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Cancer is a disease often characterized by the presence of multiple genomic alterations, 
which trigger altered transcriptional patterns and gene expression, which in turn sustain 
the processes of tumorigenesis, tumor progression, and tumor maintenance. The links 
between genomic alterations and gene expression profiles can be utilized as the basis to 
build specific molecular tumorigenic relationships. In this study, we perform pan-cancer 
predictions of the presence of single somatic mutations and copy number variations using 
machine learning approaches on gene expression profiles. We show that gene expression 
can be used to predict genomic alterations in every tumor type, where some alterations 
are more predictable than others. We propose gene aggregation as a tool to improve the 
accuracy of alteration prediction models from gene expression profiles. Ultimately, we 
show how this principle can be beneficial in intrinsically noisy datasets, such as those 
based on single-cell sequencing.
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INTRODUCTION

Cancer is a molecular disease occurring when a cell or group of cells acquire uncontrolled 
proliferative behavior, conferred by a multitude of deregulations in specific pathways (Hanahan 
and Weinberg, 2011). As is implied by such a broad definition, cancer is a highly heterogeneous 
disease, showing remarkably different molecular, histological, genetic, and clinical properties, 
even when comparing tumors originating from the same tissue (Meacham and Morrison, 2013). 
Many cancers are characterized by the presence of single nucleotide or short indel mutations 
and/or copy number alterations, which appear somatically at the early stages of oncogenesis 
and can drive tumor progression (Bozic et al., 2010). Cancers can be broadly divided in two 
classes: the M class, where point mutations are prevalent, and the C class, where copy number 
variations (CNVs) are more numerous and are often associated with TP53 mutations. Tumor 
class influences anatomic location. Most ovarian cancers, for example, belong to the C class, 
while most colorectal cancers belong to the M class, although many exceptions do exist  
(Ciriello et al., 2013).

The Cancer Genome Atlas (TCGA) project (Chang et al., 2013) has recently undergone a 
major effort to collect vast amounts of information on thousands of distinct tumor samples. The 
TCGA data collection, commonly referred to as the “pan-cancer” dataset, provided the scientific 
community with an avalanche of data on DNA alterations, gene expression, methylation status, 
and protein abundances among others, with the critical mass necessary to identify rarer driver 
tumorigenesis effects in many types of cancers (Brennan et al., 2013; Cancer Genome Atlas 

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2019.00671
https://www.frontiersin.org/journals/genetics#editorial-board
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2019.00671&domain=pdf&date_stamp=2019-07-18
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:federico.giorgi@unibo.it 
https://doi.org/10.3389/fgene.2019.00671
https://www.frontiersin.org/article/10.3389/fgene.2019.00671/full
https://www.frontiersin.org/article/10.3389/fgene.2019.00671/full
https://www.frontiersin.org/article/10.3389/fgene.2019.00671/full
https://loop.frontiersin.org/people/645690
https://loop.frontiersin.org/people/741088
https://loop.frontiersin.org/people/64106


Pan-Cancer and Single-Cell Modeling of Genomic AlterationsMercatelli et al.

2 July 2019 | Volume 10 | Article 671Frontiers in Genetics | www.frontiersin.org

Network, 2015; Leiserson et al., 2015). By combining all 33 
TCGA datasets, Bailey and colleagues (Bailey et al., 2018) 
recently outlined a pan-cancer map of which mutations can be 
drivers for the progression of cancer.

The availability of thousands of samples measuring many 
different variables in cancer has allowed scientists to generate 
statistical models of relationships between different molecular 
species. A pan-cancer correlation network between coding 
genes and long noncoding RNAs, for example, sheds light on 
the function of non-coding parts of the transcriptome (Liu 
and Zhao, 2016). More recently, mutations on transcription 
factors (TFs) have been linked to altered gene expressions 
and phosphoprotein levels in 12 TCGA tumor type datasets 
(Osmanbeyoglu et al., 2017). Network approaches have been 
applied to identify clusters of coexpressed genes, shared by 
multiple cancer types (Kim and Kim, 2018). Several studies 
have sought to characterize the relationships between genomic 
status and expression levels in cancer, trying to identify 
commonalities across different cancer types (Ghazanfar and 
Yang, 2016; Sharma et al., 2018). In particular, Alvarez and 
colleagues (Alvarez et al., 2016) have postulated that the effect 
of genomic alterations in cancer can be more readily assessed 
by aggregating gene expression profiles into transcriptional 
networks, rather than by profiles taken separately.

While the association between genomic events and gene 
expression is proven in several scenarios, it remains to be 
seen if it can be assessed in scenarios where fully quantitative 
readouts are unavailable, such as low-coverage samples. One 
of these scenarios is single-cell sequencing (Nawy, 2013), often 
carried out in experiments where thousands of mutations are 
generated via a system of pooled CRISPR-Cas9 knockouts 
(Datlinger et al., 2017).

To our knowledge, there is no study trying to identify 
relationships between all genomic alteration events (somatic 
mutations/indels and CNVs) and global gene expression 
across cancers. In this study, we use 24 TCGA tumor datasets 
to investigate whether gene expression can be used to predict 
the presence of specific genomic alterations in several 
cancer tissue contexts. To this end, we leverage the current 
availability of a vast family of machine learning algorithms 
(Kuhn, 2008). We investigate whether some gene alterations 
can be better modeled than others and whether using 
grouped gene expression profiles as aggregated variables can 
effectively identify specific genomic alterations. Finally, we 
test whether predicting mutations and CNVs can be carried 
out in an intrinsically noisy single-cell RNA-Seq (scRNA-Seq) 
transcriptomics datasets.

RESULTS

Collection of Pan-Cancer Dataset
We downloaded the most recent version of the TCGA 
datasets available on Firehose (v2016_01_28), encompassing 
mutational, CNV, and gene expression data. Initially, we 
organized the expression data as a matrix of 9,642 samples 

and 20,531 genes, visualized in Figure 1A using T-distributed 
stochastic neighbor embedding (TSNE; van der Maaten and 
Hinton, 2008) clustering and two-dimensional (2D)-density 
estimates for each tumor type. As observed before (Chen et 
al., 2018), the transcriptional properties of TCGA tumors 
separate tumor types by tissue of origin. In particular, two 
tumor types segregate into two subgroups: breast cancer, 
which subdivides into a major luminal cluster and a smaller 
(in terms of samples collected) basal cluster (Perou et al., 
2000); and esophageal carcinoma, which roughly subdivides 
into adenocarcinomas and squamous cell carcinomas  
(TCGA network, 2017).

We then aggregated the single nucleotide and short indel 
somatic mutation data from the same samples for which we 
had collected gene expression. As is widely known, TP53 is 
the most mutated gene in human cancer (Figure 1B), followed 
by PIK3CA, SYNE1, and KRAS. As shown before (Ciriello 
et al., 2013), some tumor types are characterized by a high 
presence of somatic mutations. In particular, lung squamous 
carcinoma (LUSC), mesothelioma, and esophageal cancer 
carry at least one of these events in almost 100% of the samples 
in the TCGA dataset. In the figure, we filtered out commonly 
known nondriver mutations (Lawrence et al., 2013), such as 
those happening in long genes like TTN and OBSCN, but we 
kept them in all following analyses for the sake of completion. 
A representation of all mutated genes, including blacklisted 
ones, is available in Figure S1. Some tumors are characterized 
by the prevalence of a mutation in a specific gene, such as the 
G-protein coding BRAF in thyroid carcinoma (Kimura et al., 
2003) or IDH1, translating into isocitrate dehydrogenase, in 
low-grade glioma (Yan et al., 2009).

Finally, we obtained readouts of CNV status for all TCGA 
samples. CNVs can have different extensions in terms of 
nucleotides affected and can sometimes encompass entire 
chromosomes (Shlien and Malkin, 2009) and the thousands 
of genes therein. In order to limit the number of variables to 
a more meaningful subset, we assigned a CNV score to every 
gene, according to the copy number score of the genomic 
region most overlapping with the University of California, 
Santa Cruz-annotated gene boundaries (genome version 
hg19). We then tested models for all genes affected by a 
CNV in at least 10 samples [extending what was previously 
done in Chen et al. (2014)]. In order to make CNV variables 
comparable with the mutational ones, we defined a cutoff 
for presence or absence by using the log2(CNV) threshold of 
0.5, which roughly corresponds to at least one copy gain for 
amplifications, and at least one copy loss for deletions (see 
Materials and Methods). We then reported their abundance in 
the pan-cancer dataset, distinguishing between amplifications 
(Figure 1C) and deletions (Figure 1D). As previously shown 
(Ciriello et al., 2013), virtually all ovarian cancer samples are 
characterized by at least one CNV event. Among the most 
amplified genes, we find the oncogenes SOX2 (Bass et al., 2009), 
EGFR (Bell et al., 2005), and MDM2 (Momand et al., 1998), 
and also a noncoding gene, PVT1, the most amplified gene 
in breast cancer, with proven but as-of-yet uncharacterized 
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proto-oncogenic effects (Colombo et al., 2015; Li et al., 2017). 
Among the most deleted genes (Figure 1D), we observe well-
known tumor-suppressor genes, such as CDKN2A (Usvasalo 
et al., 2008; Mistry et al., 2015) and PTEN (Zhao et al., 2017; 
Wang et al., 2018).

Modeling Cancer Alterations With Gene 
Expression
After collecting all the expression and genomic alteration data 
from TCGA, we set out to generate models that are able to predict 
the presence or absence of each event by virtue of gene expression 
data in the contexts of all collected tumor types.

We tested several modeling algorithms for classification 
using the aggregator platform for machine learning caret 
(Kuhn, 2008) in the bladder cancer mutational dataset 
(Robertson et al., 2017). In our rationale, we tested at least 

one algorithm from every major machine learning family 
(decision trees, support vector machine, neural networks, and 
linear models; see Methods for a full list). We observed that 
all models provide better-than-random predictions for the 
majority of mutational events, in terms of area under the ROC 
curve (AUROC) (Figure  2) (Fawcett, 2006). For the bulk of 
the subsequent analysis, we selected the top-scoring algorithm 
in this test, the gradient boost modeling algorithm (gbm), a 
well-established tree-based boosting model (Friedman, 2001), 
due to its robustness and speed of implementation. In all our 
test runs (Figure 2 for bladder cancer and Figure S2 for liver 
hepatocellular carcinoma), gbm models are not significantly 
different (in terms of AUROC comparison, two-tailed Wilcoxon 
Test p > 0.1) from other well-performing algorithms, such as 
linear discriminant analysis or support vector machine.

We therefore calculated gbm models for all tumor types of 
at least 100 samples with co-measured expression and CNV or 

FIGURE 1 | The Cancer Genome Atlas (TCGA) dataset used. (A) T-distributed stochastic neighbor embedding (TSNE) clustering of TCGA samples based on gene 
expression profiles. The 2D median of each tumor type is indicated using the TCGA tumor code. Subset size is indicated in brackets next to tumor type names to 
the right. (B) Table of most somatically mutated genes across TCGA tumor samples, in terms of number of samples where the gene is somatically mutated with 
altered protein product sequence. (C) Table of most amplified genes across TCGA tumor samples. (D) Table of most deleted genes across TCGA tumor samples. 
The fraction of total TCGA samples carrying a gene-targeting event is indicated to the right of panels (B–D), and the fraction of samples where more than 0.5% of 
the genes is affected by the panel event type is indicated to the bottom of panels (B–D).
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mutations, which included 24 of the 33 TCGA tumor types. The 
models were predictive of genomic events observed in no less 
than 5% and no more than 95% of the patients in the dataset, 
and at least in 10 samples. Our results show that in all tumor 
types, a machine learning algorithm based on gene expression 
is consistently better than a random predictor (AUROC line at 
0.5) at correctly classifying tumor samples for the presence or 
absence of specific genomic alteration events (Figure 3 and 
Supplementary Table S1).

We focused on TP53 somatic alteration models not only 
because this tumor suppressor gene is frequently mutated or lost 
in cancer (Figure 1) but also because its loss of function is one 
of the most common driver events associated to tumorigenesis 
(Petitjean et al., 2007). In our study, TP53 mutations are well 
modeled in many of these tumor types (Figure 3), being the most 
well-predicted mutational event in both acute myeloid leukemia 
and low-grade glioma. In these tumors, loss-of-function somatic 
mutations of TP53 have been recurrently found as driver events 
for tumor initiation (Venneti and Huse, 2015; Metzeler et al., 
2016 ). We could also model the presence of a copy loss of TP53 
in sarcoma, which can be predicted with an accuracy of 70%. 
Ovarian and pancreatic cancer datasets presented exceptional 
cases, where TP53 is mutated virtually in all patients (next to 
95%) (Cole et al., 2016; Cicenas et al., 2017). This presents a 
challenge for the modeling algorithm, as there are not enough 
wild-type samples to perform a robust training (TP53 model 
performances in these tumors are close to 0.5, i.e. randomness).

We further focused on models predicting KRAS, a very 
important oncogene whose protein product is fundamental 
in transmitting proliferation signals in the early steps of the 
mitogen-activated protein kinase cascade (Tsuchida et al., 1982). 
KRAS’s role in cancer is caused by specific point mutations in 

its guanosine triphosphate-binding domain, which make it 
constantly active and therefore a deregulated signal transducer 
for proto-oncogenic pathways (Kranenburg, 2005). Our results 
confirm the key role of KRAS-targeting somatic mutations, 
which are well modeled by gene expression in KRAS-driven 
tumors: colon, lung, pancreas, stomach, and testicular cancers, 
as well as cervical squamous carcinoma (Prior et al., 2012) 
(Figure 3). Less commonly, the oncogenic activity of KRAS can 
be increased by amplification in ovarian cancer (Huang et al., 
2012) and LUSC (Wagner et al., 2011). Our results show that 
patients can be well separated between KRAS-amplified and 
KRAS-normal using gene expression in these two tumor types, 
confirming the presence of a transcriptionally defined subset of 
patients with KRAS copy number gains.

In general, the observed high variability between somatic 
mutations and CNVs roots is due to the fact that not all genomic 
alterations are disease drivers, and some are simply passenger 
events (Bozic et al., 2010), located either close to the amplified 
oncogene/deleted tumor suppressor gene, or hypermutated 
due to deficits in the DNA damage repair mechanisms (Chae 
et al., 2016), such as the case of skin melanoma (Guan et 
al., 2015). Differences between mutation and CNV model 
performances in individual cancer types may be due to the 
specific characteristics of these. For example, LUSC initiation 
and progression tend to depend on copy number alterations 
(Ciriello et al., 2013) rather than somatic mutations, which is 
highlighted by the highest performance of CNV-predicting 
transcription-based models over mutation-predicting 
ones (Figure 3). However, the biological heterogeneity 
observed within cancer datasets does not allow for perfect 
generalizations, such as tumor types driven exclusively by 
CNVs or mutations (Smith and Sheltzer, 2018).

FIGURE 2 | Performance of 11 machine learning algorithms in binary classification of mutated/nonmutated samples using gene expression predictor variables in the 
bladder cancer dataset. Each point corresponds to a specific mutation/model. Performance is indicated as AUROC: area under the receiver operating characteristic 
curve.
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We noted a tendency where models for more frequent CNV 
events yielded a greater predictive power (Figure S3), a tendency 
not observed for somatic mutation models. We then tested if 
known tumor-related genes, such as those curated by the Cancer 
Gene Census (Futreal et al., 2004) are better modeled than 
the rest of the genome. There is no difference in mutation and 
amplification results, but for deletion events, oncogenes yield 
weaker models (Wilcoxon test, p = 0.0037, Figure S4), and tumor 
suppressor genes yield generally stronger models (p = 0.00050). 
This is in agreement with the central paradigm of cancer, where a 
tumor suppressor gene deletion can be one of the driving events 
of tumorigenesis and tumor progression (Sager, 1989). On the 
other hand, deletion of tumor-promoting oncogenes is generally 
unfavorable for tumor progression, and so, generally speaking, it 
should be present only as a passenger event, unlikely to determine 
global gene expression and tumor fate.

Modeling Specific Alterations With Noise 
Addition
In order to understand whether cancer-related genomic alterations 
can be modeled by gene expression in scenarios with lower 

signal-to-noise ratio, we artificially perturbed the TCGA gene 
expression dataset via the addition of Gaussian noise and then 
proceeded to build models to predict the presence of TP53 mutations 
in breast cancer, the largest dataset in TCGA by number of samples.

As expected, the addition of uniform random Gaussian noise 
to the gene expression matrix has a detrimental effect on the 
amount of information left for modeling the presence of TP53 
somatic mutations (Figure 4A).

We then decided to test several permutations of noise 
addition on the same breast cancer expression data, by each 
time aggregating genes into networks defined a priori in the 
same context, using a Tukey biweight robust average method 
(Irizarry et al., 2006) on weighted gene correlation network 
analysis (WGCNA) clusters (Langfelder and Horvath, 2008) 
and the VIPER algorithm (Alvarez et al., 2016) on ARACNe-AP 
networks (Lachmann et al., 2016). It is important to note that 
WGCNA clusters are completely nonoverlapping and yield 
generally a lower number of aggregated variables than VIPER 
clusters, which are groups of genes possibly shared by other TF 
clusters and that collectively yield the global expression of a TF 
target set (dubbed as a proxy for “TF activity” in the original 
VIPER manuscript; Alvarez et al., 2016).

FIGURE 3 | Performance of gbm models for each genomic alteration event in TCGA, predicted as a function of each tumor gene expression. Boxplots indicate distribution 
median, upper and lower quartile. Alterations targeting TP53 and KRAS are indicated. Numbers on top of the violin plots indicate the number of models generated.
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Our results show that gene expression, VIPER activity, and 
WGCNA clusters yield very similar models for predicting 
TP53 mutations in breast cancer (Figure S5). The amount 
of information contained in the input variables is therefore 
comparable. Adding noise to the input expression matrix, 
however, and then aggregating the resulting noise-burdened 
genes into VIPER or WGCNA clusters (see Materials and 
Methods), provides robustness to the models (Figure 4B). 
Similar results with higher variances (possibly due to the smaller 
size of the datasets) can be observed for EGFR amplifications 
in glioblastoma (Figure S6) and LUSC (Figure S7), for PVT1 
amplifications in ovarian cancer (Figure S8) and for PTEN 
deletions in sarcoma (Figure S9). In all these examples, however, 
the performance of the simple WGCNA/Tukey aggregation is 
closer (if not worse) to that of simple gene expression.

An alternative way to reduce the information content from 
an NGS gene expression dataset is to reduce the number of read 
counts from each sample. This operation reflects either a low-
coverage bulk RNA-Seq experiment or an experiment arising 
from single-cell sequencing (Pollen et al., 2014). In particular, 
single-cell RNA-Seq (scRNA-Seq) is characterized by the dropout 
phenomenon (Risso et al., 2018) wherein genes expressed in the 
cells are sometimes not detected at all. In order to simulate such 
scenarios, we down-sampled each RNA-Seq gene count profile 
from the largest TCGA dataset (breast cancer) to a target aligned 
read number using a beta function, which allows for reduction 
coupled with random complete gene dropouts (Figure 5A). We 
then modeled again the presence of TP53 mutations using gene 
expression (Figure 5B). We found out that models based on 
standard unaggregated gene expression experience an accuracy 
drop at around 30M reads, while aggregating genes using 
VIPER (but not with WGCNA) allows for better-than-random 

accuracies even at 3M reads, confirming the benefits of gene 
aggregation in low-coverage RNA-Seq, as previously found e.g. 
for sample clustering (Bush et al., 2017).

Mutation Prediction in Single-Cell Data
Based on the results from the pan-cancer analysis, where we 
predicted sample mutations based on pooled RNA-Seq gene 
expression patterns, we decided to extend the same approach on 
single-cell datasets. Recently, the CROP-Seq methodology has been 
introduced (Datlinger et al., 2017), allowing for the measurement 
of cell-specific transcriptome-wide gene expression and mutations 
induced by CRISPR-Cas9 (Ran et al., 2013), thanks to the concurrent 
sequencing of CRISPR-Cas9 guide RNAs. We therefore tested the 
capability of gbm models to predict mutations using gene expression 
variables in two independent single-cell datasets. The first dataset 
(dubbed “Datlinger”) was extracted from the Jurkat cell line derived 
from human T lymphocytes (Datlinger et al., 2017). The second 
one (dubbed “Shifrut”) derived from primary unstimulated T cells 
from a human donor (Shifrut et al., 2018). We removed cell unique 
molecular identifier counts and cell cycle as common confounding 
effects of single-cell datasets (Tirosh et al., 2016) (Figure S11). We 
generated a regulatory transcription network using ARACNe-AP 
on the RNA-Seq Cancer Cell Line Encyclopedia dataset (CCLE; 
Barretina et al., 2012), which comprises 1,021 distinct human cell 
lines. Using the CCLE network, we aggregated gene expression 
from the single-cell datasets using the VIPER algorithm and 
implemented the resulting TF-centered VIPER activity profiles 
to build prediction models for the Crop-Seq-detected mutations. 
Parallelly, we built models using un-aggregated variance stabilizing 
transformation (vst)-normalized gene expression data. Our results 
show that gbm models based on VIPER activity variables globally 

FIGURE 4 | Performance of a TP53 somatic mutation gbm model upon Gaussian noise addiction. (A) Receiver operating characteristic (ROC) curves (and area 
under the curve) upon addition of increasing levels (in terms of SD of a Gaussian distribution with mean = 0) of Gaussian noise. (B) AUROCs of the model with 
increasing noise, calculated using gene expression (black line) or aggregated gene expression using the WGCNA (green line) or VIPER (red line) algorithms.  
Error bars indicate the standard deviation of AUROC distribution.
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FIGURE 5 | Performance of a TP53 mutation gbm model upon down-sampling of the TCGA breast cancer RNA-Seq dataset. (A) for a single TCGA sample (TCGA-
A1-A0SB-01) with 43.8 gene mapping reads, the down-sampling algorithm is applied for multiple target read quantities. X-axis shows the count for each gene in 
the original sample and Y-axis in the down-sampled output. (B) AUROCs of the model with decreasing read numbers, calculated using gene expression (black 
line) or aggregated gene expression using the WGCNA (green line) or VIPER (red line) algorithms. Error bars indicate the standard deviation of AUROC distribution. 
Pseudocounts of 0.1 are added in order to show zero counts as −1 in log10 scale.

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Pan-Cancer and Single-Cell Modeling of Genomic AlterationsMercatelli et al.

8 July 2019 | Volume 10 | Article 671Frontiers in Genetics | www.frontiersin.org

achieve a significantly higher performance in both the Datlinger (p 
= 8.0 × 10−85) and Shifrut datasets (p = 2.2 × 10−117) when compared 
with models obtained from gene expression data (Figure 6). For 
specific mutations (TUBB gene, CDKN1B), the VIPER aggregation 
based on CCLE ARACNe networks seems to be particularly 
beneficial to increase the performance of mutation prediction 
models based on gene expression, while for a few mutations, such 
as RUNX1, the CCLE-based networks significantly decrease the 
model performance.

DISCUSSION

In this paper, we tested a framework to investigate the complex 
relationships between genetic events and transcriptional 

deregulation through machine learning approaches. We 
demonstrated as a generalized proof-of-principle that genomic 
alterations can be modeled by gene expression across several 
human cancers through several machine learning algorithms and, 
specifically, that a gbm approach seems optimal for the task. In 
the process, we generated a collection of models for each genomic 
alteration in each cancer context, showing that the best predicted 
alterations are not necessarily targeting known oncogenes or 
tumor suppressors. Interestingly, we show how the aggregation of 
gene expression profiles in groups of coexpressed genes, via the 
ARACNe/VIPER or WGCNA methods, makes the models more 
robust and more resistant to perturbations such as Gaussian noise 
or artificial down-sampling. Finally, we have shown how the same 
aggregation principle can have beneficial effects in predicting 
the presence of mutations in intrinsically noisy scenarios, both 

FIGURE 6 | Performance as AUROC of gbm models to predict mutations in CROP-Seq datasets using gene expression (red bars) and VIPER activity (blue bars) 
derived from CCLE expression data in Datlinger (A) and Shifrut (B) datasets. The p-value of paired Wilcoxon tests between all VIPER and expression AUROCs 
in each dataset is reported, as well as the average of all expression models (red solid line) and all VIPER activity models (blue dashed line). Error bars report the 
standard deviation of 100 AUROCs generated from multiple partitioning of training/test sets. Error bars indicate the standard deviation of AUROC distribution.
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with artificial noise introduction and read reduction. At the same 
time, we have shown that expression-based mutation prediction 
can be modeled out in single-cell sequencing contexts, which 
can be considered as real cases of noisy datasets. The capability 
of predicting mutations based on scRNA-Seq is, however, 
reduced when compared with datasets derived from pooled cells 
sequencing, as those provided by the TCGA dataset: the average 
performances of TCGA models (Figure 3) generally rest on a 
range between 0.6 and 0.9 AUROC, while the performance of 
CROP-Seq models fall on an average value of 0.55 (Figure 6).

As transcriptional and signaling networks themselves gain 
diagnostic value, particularly for complex, multigenic diseases 
such as cancer (Alvarez et al., 2016), the network characteristics 
of coexpressed genes gain similar importance. A growing 
realization within the field of systems biology is that the activity 
and characteristic features of a given genomic network stem from 
the activity of smaller constituent subnetworks, and to this end, 
aggregated gene coexpression sets can constitute a novel and key 
focal point in network analysis overall (Wang et al., 2015).

The performance of gene aggregation methods has been tested 
before for sample clustering in RNA-Seq read reduction scenarios 
(Alvarez et al., 2016) but never in this specific task nor in a pan-
cancer or a single-cell context. As a principle, the usage of robust 
averages of predefined coexpressed genes can be applied in any 
context where reliability of gene expression data is necessary, 
from differential expression to pathway enrichment analyses.

Using transcriptional networks with VIPER has been shown 
to be beneficial to increase the biological interpretability and 
reduce experimental noise in low-coverage sequencing setups 
such as the PLATE-Seq technique (Bush et al., 2017). We expect 
gene aggregation methods to further complement other RNA-seq 
noise reduction techniques (Ding et al., 2015), particularly those 
designed for scRNA-Seq data analysis. These include several 
recently published methods such as the deep count autoencoder 
(Eraslan et al., 2019), the factorial single-cell latent variable model 
(Buettner et al., 2017), the UnifiedRNA-Sequencing Model (Zhu 
et al., 2018), the single-cell Gene Expression Analysis app (Cai, 
2019), the Ordering Effect gene Finder (Leng et al., 2016), and 
k-nearest neighbor smoothing (Wagner et al., 2017). Results 
obtained via computationally elegant techniques such as these 
stand to benefit from the inclusion of the types of network 
interaction features that we outlined previously.

Our analysis, while testing expression-based and network-
based models for the entirety of frequent genomic alteration 
events in the TCGA dataset, is however limited to the presence/
absence of single events considered separately. Patient tumor 
samples are often characterized by the co-occurrence of several 
mutations, CNVs, or a combination of those (Ciriello et al., 
2013). In the future, generating models on a specific combination 
of genomic alterations will likely require larger clinical datasets, 
where each combination is represented in enough samples 
to allow for model training. This combinatorial approach for 
understanding the relationship between cancer genome and 
transcriptome will be beneficial in the context of personalized 
medicine, whereas every patient is considered separately (N-of-1 
dataset), as it is characterized by a specific mutational landscape 
(Kristensen et al., 2014).

A recent study has shown, in agreement to our findings, that the 
highest part of cancer transcriptional variations are due to genomic 
alterations (copy number alterations and also somatic mutations) 
(Sharma et al., 2018) but also to epigenetic features and altered TF 
and µRNA balances. Those findings can explain why our results 
(Figure 3) highlight a highly variable performance depending on 
the modeled alterations and rare perfect models (max AUROCs 
rarely go above 0.9), while at the same time showing a generally 
better-than-random performance of expression-based prediction 
of genomic alterations (AUROC median and first quartiles >0.5). 
The notion that relationships between genomic alterations and 
gene expression profiles can be modeled across different cancer 
scenarios, as well as in single-cell and noisy contexts, may have 
important repercussions in diagnostics and quantification studies 
of heterogeneous cell populations, where theoretically a single 
quantitative expression experiment can be used to predict the 
presence or absence of a mutation.

MATERIALS AND METHODS

Data Processing
We obtained raw expression counts, mutation, and CNV raw 
data from TCGA using the Firehose portal (gdac.broadinstitute.
org). Raw counts were normalized using variance stabilizing 
transformation as described before (Giorgi et al., 2013). Somatic 
mutations not changing the amino acid sequence of the protein 
product were discarded. We flagged genes blacklisted by the 
MutSig project (Lawrence et al., 2013), such as TTN, ORs, MUCs 
as false positives, and removed them from further analysis 
(except the most mutated in the pan-cancer dataset, shown in 
Figure  S1). CNV tracks were associated to the targeted gene 
using the GenomicRanges R package (Lawrence et al., 2013). 
Gene-centered CNVs were then associated to the expression 
profile of the gene itself. Genes affected by a CNV in more than 
10 samples were used in the rest of the analysis. Samples with 
more than 0.5% of the genes in the genome somatically amplified, 
deleted, or mutated were deemed “hypermodified,” and the total 
number was shown in Figure 1 bottom bars.

Clustering analysis was carried out on the TCGA tumor 
samples using the expression profiles of 1,172 TFs defined by 
gene ontology terms “transcription factor activity, sequence-
specific DNA binding” (GO:0003700) and “nuclear location” 
(GO:0005634) (Ashburner et al., 2000).

The dataset expression profiles were visualized after TSNE 
transformation (van der Maaten and Hinton, 2008) with 1,000 
iterations using a 2D kernel density estimate for coloring different 
tumor types (Duong, 2007). Oncogenes and tumor suppressor 
genes were obtained from the COSMIC Cancer Gene Census in 
October 2018 (Futreal et al., 2004).

Modeling
We used the R caret package (Kuhn, 2008) v 6.0-81 as the 
platform to run all our predictive models in a standardized and 
reproducible way. Default parameters for model training were 
used. Binary classifiers were built to predict the presence/absence 
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of mutation, amplification, and deletion events. The CNV value 
provided by TCGA corresponds to log2(tumor coverage) – 
genomic median coverage. The threshold for amplification/
deletion presence was set to 0.5.

Data partitioning was performed once for each tumor 
type, with 75% of the samples used for training and 25% for 
test purposes. Training was performed using 10-fold cross-
validation. Technical model robustness was assessed with a 
bootstrap approach as well (resampling of the patient samples 
with repetition). This was done in a smaller test scenario (bladder 
cancer mutation models) using the caret implementation of 100 
bootstraps per mutation model (Figure S10). Bootstrap models 
have a slightly lower but not significantly different performance 
(AUROC Wilcoxon test p = 0.121) when compared with full 
dataset models. Recursive feature elimination was carried out by 
the default caret implementation on the 10,000 highest variance 
gene expression tracks. The algorithms used (and R packages 
implementing theme) were:

• Bayesian generalized linear model
• Tree models from genetic algorithms
• Gradient boost modeling (gbm)
• Generalized linear model
• k-nearest neighbors
• Linear discriminant analysis
• Neural networks
• Neural networks with feature extraction
• Random forest
• Linear support vector machine
• Radial support vector machine

In order to reduce information from the gene expression 
profiles, we adopted two strategies. The first, shown e.g. in 
Figure 4B, adds random Gaussian noise to the expression tracks, 
with a variable standard deviation (indicated as “Gaussian noise 
level”). Each model run after noise addition was run 100 times 
to allow for various data partitions. The second strategy (Figure 
5) reduced the number of reads mapped to each gene in order to 
obtain expression samples with decreased total gene counts. In 
order to do so, we applied to each gene in each sample a down-
sampling factor from a beta distribution:

1 11 1

B
x x

( , )
( )

α β
α β− −−

where B is the beta function, acting as a normalization constant, 
x is the raw gene expression count in a particular sample, α is the 
first shape parameter, and β the second shape parameter. In order 
to reduce the total sample coverage to the desired level, β is set to 
0.1 and α is set to:

α β=
−

f r
f r
/
/1

where f is the desired number of reads and r is the total number of 
reads in the sample. A real case example of this beta distribution 
is shown in Figure S11.

Aggregation Algorithms
We used ARACNe-AP (Lachmann et al., 2016) to generate 
TF-centered networks on each of the VST-normalized TCGA 
expression datasets. TFs were selected via gene ontology as 
described before, with p-value for each network edge set to 10−8. 
ARACNe networks were then used to obtain an aggregated value 
of TF activity for each sample using the VIPER algorithm (Alvarez 
et al., 2016) that reports the collective gene expression level 
changes of each TF-centered network vs. the mean expression of 
each gene in the dataset. Only TF networks with at least 10 genes 
(excluding the TF) were included.

WGCNA clusters of genes were constructed using the 
WGCNA package (Langfelder and Horvath, 2008) with default 
parameters and minimum network size set to 10. To obtain a 
robust median expression value for each WGCNA cluster in each 
sample, we used Tukey’s biweight function as implemented by 
the R affy package (Gautier et al., 2004).

Single-Cell Analysis
We generated TF regulatory networks using ARACNe-AP as 
described before on the CCLE dataset available at https://portals.
broadinstitute.org/ccle/data, raw counts version 2018-09-29, 
normalized by variance-stabilizing transformation (Pollen et al., 
2014).

We downloaded raw RNA-Seq counts and guide RNA mutation 
data from single-cell CROP-Seq datasets, specifically: 1) the 
Datlinger dataset available on Gene Expression Omnibus (GEO) 
series GSE92872 (Datlinger et al., 2017), and 2) the Shifrut dataset 
was obtained from a healthy donor and is available as raw counts 
and cell-specific guide RNA from GEO sample GSM3375483 
(Shifrut et al., 2018). Both single-cell CROP-Seq datasets were 
normalized using the R package Seurat with default parameters 
(Satija et al., 2015), as follows: a global-scaling normalization 
method (“LogNormalize”) was applied on raw gene counts for 
each cell; then, the values were multiplied by a scale factor (10,000 
by default), and the results were log-normalized. These values were 
then regressed by two variables: unique molecular identifier counts 
and cell cycle, using cell cycle markers from (Tirosh et al., 2016). 
As an example of the Seurat regression, the TSNE representation of 
the Datlinger dataset before and after normalization clearly shows 
the removal of cell cycle bias effects (Figure S12).

Gradient boost modeling (gbm) was applied to each CROP-Seq 
dataset by aggregating cells carrying mutations on the same genes 
and using wild-type cells as control. Performance of gbm models 
using VIPER and expression variables was compared using a two-
tailed Wilcoxon test on 100 repetitions of training/test set splits 
before cross-validation for model testing (Hanley and McNeil, 1982).

Methods Availability
All code used to generate the analysis and the figures of this 
paper is available in the online materials as Supplementary Code.

DATA AVAILABILITY

Publicly available datasets were analyzed in this study. This data 
can be found here: https://gdac.broadinstitute.org/
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FIGURE S1 | Table of most somatically mutated genes across TCGA tumor 
samples, in terms of number of samples where the gene is somatically mutated 
with altered protein product sequence. This table includes also MutSig-
blacklisted genes (in gray) such as Titin (TTN), Obscurin (OBSCN), and Mucin 
genes.

FIGURE S2 | Performance of 11 machine learning algorithms in binary 
classification of mutated/nonmutated samples using gene expression predictor 
variables in the liver hepatocellular carcinoma dataset. Each point corresponds to 
a specific mutation/model. Performance is indicated as AUROC: area under the 
receiver operating characteristic curve.

FIGURE S3 | Relationship between alteration models and alteration frequency in 
the pan-cancer dataset, for mutations (left), amplifications (center), and deletions 
(right).

FIGURE S4 | Performance of pan-cancer alterations models globally (left) and 
for MutSig genes, COSMIC oncogenes, and COSMIC tumor suppressors. The 
y-axis indicates rank-transformed AUROC values. Asterisks indicate a significant 
(<0.01) difference between a distribution and the global “other genes” distribution 
according to two-tailed Wilcoxon tests.

FIGURE S5 | ROC curves for gbm TP53 models in breast cancer, using original 
expression data, VIPER aggregation (TF “activity”), and WGCNA aggregation 
(robust Tukey biweight average of clusters).

FIGURE S6 | AUROCs of EGFR amplification gbm prediction models in 
glioblastoma with increasing noise, calculated using gene expression (black line) 
or aggregated gene expression using the WGCNA (green line) or VIPER (red line) 
algorithms.

FIGURE S7 | AUROCs of EGFR amplification gbm prediction models in lung 
squamous carcinoma (LUSC) with increasing noise, calculated using gene 
expression (black line) or aggregated gene expression using the WGCNA (green 
line) or VIPER (red line) algorithms.

FIGURE S8 | AUROCs of PVT1 amplification gbm prediction models in ovarian cancer 
with increasing noise, calculated using gene expression (black line) or aggregated gene 
expression using the WGCNA (green line) or VIPER (red line) algorithms.

FIGURE S9 | AUROCs of PTEN deletion gbm prediction models in sarcoma with 
increasing noise, calculated using gene expression (black line) or aggregated 
gene expression using the WGCNA (green line) or VIPER (red line) algorithms.

FIGURE S10 | Distribution of gbm models AUROCs for predicting bladder 
cancer mutations. Left: original models shown in the main study (Figures 2 and 
3). Right: performance of models with bootstrap. The p-value of a two-tailed 
Wilcoxon test between the two distributions is indicated.

FIGURE S11 | Beta distribution used to down-sample the 43.8M reads breast 
cancer sample TCGA-A1-A0SB-01 to 10M reads. The gray line shows the ratio 
between the target coverage and the original coverage.

FIGURE S12 | TSNE representation of the Datlinger CROP-Seq dataset before 
(A) and after (B) removal of cell cycle-specific markers. Colors indicated the 
predicted cell cycle phase according to the Seurat pipeline [79].

SUPPLEMENTARY TABLE S1 | AUROCs for each event in the pan-cancer 
TCGA dataset (24 tumor types with at least 100 samples with co-measured 
genomic and expression data. The sheet name indicates the tumor type and 
genomic alteration type (mut: somatic mutation, amp: amplification, del: deletion).

SUPPLEMENTARY CODE | R and bash code snippets used in this study.
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