.

Criterion (i): When pedigrees are used to estimate genetic 
parameters, then a base population is defined as the set of all 
founders, which are the individuals with unknown parents. As 
the alleles of the founders are assumed to be pairwise different, 
two alleles are IBD if they originate from the same founder 
allele. The base population is in this case only several decades 
in the past.

Criterion (ii): When marker data is used for estimating 
genetic parameters, then the concept of IBD is usually based 
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on haplotype segments. Two alleles of an individual belong to 
the same haplotype if they are inherited from the same parent. 
Thus, the genome Hi = {mi, pi} of each individual i consists of two 
haplotypes, a maternal haplotype mi and a paternal haplotype 
pi. The identification of these haplotypes requires to phase the 
marker data. The alleles at each position are assumed to be 
bi-allelic and could be coded as 0 or 1 depending on whether the 
wild-type allele or the alternative allele is present. In this context, 
two alleles from the same locus chosen from two haplotypes 
are IBD if they are contained in identical haplotype segments. 
The segments in which two haplotypes coincide are called IBD 
segments or runs of homozygosity (ROH; Peripolli et al., 2016). 
For two haplotypes h1, and h2, we denote the set of markers that 
are contained in IBD segments as IBD(h1, h2).

Segments in which two haplotypes coincide are inherited 
from a common ancestor, whereby long haplotype segments 
predominantly originate from recent common ancestors. In general, 
g generations after the base population has been established, the 
length of single-path IBD segments is approximately exponentially 

distributed with a mean of 
100
2g  cM (Browning, 2008). Thus, 

when only IBD segments with a length of at least m cM are taken 
into account, the base population can assumed to be about 100

2m
 

generations in the past. However, as the length of IBD segments 
is random, some IBD segments are even older, whereas others are 
younger, but are already too short for being captured.

Haplotype segments are usually determined from marker 
data, which cover the whole genome but do not include all 
base pairs. Therefore, IBD segments are required to contain a 
minimum number of markers to ensure that the marker alleles 
do not coincide by chance. The number of markers required to 
ensure that two segments with identical marker alleles are IBD 
depends on the distribution of allele frequencies and is often 
considered to be 20 (Peripolli et al., 2016).

If the base population should be located g generations in the 
past, then segments of length 100

2g
cM need to be detectable. 

As segments are required to contain at least 20 markers, this is 
ensured if the minimum distance between adjacent markers is 
100
40g

cM. For example, the genome size in cattle is 32.5 Morgan 

with 1.25 cM/Mb (Arias et al., 2009). If the base population is 
located g = 20 generations in the past, then segments of length 
100
2

2 5
g

= . cM need to be detectable, which equals approximately 

2.0 Mb. This requires a marker distance of 100
40

0 125
g

= . cM. If 

the markers from the marker panel are exactly equally spaced, 

then this requires at least a 32 5
0 01 0 125

26.
. .⋅

= K marker panel. As 
the markers in the bovine marker panels are not exactly equally 
spaced, a 50K panel would be appropriate. This is in accordance 
with the study of Ferenčaković et  al. (2013), who showed that 
the  accuracy of detection is insufficient with the 50K marker 
panel for segments shorter than 2 Mb but high for segments 
longer than 4 MB.

Criterion (iii): If the criterion for IBD is that no mutation has 
occurred, then IBD alleles are also said to be identical by state 
(IBS). It can easily be calculated from the low mutation rate in 
mammals that the base population is located in this case several 
million years in the past. As all other criteria of IBD assume a 
much more recent base population, IBS alleles are not necessarily 
IBD with respect to other notions of IBD. According to Gómez-
Romano et al. (2013), a minimum marker density of 3Ne SNP/
Morgan is required to get IBS estimates that are sufficiently 
accurate for practical purposes.

Kinships
An important aspect of any animal breeding program is the 
avoidance of inbreeding depression. Inbreeding depression is, on 
average, proportional to the expected inbreeding coefficient of 
the individual, which is equal to the kinship of its parents. The 
kinship of two individuals i, j is defined as the probability that 
two alleles Xi,Yj, randomly chosen from the same locus from both 
individuals, are IBD (Malécot, 1948; Caballero and Toro, 2000). 
That is,

f i j P X Yi jIBD

IBD
( , ) ( )= =

Keeping the mean kinship f
tIBD  of the population low is often 

achieved by restricting its rate of increase per generation ∆fg. For 
populations that have undergone serious genetic bottlenecks, 
an alternative approach aims to increase the genetic diversity 
Div IBDt f

t
= −1  of the population, whereby the expected genetic 

gain for the genetic diversity between time t and t + 1

∆Div IBD IBDt f E f
t t

= −
+

( )
1

is negative for most populations because rare alleles get lost 
due to random genetic drift. However, the effect of historic 
genetic drift could partly be reversed in a breeding program 
or allele frequencies could be equalized, which both causes the 
genetic diversity to increase. The current mean kinship of the 
population is

 f
t t

T
t tIBD = v f v ,  (3)

where ft is the matrix with pairwise kinships of the individuals 
from the population. The expected mean kinship of the 
population at time t + 1 is

 E f r l
t t

T
t t( ) ( ) ( ) ( ),IBD IBD+

= ++ +1 0 1 0 1c + v f c + v cr  (4)

where lIBD(c) is the linear correction term defined in the 
Supplementary Material. The purpose of the correction 
term can easily be seen by inspecting the following formula 
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for the expected mean kinship in a population with non- 
overlapping generations:

E f d
Nt

T
t

T
t

IBD +
+( ) = −

1

1
2

c f c c f( )

Here, vector d(ft) contains the self-kinships, which are the 
diagonal elements of matrix ft, and N is the population size 
(Wellmann and Pfeiffer, 2009). The summand cTftc accounts for 
the redistribution of allele frequencies in accordance with the 
contributions of the selection candidates. The right summand 
causes an additional increase of the mean kinship, which arises 
from the random Mendelian sampling of the alleles that are 
passed to the offspring. This additional increase results from 
allele frequency changes due to random genetic drift. The right 
term vanishes for highly inbred parents because individuals that 
carry the same alleles at both haplotypes pass always the same 
alleles to their offspring. Hence, minimizing the mean kinship in 
the population favors the use of inbred individuals for breeding. 
The same has been observed for breeding programs that aim to 
maximize the variance of the genotypic values (Cervantes and 
Meuwissen, 2011). This is, however, not a desirable feature of a 
breeding program because inbred individuals tend to suffer from 
inbreeding depression and a high Mendelian sampling variance 
is considered desirable for breeding programs that select for 
total merit. Therefore, instead of using the above formula, the 
summand on the right-hand side is usually neglected for making 
selection decisions, e.g. by replacing the vector c in the right 
summand by a vector with uniform contributions.

Estimates: The pedigree-based kinship estimate fPED(i, j) of 
individuals i, j, which is also called their genealogical coancestry, 
was used in animal breeding since Cotterman (1940) and 
Malécot (1948) generalized Wright’s coefficient of inbreeding. 
The kinship is defined with respect to a base population in which 
all individuals are assumed to be unrelated and non-inbred. The 
individuals from the base population are called founders, so 
fPED(k, k) = 0.5 and fPED(k, l) = 0 for all founders k, l. The kinship 
estimates of descendants i, j are obtained as

f i i f d

f i j f

i iPED PED

PED PED

( , ) ( (s , )),

( , ) (

= +

=

1
2

1

1
2

((s , ) ( , )),i ij f d j+ PED

where si is the sire and di is the dam of individual i (Boyce, 1983). 
Although the pedigree-based kinship is the expected proportion 
of IBD alleles, the true proportion deviates from this value due 
to the random transmission of alleles in the genetic lineages 
from the founders to the individuals of interest. This results in an 
estimation error that can be avoided when kinships are estimated 
from marker data.

Nejati-Javaremi et al. (1997) defined a marker-based estimate 
by applying the definition of Malécot (1948) to genetic markers. 
This estimate, which is now called the molecular kinship fMOL(i, j) 
between individuals i and j, is the probability that two marker 

alleles, taken at random from both individuals, are equal. The 
molecular kinship has the disadvantages that the selection of 
subpopulations for SNP discovery and the preselection of markers 
for inclusion in the marker panel could cause an ascertainment 
bias and that the estimates are not directly comparable to pedigree-
based estimates because the ages of the base populations differ. 
Although the ascertainment bias can be diminished by LD-based 
pruning (Malomane et al., 2018), this kinship estimate has further 
important disadvantages, which are discussed below.

Another parameter frequently used as a kinship estimate is the 
covariance of genomic breeding values. According to Method 1 
of VanRaden (2008), the covariance of the genomic breeding 
values of individuals i and j is

G
p p

x p x pij
m m m

im m jm m
m

=
−

− −∑1
2 1

2 2
Σ ( )

( )( ),

where xim ∈ {0, 1, 2} is the number of copies of the alternative 
allele carried by individual i at SNP m, and pm is the frequency of 
the alternative allele in the base population. The covariance Gij is 
a popular kinship estimate because it is easy to compute when the 
allele frequencies in the base population are known. Moreover, 

E Gij
1
2





  equals the pedigree-based kinship when the genotypes 

are considered random, and the base population is placed far 
enough back in time so that any population structure of the base 
population can be neglected (Habier et al., 2007).

The most useful marker-based kinship estimate seems to be the 
segment-based kinship between individuals i and j, which equals the 
probability that two alleles, taken at random from both individuals 
from the same locus, belong to identical haplotype segments. We 
assign a genomic window of length Lm to each marker m from the 
marker set   and define the segment-based kinship dependent 
on a subset M ⊂  of markers, which represents a particular part 
of the genome. This enables to compute different kinship estimates 
for different parts of the genome. This approach was popularized by 
Gómez-Romano et al. (2016) as it enables to control the inbreeding 
level differently at different genome parts.

The set IBD(h1, h2) consists of all markers from shared 
segments of haplotypes h1 and h2, so the proportion of genome 
part M for which the two haplotypes are IBD is

f M

L

L

m

m M

m

m M

SEG
IBD( , ; ) .( , )h h h h

1 2
1 2= ∈ ∩

∈

∑
∑

This value is called the segment-based kinship between 
haplotypes h1 and h2 at genome part M. The average segment-based 
kinship between two haplotype sets 1  and 2  at genome part M is

f M f MSEG SEG( , ; )
| || |

( , ; ), 
 



1 2
1 2

1 2
1

1 1 2

=
∈

∑
h h

h h
∈∈

∑
2
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where | |1  is the number of haplotypes in set 1. The segment-
based kinship fSEG(i, j) between two individuals i and j is the 
average kinship between their haplotype sets Hi and Hj, so

f i j f H Hi jSEG SEG( , ) ( , ; ).= 

This definition coincides with the definition of de Cara 
et  al. (2013a). The segment-based kinship is thus the expected 
proportion of cases for which two randomly chosen alleles, one 
from each individual, belong to identical segments. The ROH-
based inbreeding coefficient of individual i

F i f
SEG i iSEG

( ) ( , ; )= p m 

is the proportion of its genome for which the paternal haplotype 
pi and the maternal haplotype mi are IBD. Calculating the 
segment-based kinship requires phased genotypes, which can 
be obtained, for example, with Beagle (Browning and Browning, 
2007). In contrast, calculating the ROH-based inbreeding 
coefficients does not require phased genotypes. As shown in the 
previous section, estimates of genetic parameters refer to a base 
population if the notion of IBD is based on shared segments, 
which is the case for the segment-based kinship. The age of 
the base population depends on the minimum length of IBD 
segments. The length needs to be sufficiently low such that any 
population structure in the base population can be neglected. 
This is of particular importance for multi-breed evaluations, in 
which case the base population needs to be placed before breed 
formation. This requires to capture short IBD segments for 
which high-density marker data are needed. As the individuals 
in a base population are assumed to be unrelated, minimizing 
the segment-based kinship aims to re-establish the allele 
frequencies of the base population.

Minimizing the segment-based kinship or the covariance of 
genomic breeding values aims to reverse random genetic drift. 
This means in the absence of selection to re-establish the allele 
frequencies from the base population, which also drives the 
frequencies of recessive deleterious alleles toward their historic 
low values and thus increases fitness. In contrast, minimizing the 
molecular kinship aims to drive the alleles toward intermediate 
frequencies, which also drives the frequencies of recessive 
deleterious alleles toward intermediate values. This increases the 
probability that recessive deleterious alleles are homozygous and 
thus reduces fitness (de Cara et al., 2013a). Managing the molecular 
kinship of a population cannot therefore be recommended, 
except for breeding programs that simultaneously purge genetic 
load. In principle, the segment-based kinship and the covariance 
of genomic breeding values could both be used to re-establish the 
allele frequencies of the base population. However, these allele 
frequencies are usually unknown, which is a problem because 
they are required to compute the covariance Gij of the genomic 
breeding values. Using the actual allele frequencies instead is not 
an alternative because the historic allele frequencies would not be 
re-established in this case. This makes the covariance of genomic 
breeding values unsuitable as a kinship estimate, which is also 

confirmed by Henryon et al. (2018). Additional reasons are that 
the preselection of markers for inclusion in the marker panel 
could cause an ascertainment bias and that the covariances may 
not estimate the true kinship with sufficient accuracy. Indeed, 
the correlations between pedigree-based inbreeding coefficients 
and inbreeding coefficients obtained from genomic covariances 
are usually lower than their correlations with the ROH-based 
inbreeding coefficients. When the genomic covariance matrix 
is defined by Method 2 of VanRaden, then the correlations are 
sometimes close to zero (Zhang et al., 2015). The recommended 
kinship estimate for genotyped individuals is therefore the 
segment-based kinship.

The kinship estimates can be used to compute the mean 
kinship of the current population with Formula 3 or with the 
alternative formula given in the Supplementary Material, which 
accounts for different sources of bias. Formula 4 overestimates the 
average kinship of the population at time t + 1 slightly if segment-
based estimates are inserted. This is because recombination 
breaks haplotype segments into smaller pieces until they are so 
short that they no longer contribute to the kinship estimates. 
This problem could be circumvented by reducing the minimum 
permissible length of a segment annually, so that the time at 
which the base population lived remains constant. Moreover, 
in a population under strong selection, the increase in kinship 
may be larger than predicted due to the directed changes in allele 
frequencies resulting from selection (De Beukelaer et al., 2017).

Discussion: As the expected inbreeding coefficient of 
offspring k equals the kinship between its sire sk and dam dk, i.e.

E F k f s dk k( ( )) ( , ),IBD IBD=

an important decision for any breeding program is whether 
related or unrelated individuals should be mated.

The rationales between mating related individuals are first that 
the increased homozygosity of the offspring exposes recessive 
deleterious alleles to selection, which enables to exclude carriers of 
these alleles from breeding and thus purges genetic load. Second, 
the offspring are more uniform than the offspring of unrelated 
parents, which makes their genotypes more predictable and thus 
enables breeders to establish uniform herds. Third, this approach 
enables breeders to use non-additive genetic variance. Fourth, 
mating of related parents eventually causes the population to split 
into several subpopulations, which eventually leads to the fixation 
of different alleles in the different subpopulations. This approach 
in combination with an equalization of family sizes is therefore 
the most effective way to conserve genetic diversity, provided that 
the subpopulations do not go extinct because of reduced fitness 
(Kimura and Crow., 1963; Cervantes et al., 2016). In most breeds, 
however, inbreeding depression is due to the cumulative effect of 
many deleterious alleles, which makes purging of genetic load 
unfeasible. Exposing carriers of deleterious alleles to selection by 
mating related individuals cannot therefore be recommended as 
a breeding strategy (Boakes et al., 2007; de Cara et al., 2013b).

An alternative approach is to facilitate the mating of unrelated 
individuals. The rationales behind this approach are first that the 
increased heterozygosity causes the offspring to suffer less from 
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inbreeding depression. Second, the offspring would have progeny 
with less uniform breeding values, which could make him more 
suitable as a parent of top-ranking individuals. Third, this 
approach keeps the population unstructured, which also keeps 
the number of potential mating partners for each individual 
high. This is therefore the recommended approach for breeding 
programs that aim to achieve high genetic gain.

The mating of related individuals can only be avoided if the 
mean kinship of the population is low. This is not the case for 
breeds that have undergone serious genetic bottlenecks, so the 
mean kinship of such breeds needs to be reduced, which can be 
achieved by minimizing the average segment-based kinship of 
the population and by genetic introgression. For all other breeds, 
it may be sufficient to restrict the rate of increase of the mean 
kinship. The rate of increase in mean kinship per generation 
∆fg determines the effective population size Ne via the formula 

∆f
Ng

e
= 1

2
. It is therefore common to restrict the increase in mean 

kinship in accordance with the desired effective size Ne. In the 
literature, there seems to be a consensus that a population with an 
effective size between 50 and 100 is long-term viable (Meuwissen, 
2009). Usually, Ne = 100 is recommended to be on the safe side. 
A population maintains an effective size of at least Ne if the rate 

of increase in mean kinship per generation ∆fg is at most 
1

2Ne
. 

Hence, for a population with generation interval L, the kinship of 
the population at time t + 1 should satisfy

E f f
Nt t

e

t t
L

IBD IBD+ ′( ) ≤ − −( ) −






− ′+

1
1 1 1 1

2

1

(Woolliams et al., 2015), where tʹ is the time at which the breeding 
program started.

Founder Genome Equivalent
The genetic diversity of the species can be approximated by the 
genetic diversity of a hypothetical multi-breed population, which 
would ideally include all existing breeds. This multi-breed population 
is called the core set. The contributions of the breeds to the core set are 
chosen such that they simultaneously maximize its genetic diversity 
and minimize its average kinship (Eding and Meuwissen, 2001; 
Eding et al., 2002). The average kinship of the core set at time t is

f
t t

T
t tCORE = b f b ,

where matrix ft contains average kinships within and between 
breeds, and vector bt contains the breed proportions. Increasing 
the genetic diversity of the core set is equivalent to increasing its 
FGE, which is the minimum size of a gene pool that has the same 
genetic diversity as the core set. Such a gene pool would consist 
of unrelated genomes. As individuals with unrelated genomes are 
commonly called founders, this parameter is called the FGE of 
the core set. It can be computed as

FGE
CORE

t f
t

= 1
2

.

An important genetic parameter for a conservation program 
is the FGE that is contributed by the target breed to the gene pool 
of the core set, which is

conFGE FGE FGEtt t= − ∗.

Thereby, FGEt
∗  is the FGE of a multi-breed core set that does 

not include the target breed. The expected increase of the FGE 
that is contributed by the target breed to the core set between 
times t and t + 1 equals

∆conFGE FGE FGEt t tE≈ ( )+ 1 – ,

whereby equality holds if only the genomes of the target breed 
are managed.

Estimates: Estimating the FGE of the core set requires 
kinship estimates, which have been defined in a previous 
section. The kinship estimates need to refer to a base population 
that is placed before breed formation such that any population 
structure in the base population is negligible. This enables 
the kinship to capture relationships between different breeds 
that arose from common ancestors that lived before breed 
formation. Pedigree-based estimates are unsuitable because 
pedigree recording started after breed formation. Segment-
based estimates are suitable if they are calculated from a 
high-density marker panel. As shown in a previous section, 
the minimum length of a segment can then be chosen such 
that the base population has the desired age. The molecular 
kinship computed from whole-genome sequences refers to a 
base population that could be located millions of years in the 
past. To facilitate an interpretation of results obtained with this 
kinship, the estimates would need to be transformed such that 
they refer to a base population of appropriate age.

Discussion: A high increase in ∆conFGEt can be achieved 
by minimizing the expected kinship E f

tCORE +( )1
 of the core 

set at time t + 1. If only the target breed is managed, then 
this optimization problem is equivalent to minimizing the 
objective function

b E f b E fk kt t
( ) ( ) ( ),SEG REL+1 +1

+ −1 2

where the contribution bk of the target breed is a constant, 
and f

tREL +1
 is the average relatedness of the target breed with 

the core set (Wang et al., 2019). It can be seen from this 
formula that increasing ∆conFGEt by minimizing E f

tCORE +( )1
 

results in a decreased relatedness with other breeds and in an 
increased genetic diversity within the breed. If many breeds 
are included in the core set, then most of them have a small 
contribution to the core set. For these breeds, an increase 
of ∆conFGEt results primarily from a reduced average 
relatedness of the target breed with the core set. In contrast, 
for breeds with large contributions to the core set, genetic 
gain in ∆conFGEt primarily results from an increased genetic 
diversity of the breed.
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HANDLING INTROGRESSION

Limited genetic introgression and upgrading with mainstream 
breeds decrease the level of inbreeding and enable the 
introduction of advantageous alleles from other populations 
into the target breed. It can therefore be advisable to introduce a 
certain amount of foreign genetic material into the population to 
reduce inbreeding depression, to introduce unique advantageous 
alleles from other breeds, to increase genetic diversity, and to 
improve selection response.

Many local breeds, however, were upgraded with mainstream 
breeds for several decades. As the selection intensity in the 
local breeds was lower than the selection intensity in the 
mainstream breeds, the haplotypes from mainstream breeds 
that entered the local breed decades ago are now economically 
inferior to the current gene pool of the mainstream breeds. 
Consequently, upgrading led to sub-optimal performance 
compared to rotational crossbreeding systems in which the 
crossbred animals have the same amount of genetic material 
from mainstream breeds. This is reinforced by the fact that 
upgrading causes genetic material from these breeds to be 
eventually present in both parents of each individual, which 
causes a smaller heterosis effect than a rotation crossbreeding 
system. Long-term upgrading does not only lead to sub-optimal 
performance but also leads eventually to the genetic extinction 
of the local breed because the native genetic background 
becomes gradually replaced with haplotypes from mainstream 
breeds. As local breeds were adapted to the environments 
in which they evolved, the adaptive diversity of the species 
declines when they lose their native genetic background. An 
important breeding goal for a breed with historic introgression 
is therefore to recover the native genetic background or to avoid 
further introgression.

Whereas some breeding programs aim to recover the 
native genetic background of a breed, others aim to increase 
the amount of genetic material from other breeds to get 
rid of inbreeding depression. In both cases, the target of the 
breeding program is to reach an optimal value for the native 
contribution of the breed, which is the proportion of the gene 
pool that originates from native ancestors. As the native alleles 
are typically less diverse than the total gene pool of the breed, 
recovering the native genetic background of a breed increases 
the level of inbreeding. It is therefore necessary to control the 
kinship at native haplotype segments to ensure that enough 
genetic diversity remains in the population after the native 
genetic background has been recovered. The target parameters 
for handling introgression are therefore the native contributions 
and native kinships.

Native Alleles
A marker allele is native if it belongs to a haplotype segment 
that originates from a native ancestor, whereby an ancestor is 
considered native if he was an individual from the target breed 
and lived before a reference time t0. The reference time can 
be chosen in the midpoint between breed formation and the 

beginning of relevant introgression. We denote the set of native 
markers from a haplotype h as h

Estimates: Several methods exist for identifying the native 
parts of a haplotype. The appropriate method depends on 
whether gene flow between the target breed and other breeds was 
unidirectional or bidirectional.

If the direction of gene flow was unidirectional, then the 
approach of Wang et al. (2017b) can be used, which relies on 
the segment-based notion of IBD. It requires from each relevant 
breed b a haplotype sample b . The relevant breeds are the target 
breed and the breeds that might have been used for upgrading. 
As the lengths of IBD segments are used to determine their age, a 
minimum segment length m0 needs to be defined. It is chosen such 
that haplotype segments that entered the population before time 
t0 have now an average length smaller than m0, so m

g0
0

100
2

= cM, 

where g t t
L0

0= −
 is the number of generations that passed since 

time t0 (Browning, 2008). A haplotype h from the target breed is 
considered native at position m if the proportion of haplotypes 
with which h is IBD at position m is smaller than ϵ in all other 
breeds. This proportion equals

ˆ ( , ) ({ }, ;{ }),SEGf b f mm bh h= 

so m ∈h  if ˆ ( )f bm h, ≤   for all other breeds b. The threshold 
value є needs to be specified and may be chosen as ϵ = 0.01.

An alternative approach considers haplotype h at position m 
to be native for breed b’ if ˆ ( ) ˆ ( , )f b f bm mh, h′ ≥  for all other breeds 
b. This approach, which generalizes Method 2 of Bolormaa et al. 
(2011), can be used in the case of bidirectional gene flow. It leads, 
however, in some cases to wrong assignments. In particular, if 
breed bʹ has been upgraded for a long time with individuals from 
a specific subpopulation of another breed, then the haplotypes 
from that subpopulation may eventually be more frequent in 
breed bʹ than in the other breed, in which case the haplotypes 
would erroneously be identified as native for breed bʹ.

If no genotype data from other breeds are available, then a 
haplotype h could be considered native at position m if, for a 
window around marker m, the vector hm with gene contents 
deviates little from the vector with the average gene contents 
or if the vector hm can be assigned to the largest cluster. 
Although this approach has the advantage that no data from 
other breeds are required, it could lead to wrong results if the 
amount of introgression in the population is large or if the 
breeds that were used for upgrading are highly related with 
the target breed.

Various alternative methods for the identification of native 
haplotype segments have been developed in addition to the 
methods described above. Some were applied to identify ancestral 
introgression in humans, for example, by Racimo et al. (2015). 
Most of these methods, however, require genome sequences of 
unadmixed individuals, which are not yet available for most 
breeds with historic introgression. In the future, they could be 
obtained from skeletons of animals that lived in the 19th century 
or earlier.
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Native Kinship
The native kinship between two individuals i and j is their kinship 
at native alleles. In mathematical terms,

f i j X Y X Yi j i jIBD|N
IBD

( , ) ( | , )N= = ∈P 

is the conditional probability that two alleles Xi,Yj, randomly 
chosen from individuals i and j from the same locus are IBD 
given that they are native. Here, N  is the set of alleles from 
native founders, and Xi N∈  means that allele Xi is IBD with 
an allele of a native founder. As the native kinship is defined as 
a conditional probability, it can be expressed as a ratio of two 
probabilities:

f i j f i j
f i jIBD|N

IBD

N
( , ) ( , )

( , )
,&N=

where fIBD&N(i, j) is the probability that alleles Xi and Yj are both 
native and IBD, and fN(i, j) is the probability that alleles Xi and Yj 
are both native. We denote with fIBD&N and fN the matrices that 
contain the respective probabilities for all individuals from the 
current population.

Genetic recovery programs need to keep the average native 
kinship f

tIBD|N  of the population low or, equivalently, the native 
genetic diversity natDiv IBD|Nt f

t
= −1  high. The expected genetic 

gain for the native genetic diversity between time t and t + 1

∆natDiv IBD|N IBD|Nt f E f
t t

= − ( )+1

is negative for most populations because rare alleles get lost 
due to random genetic drift, but it can be positive for breeding 
programs that aim to reverse the historical genetic drift. The 
mean native kinship of the population at time t is

f
t

t
T

t

t
T

t
IBD|N

IBD N

N

= v f v
v f v

& ,

whereas the expected native kinship of the population at time 
t + 1 is

E f r r l
N

t
T

t
tIBD|

IBD&N IBD&N+
+( ) = + ++ +

1
0 1 0 1( ) ( )c v f c v (( )

+ N N

c
c v f c v c( ) ( ) ( )

.
r r lt

T
t0 1 0 1+ ++ +

The linear correction terms lIBD&N(c) and lN(c), which are defined 
in the Supplementary Material, account for random genetic 
drift and for potential sources of bias that can arise when the 
formulas are used for estimation purposes.

Estimates: An approach to estimate the native genetic 
diversity from pedigrees was proposed by Wellman et al. (2012), 
who showed for populations with discrete generations that an 

unbiased estimate of E (natDivt + 1) is obtained when the required 
matrices fN and fIBD&N are estimated from pedigree data as

 

ˆ ,

ˆ ˆ ,&N

f NC 1 1 NC 11 + f

f f f f

N

IBD N

= + −( )
= + −

1
2 t t

FM

M FM

T T T

where vector NCt contains the native contributions of the 
individuals, and matrices fM and fFM with

 

f i j P X Y X Y

f i j P X Y

M
i j N i j

FM
i j

( , ) ( , )

( , ) ( ,

= ∉ =

= ∉





or
IBD

NN i j NX Yor , )∈

are computed as shown by Wellman et al. (2012). A proof and an 
algorithm for computing these probabilities can also be found in 
the Supplementary Material. Inserting ˆ ( , )f i jN  and ˆ ( , )f i jIBD&N  
into Equation 7 provides the pedigree-based native kinship 
fPED|N(i, j) between individuals i and j.

More accurate estimates can be obtained from marker 
data. An estimate that relies on the segment-based notion of 
IBD was proposed by Wang et al. (2017a), in which case the 
estimates for fN(i, j) and fIBD&N(i, j) are obtained as follows. The 
proportion of genome part M for which haplotypes h1 and h2 
are both native is

ˆ ( , ; ) ,f M

L

L

m

m M N N

m

m M

N h h h h
1 2

1 2=
∈ ∩ ∩

∈

∑
∑

and the proportion of M for which both haplotypes are native 
and IBD is

ˆ ( , ; )f
m M ( , )

IBD&N
IBD

h h
h h h h

1 2
1 2 1 2M

L

L

m

m
m M

=
∈ ∩ ∩ ∩

∈

∑
 

∑∑

The required estimates for individuals i and j

ˆ ( , ) ˆ ( , ; )f i j f H Hi jN N= 

ˆ ( , ) ˆ ( , ; )f i j f H Hi jIBD&N IBD&N= 

are obtained as the average, taken over all pairs of haplotypes, 
whereby the haplotypes are chosen from the respective 
individuals. Inserting ˆ ( , )f i jN  and ˆ ( , )f i jIBD&N  into Equation 7 
provides the segment-based native kinship fSEG|N(i, j) between 
individuals i and j.
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Discussion: Although the primary objective of a genetic 
recovery program is to recover the native genetic background, 
the removal of foreign haplotype segments from the population 
may reduce the genetic diversity of the breed. It is important to 
ensure that enough genetic diversity remains in the breed after the 
foreign genetic material has been removed to avoid inbreeding 
depression and to enable future selection response. The mean 
native kinship tends to increase faster than the conventional 
kinship because only the purest animals would be used for 
breeding, which are likely to carry similar native alleles (Wang 
et al., 2017a). As the kinship and the native kinship become 
equal after the introgressed genetic material has been removed, 
and the native kinship increases faster in the first generations of 
selection, it is important to constrain the rate of increase of the 
native kinship, whereas constraining the conventional kinship is 
not required. Hence, the breeding program needs to ensure that 
the rate of increase of f

tIBD N|  is in accordance with the desired 
effective size Ne. To obtain an effective size of at least Ne for the 
native alleles, the average native kinship of the population at time 
t + 1 needs to satisfy

 
E f f

Nt t
e

t t
L

IBD|N IBD|N+ ′( ) ≤ − −( ) −






− ′+

1
1 1 1 1

2

1

.  (8)

Native Contributions
The native contribution of individual i is the proportion of its 
genome, which is native. It equals the probability

η( ) ( )i P Xi N= ∈
IBD


that an allele Xi, randomly chosen from the individual is IBD 
with an allele of a native ancestor. The expected increase of the 
native contribution between times t and t + 1 equals

η η ηt t+1 tE(= −)

where ηt  is the average native contribution in the population at 
time t. The desired value may be positive or negative depending 
on whether the native genetic background should be recovered, 
or the inbreeding level should be lowered by new introgression. 
The values can be calculated as

ηt = v t
T

tηη

and

E( rt+ 0 t+ tη 1 1+) ( )T= c v ηη

where ηt is the vector with native contributions of all individuals.

Estimates: The native contribution of an individual can easily 
be estimated from pedigree data. The pedigree-based native 
contribution of individual i

ηPED( ) ( , )i gc i j
j N

=
∈
∑



is the sum of the genetic contributions individual i has from 
native founders, where FN is the set of native founders. Thereby, 
the genetic contribution gc i j( , ) individual i has from ancestor j 
is the proportion of the genome of individual i that is contributed 
by ancestor j (James and McBride, 1958). Genetic contributions 
can be estimated from pedigree data as follows. The contribution 
individual i has from itself is gc i i( , ) = 1, and the contribution 
individual i has from ancestor j is

gc i j gc s j gc d ji i
  ( , ) ( , ) ( , ) .= +( )1

2

To be conservative, individuals with unknown pedigrees 
that were born after reference time are often not considered to 
be native. More precise estimates that account for Mendelian 
sampling can be obtained from marker data. As the native 
proportion of haplotype h at genome part M is

ηSEG( ; ) ,h hM

L

L

m
m M

m
m M

= ∈ ∩

∈

∑
∑



the native proportion of haplotype set  at genome part M is

η ηSEG( ; )
| |

( ; )




M M=
∈

∑1
SEG h

h

The segment-based native contribution of individual i is therefore

η ηSEG( ) ( ).SEGi = Hi ;

For recovering the native genetic background of a breed, native 
contributions estimated from pedigrees can only be used for a 
limited time-span. Thereafter, they must be replaced by marker-
based estimates. The reason is that the pedigree-based estimates 
are the expectations of the true native contributions. However, 
the true native contributions deviate from their expectations 
because alleles are transmitted at random from parents to 
offspring. When pedigree-based estimates are used, then the 
native contribution cannot be increased beyond the maximum 
value that is present in the population. Moreover, the pedigree-
based estimate cannot be considered a quantitative trait because 
it has no Mendelian sampling variance. Consequently, recovering 
the native genetic background requires marker-based estimates 
of the native contribution.
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While recovering the native genetic background of a breed 
requires marker-based estimates, pedigree-based estimates may 
be sufficient for breeding programs that aim to reduce inbreeding 
depression by introgression.

The segment-based estimate of the native contribution can 
be considered a quantitative trait for which a breeding value can 
be estimated (Amador et al., 2014). This breeding value for the 
native contribution can be included as an additional trait in the 
total merit index.

GENERAL DISCUSSION

The key genetic parameters that have been reviewed in the 
paper are of different importance for different types of breeding 
programs. Three main types of breeding programs have been 
identified in the introduction. The first one aims to maximize 
the genetic gain of populations that exhibit a sufficient genetic 
diversity, the second one aims to reduce inbreeding depression in 
populations that have undergone serious genetic bottlenecks, and 
the third type aims to increase the value of an endangered breed 
for conservation. In any case, conflicting breeding objectives need 
to be balanced. One method to balance conflicting objectives in 
a breeding program is optimum contribution selection (OCS; 
Meuwissen, 1997; Grundy et al., 2000; Woolliams et al., 2015), 
which was originally developed to maximize genetic gain and 
to restrict the increase of the mean kinship. Advanced OCS 
methods have been developed, which are implemented in R 
package optiSel and are able to optimize breeding program with 
more complex goals (Wellmann, 2019). They enable to compute 
the optimum number of offspring of each selection candidate 
such that the population mean of the most important genetic 
parameter at a future time is optimized, whereas the others 
are constrained. In the following, the relevance of the genetic 
parameters and their inclusion in OCS are discussed separately 
for each type of breeding program.

Population Management With Focus 
on Genetic Gain
For genetically diverse breeds that do not rely on funds from 
conservation programs, the main objective of the breeding program 
is to keep the breed competitive by maximizing genetic gain for 
total merit. The common approach is classical OCS proposed by 
Meuwissen (1997) and Meuwissen and Sonesson (1998), which 
maximizes the genetic gain of the population until time t + 1 and 
restricts the rate of increase of the mean kinship in accordance with 
the desired effective population size (Caballero and Toro, 2000). 
The optimum frequencies of use of breeding animals depend 
therefore on their breeding values and on the increase in the mean 
kinship they are causing. Although classical OCS has been shown 
to be superior in the long term to alternative existing approaches 
such as truncation selection, it is not the optimum method for 
long-term population management. The reason is that classical 
OCS maximizes the expected genetic gain of the population until 
the next evaluation time t + 1, which is not optimal because some 
rewards for choosing a particular mate come delayed.

There are different types of delayed rewards. This paragraph 
discusses possibilities to account for delayed rewards in the OCS 
framework. First, selection candidates that cause high Mendelian 
sampling variances have more likely some top-ranking offspring, 
which qualifies these offspring for broad use as elite sires or dams, 
so their use increases the mean breeding value in the generation 
after next. Accounting for Mendelian sampling variances has 
therefore a delayed effect on the mean breeding value of the 
population. Classical OCS, which maximizes the mean breeding 
value at time t + 1 cannot account for this. Although accounting 
for Mendelian sampling variances has a delayed effect on the 
population mean, it has an immediate effect on the probability 
to breed top-ranking animals. A straightforward approach is 
therefore to maximize not the mean breeding value but the 
probability to breed top-ranking individuals. This is roughly 
achieved when the computation of optimum contributions is 
based on the index from Equation 2. This improved approach 
favors individuals for breeding, which have simultaneously a 
high total merit index and a high Mendelian sampling variance. 
A further delayed reward may occur if a breeder does not use 
one of the first offspring of an elite animal but waits for his best 
offspring. Using one of the first offspring may be an inferior 
breeding strategy because this approach would accumulate his 
genes in the population. As a consequence, close relatives with 
even higher breeding values cannot be intensely used for breeding 
in the future because this would substantially increase the mean 
kinship of the population. If the probability is high that superior 
half-sibs become available in the future, it may be advisable to 
penalize the use of an early offspring of an elite animal by adding 
a penalty term to his breeding value. This could be done until a 
substantial proportion of his half-sibs is available. In summary, 
the recommended strategy for OCS is not to maximize total merit 
but to maximize the index from Equation 2 with an additional 
temporary penalty term for early offspring from elite animals.

To avoid problems with inbreeding depression and to ensure 
long-term response to selection, the rate of increase of the mean 
kinship needs to be restricted in accordance with the desired 
effective population size. Equation 5 is used to compute the 
maximum permissible kinship of the population at the next 
evaluation time t + 1, whereas the expected value at time t + 1 is 
computed with Equation 4. This equation contains a correction 
term that accounts for some potential sources of bias. Omitting 
the correction term would unduly penalize the use of selection 
candidates from age classes with small sample size because 
their genes would appear to be already over-represented in the 
population. The required kinships are traditionally estimated 
from pedigrees. This has not only the disadvantage that the 
estimates are less accurate than segment-based estimates but 
also that the optimum contributions can be strongly skewed 
by individuals with short pedigrees. Individuals with short 
pedigrees are favored for breeding because they appear to be less 
related with the population (Mucha and Windig, 2009). Different 
approaches exist to overcome this problem. One possibility 
is to truncate all pedigrees such that they refer to a younger 
base population and to exclude individuals with an insufficient 
number of equivalent complete generations in the pedigree from 
breeding. Alternatively, a constraint can be applied which poses 
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a lower bound for the average number of equivalent complete 
generations in the pedigrees of the offspring. Third, the kinship 
constraint could be replaced by a constraint for the pedigree-
based native kinship, whereby founders born after some 
reference date t0 are considered to be non-native. In this case, the 
average kinship at alleles originating from founders born before 
t0 is restricted, whereas alleles originating from founders born 
thereafter are ignored. The recommended approach, however, is 
not to use pedigree-based estimates, but segment-based estimates 
that are obtained from a panel with at least 50K markers.

An optimal strategy for population management does not only 
determine the optimum number of offspring of each selection 
candidate but also optimizes the mate allocation. To maximize 
the probability of breeding top-ranking individuals, mates could 
be allocated such that the index from Equation 1 is maximized. 
This practice, however, seems to have little effect on long-term 
genetic gain, so alternative strategies for mate allocation could be 
superior. An alternative strategy is to breed for high Mendelian 
sampling variances. Individuals have high Mendelian sampling 
variances if their parents are unrelated. A promising strategy 
is therefore to mate unrelated individuals, which is achieved 
when the objective of mate allocation is to minimize the average 
inbreeding coefficient of the offspring.

Population Management With Focus 
on Inbreeding Depression
Several domestic breeds have experienced serious genetic 
bottlenecks, which decreased their fitness and fertility. Reasons 
for these bottlenecks were the founder event (Wellmann and 
Pfeiffer, 2009), the overuse of sires from a small number of 
popular breeders (Wellmann and Bennewitz, 2011b), and 
small historical population sizes (Kettunen et al., 2017). The 
bottlenecks increased the probability that recessive deleterious 
alleles are homozygous, which resulted in inbreeding depression 
and, in particular, in an increased prevalence of genetic 
disorders. The main objective of breeding programs for these 
breeds is to reduce inbreeding depression, which can be achieved 
by minimizing the mean kinship of the population and by the 
purging of genetic load. Both approaches can be combined into 
a single breeding strategy.

The purging approach aims to decrease the frequencies of 
deleterious alleles in the population. As inbreeding is usually 
due to the deleterious effects of many alleles, all individuals can 
expected to be carriers of some deleterious alleles. Excluding 
all carriers from breeding is therefore not an option. One 
possibility to handle this problem is to estimate for all mutations 
the probability to be deleterious and the expected effect size. 
These estimates can be incorporated into a breeding value for 
genetic load, which becomes part of the total merit index. In 
addition, the most deleterious mutations could be reversed by 
genome editing.

The second approach aims to increase the heterozygosity of 
the population. As all individuals of the population are related 
with each other, this can only partly be achieved by mating the 
least related individuals. The main goal of a breeding program 
for these breeds is to reduce the mean kinship of the population. 

As pedigree-based kinship estimates are unable to capture 
Mendelian sampling effects, their use would lead after a few 
generations to a selection plateau, at which no further reduction 
of the mean kinship can be achieved. This can be avoided by the 
use of segment-based kinship estimates. The reduction of the 
mean kinship that can be achieved with segment-based estimates 
depends on the average number of pairwise non-IBD founder 
alleles that are still segregating in the population. If this number 
is too low, which is, for example, the case for the Kromfohrländer 
breed and the Lundehund (Wellmann and Pfeiffer, 2009; Kettunen 
et al., 2017), then the introduction of genetic material from other 
breeds is inevitable for recovering fitness and fertility. However, 
genetic introgression with other breeds should be limited to 
the necessary minimum to preserve genetic uniqueness of the 
breed. To achieve a strong reduction of the average kinship with 
a limited amount of introgression, the individuals that enter the 
population should be genetically diverse and numerous, but each 
of them should make only a small contribution to the population.

The recommended approach is therefore to minimize the 
segment-based kinship of the breed with OCS, to restrict the 
native contribution at its desired value, to incorporate a breeding 
value for genetic load into the total merit index, and to impose 
an annually increasing lower bound for the mean total merit of 
the population.

Population Management With Focus 
on Conservation Value
As endangered breeds compete for funds from conservation 
programs, a primary breeding goal for these breeds is to increase 
their value for conservation. As outlined in the introduction, 
this can be achieved by selecting individuals with rare haplotype 
segments for breeding, which increases the contribution of 
the breed to the genetic diversity of the species and makes 
it more dissimilar to other breeds. This can be done either by 
recovering the native genetic background of a breed with historic 
introgression or by accumulating rare haplotype segments in the 
breed regardless of their origin.

If the goal of the breeding program is to accumulate rare 
haplotype segments regardless of their origin, then the FGE 
can be maximized that is contributed by the breed to the gene 
pool of the species. As described above, this can be achieved 
with an objective function that simultaneously aims to increase 
the genetic diversity of the breed and at reducing the average 
relatedness of the breed with other breeds (Equation 6). The 
weight bk given to the within breed genetic diversity is high if 
the gene pool of the breed overlaps little with the gene pool of 
other breeds. If the genetic overlap is high, i.e. the breed does 
not currently contribute to the genetic diversity of the species, 
then the approach is equivalent to minimizing the relatedness of 
the breed with other breeds. Minimizing the average relatedness 
with other breeds was already studied by Amador et al. (2013) 
and requires to restrict the rate of increase of the mean kinship 
of the breed. The application of this approach to breeds with 
historic introgression would prioritize the removal of haplotype 
segments from the local breed that are frequent in mainstream 
breeds because these segments contribute most to the kinship 
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between breeds. Prioritizing their removal, however, may be 
undesirable because they carry more likely important QTL.

The alternative approach is to recover the native genetic 
background of the breed. Different objective functions have 
been proposed for this purpose. A common approach is to 
maximize either the native contribution or a total merit index 
that incorporates the native contribution. Wang et al. (2019) 
proposed another promising strategy, which is to maximize the 
native FGE of the breed. The native FGE of the breed is defined as

natFGE
IBD|N

t
t

f
t

= η
2

This genetic parameter measures the native proportion ηt  of 
a founder gene pool whose genetic diversity is equal to the native 
genetic diversity of the breed. Note that this parameter differs 
from the parameter NGE defined by Wellmann et al. (2012).

The native FGE has several nice properties. The native FGE of 
a breed without introgression equals the FGE of the breed, and 
the native FGE converges to 0, when all native alleles become 
replaced with alleles from other breeds. This parameter combines 
the native contribution of the breed and its native kinship in a 
meaningful way such that a breeding program that increases the 
native FGE tends to increase both the native contribution and the 
native diversity of the population. Maximizing the native FGE 
of a breed in a genetic recovery program is thus an interesting 
alternative to maximizing the native contribution of the breed.

As the conventional kinship of the population equals the 
native kinship after the native genetic background has been 
recovered, the native kinship determines the genetic diversity 
that can be preserved in the population. The breeding program 
needs therefore to ensure that the native kinship does not 
increase faster than required for the maintenance of the desired 
effective size. In a population with a small effective size, the 
positive effect of making the breed genetically more dissimilar 
to other breeds could become overcompensated by the negative 
effect resulting from lost genetic diversity (see Equation 6). 

An effective population size of more than 100 may be needed 
to balance both effects, which ensures that the contribution of 
the breed to the genetic diversity of the species does not decline 
in the course of the recovery program. For very small local 
breeds consisting of about 400 individuals (200 male and 200 
female selection candidates), the recovery of the native genetic 
background requires many generations if an effective size of 
100 should be maintained. The recovery proceeds much faster 
in populations consisting of 1000 individuals because a higher 
selection intensity can be achieved (Wang et al., 2019). The 
complete removal of foreign genetic material, however, can only 
be recommended if the native alleles have a sufficiently high 
genetic diversity in the current population because the breeding 
program would otherwise result in high inbreeding coefficients 
and inbreeding depression. If simple policies for genetic recovery 
are used, then, as demonstrated by the Abondance breed, even a 
small recovery can lead to relevant inbreeding (Danchin-Burge 
et al., 2012). In addition, a genetic recovery program can only 
be recommended if the funds from conservation programs 
compensate for the reduced genetic gain in total merit.
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