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Autism spectrum disorder (ASD) is a complex neuropsychiatric disorder. A number of 
genetic risk loci have been identified for ASD from genome-wide association studies 
(GWAS); however, their target genes in relevant tissues and cell types remain to be 
investigated. The frontal cortex is a key region in the human brain for communication and 
cognitive function. To identify risk genes contributing to potential dysfunction in the frontal 
cortex of ASD patients, we took an in silico approach integrating multi-omics data. We 
first found genes with expression in frontal cortex tissue that correlates with ASD risk loci 
by leveraging expression quantitative trait loci (eQTLs) information. Among these genes, 
we then identified 76 genes showing significant differential expression in the frontal cortex 
between ASD cases and controls in microarray datasets and further replicated four genes 
with RNA-seq data. Among the ASD GWAS single nucleotide polymorphisms (SNPs) 
correlating with the 76 genes, 20 overlap with histone marks and 40 are associated with 
gene methylation level. Thus, through multi-omics data analyses, we identified genes that 
may work as target genes of ASD risk loci in the brain frontal cortex.

Keywords: autism, brain frontal cortex, DNA methylation, eQTL, GWAS loci, histone modification, target gene

INTRODUCTION

Autism spectrum disorder (ASD) is a type of complex neurodevelopmental disorder mainly 
characterized by stereotyped behavior and deficiency in social communication ability. Among 
children, the prevalence rate of ASD has been estimated to be 1 in 68 in the USA and 1 in 100 
worldwide, and there is four times higher prevalence among boys than girls (Ginsberg et al., 2012; 
Developmental Disabilities Monitoring Network Surveillance Year 2010 Principal Investigators; 
Centers for Disease Control and Prevention, 2014; Geschwind and State, 2015). ASD severely affects 
the life quality of patients and their families and increases public health burden (Ginsberg et al., 
2013). ASD patients exhibit highly heterogeneous clinical presentations, and ASD patients are 
mainly treated by rehabilitation intervention with no specific therapeutic drug (Bowers et al., 2015). 
Therefore, it is necessary to understand the genetic mechanism underlying ASD development in 
important brain regions.

Genetic studies of ASD have revealed a number of risk loci that may contribute to ASD 
pathogenesis. It has been shown that single nucleotide polymorphisms (SNPs) located at loci 
3p21 and 10q24, as well as in CACNA1C and CACNB2, are significantly associated with multiple 
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psychiatric disorders including ASD (Cross-Disorder Group 
of the Psychiatric Genomics Consortium, 2013). Xia et al. 
discovered TRIM33 and NRAS-CSDE1 as ASD candidate genes 
by GWAS analysis of Chinese autistic patients and datasets of 
three European populations (Xia et al., 2014). A recent study 
by the Autism Spectrum Disorders Working Group of the 
Psychiatric Genomics Consortium (PGC) identified multiple 
loci, composed of common variants, associated with ASD 
and found a significant genetic correlation between ASD and 
schizophrenia via meta-analysis of more than 16,000 autistic 
patients (The Autism Spectrum Disorders Working Group of The 
Psychiatric Genomics Consortium, 2017). Furthermore, Cantor 
et al. found that rs289883 located in the intron of gene PHB was 
associated with the degree of behavioral abnormality in ASD 
patients (Cantor et al., 2018).

Different brain regions control different functions, which 
may be impaired in ASD patients. The frontal lobe of the brain 
plays an important role in social, emotional, and cognitive 
functions and has shown severe dysfunction in ASD patients 
(Courchesne and Pierce, 2005). The frontal lobes in ASD patients 
undergo an abnormal overgrowth while other regions are not 
significantly enlarged (Buxhoeveden et al., 2006). Additionally, a 
decrease in astrocyte precursor cells and an increase in synaptic 
connectivity are observed in the frontal cortex of ASD patients 
(Broek et al., 2014). Previous studies demonstrated pronounced 
ASD-associated gene expression changes in the cerebral cortex, 
including attenuated distinction between the frontal and temporal 
cortices in ASD brains (Voineagu et al., 2011).

Because of the importance of the frontal cortex in normal 
brains and its dysfunction in ASD brains, we aim to identify 
targeted genes of ASD risk loci in the frontal cortex. We obtained 
ASD associated SNPs from the GWAS catalog and found genes 
with genotype-correlated expression in the frontal cortex tissue 
from eQTL databases. By analyzing microarray gene expression 
datasets, we then identified 76 ASD–loci correlated genes 
showing significant expression difference between ASD brain 
frontal cortices and controls, and we further replicated four 
genes in an RNA-seq dataset. Among the ASD GWAS SNPs 
correlating with the 76 genes, 20 overlap with histone marks and 
40 were associated with the gene methylation level, suggesting 
that they may regulate the transcription of their target genes 
through epigenetic mechanisms. Our results help to understand 
how ASD GWAS loci confer disease risk and prioritize genes for 
further functional validation.

MATERIAL AND METHODS

Extraction of ASD GWAS Loci
Significant ASD associations were downloaded from the 
GWAS catalog (https://www.ebi.ac.uk/gwas/) (Macarthur et al., 
2017) using the keyword “autism spectrum disorder,” and SNP 
information was extracted from downloaded data. We did not 
apply any significance threshold when extracting ASD SNPs 
from the GWAS catalog.

eQTL Analysis
Genes with expression in the frontal cortex that correlate with the 
genotypes of ASD SNPs were extracted from two eQTL databases: 
GTEx (https://gtexportal.org/home/) (GTEx Consortium, 2013) 
and Braineac (http://caprica.genetics.kcl.ac.uk/BRAINEAC/) 
(Ramasamy et al., 2014). Only associations with P < 0.05 were 
extracted.

Analysis of Microarray Data
Series matrix files of two microarray datasets GSE28475 (Chow 
et al., 2012) and GSE28521 (Voineagu et al., 2011) that compare 
transcriptome data in human brain frontal cortex between ASD 
cases and controls were downloaded from the Gene Expression 
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/) 
(Barrett et al., 2013). There are 16 ASD cases and 16 controls in 
dataset GSE28521, and there are 52 cases and 61 controls in dataset 
GSE28475. Microarray data underwent quality control with log2 
transformation and quantile normalization. Differential expression 
analysis was performed using the linear regression approach 
(Limma model) and further meta-analyzed using Fisher’s method 
in the NetworkAnalyst portal (http://www.networkanalyst.ca/) 
(Xia et al., 2015) with adjustment for batch effects.

Analysis of RNA-Seq Data
The SRA file of an RNA-seq dataset (GSE102741) (Wright 
et  al., 2017), which similarly compares transcriptome data in 
human brain frontal cortex between ASD cases and controls, 
was downloaded from the GEO database. Dataset GSE102741 
contains 13 ASD cases and 39 controls. The quality of RNA-seq 
raw reads was examined using FastQC (Andrews, 2010), and 
reads were aligned to the human reference genome (GRCh37) 
using software HISAT2 (Kim et al., 2015). Then transcripts were 
assembled and quantified using Stringtie (Pertea et al., 2015) with 
the reference gene annotation (GRCh37) as a guide. Differential 
expression analysis between cases and controls was conducted 
using edgeR (Robinson et al., 2010).

Protein–Protein Interaction Network 
Analysis
The gene symbols were input into the NetworkAnalyst web 
portal, which maps each gene to protein–protein interaction 
(PPI) databases to construct networks. The PPI network was 
constructed among the 76 genes without further extension, with 
InnateDB (Breuer et al., 2013) as the source of protein interactions.

Pathway Enrichment Analysis
We input the 76 genes into DAVID (https://david.ncifcrf.gov/
home.jsp) (Huang Da et al., 2009) and PANTHER (http://www.
pantherdb.org/) (Mi and Thomas, 2009) web portals for pathway 
analysis. The pathway databases used in our analyses are KEGG 
(Kyoto Encyclopedia of Genes and Genomes) (Kanehisa and 
Goto, 2000) and Reactome (Fabregat et al., 2017), respectively.
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Analysis of Methylation Data
The generation of genome-wide methylation profiles of 843 
subjects on the Infinium HumanMethylation450 BeadChip by 
the Center for Applied Genomics, the Children’s Hospital of 
Philadelphia, was reported in a previous publication (Van Ingen 
et al., 2016). The methylation level of each methylation probe 
was represented by the M-values (the log2 ratio between the 
methylated and unmethylated probe intensities). The association 
of ASD GWAS SNPs with methylation probes in each of the 
76 genes was assessed in a linear regression model including 
gender, age, and 10 genotype-derived principle components as 
covariates.

Hi-C Data Visualization
We conducted Hi-C data visualization for the ASD loci and 
target genes through the 3D Genome browser (promoter.bx.psu.
edu/hi-c/) (Wang et al., 2018) and the FUMA GWAS site (http://
fuma.ctglab.nl/) (Watanabe et al., 2017) using reported brain 
Hi-C data (Schmitt et al., 2016; Won et al., 2016).

RESULTS

As the frontal cortex is involved in important brain 
functions, which  are severely impaired among ASD patients 
(communication, language, social behavior, and complex 
cognitive functions), we are interested in identifying target genes 
of ASD risk loci in the frontal cortex region. To do this, we first 
extracted all reported ASD associated risk loci from the GWAS 
catalog. A total of 466 SNPs from 19 studies were extracted, with 
the highest reported association P-value of 1 × 10−5. The majority 
(97%) of these SNPs were located in non-coding regions. As these 
non-coding SNPs could function by regulating downstream 
target gene expression, we examined their potential regulatory 
effects in two eQTL databases [brain—frontal cortex tissue in the 
GTEx database (GTEx Consortium, 2013) and frontal cortex in 
the Braineac database (Ramasamy et al., 2014)].We found 457 
genes from GTEx and 1,848 genes from Braineac with mRNA 
level correlated with the additive genotype of ASD GWAS SNPs 
(nominal P < 0.05). As GWAS loci and their targeted genes may 
not exhibit highly significant correlations in eQTL analysis, we 
took this less stringent threshold and combined the ASD–loci 
targeted genes from the two datasets, yielding a list of 2,098 
genes. The eQTL associations suggest that the expression of these 
genes may be directly or indirectly influenced by the genotype of 
the ASD loci.

We hypothesized that the expression of genes functioning in 
the frontal cortex may be dis-regulated among ASD patients; 
thus, we conducted gene expression meta-analysis by comparing 
the mRNA level of ASD cases and that of healthy controls at 
the genome-wide scale using datasets GSE28475 and GSE28521 
from the GEO database. The analysis yielded 893 differentially 
expressed genes (adjusted P < 0.05). Among the 2,098 genes likely 
regulated by ASD–loci, 76 displayed significant differential gene 
expression (Supplementary Table 1), implicating that these 
genes may be ASD loci-controlled genes in the frontal cortex.

As replication, we looked into ASD RNA-seq dataset 
GSE102741 in the GEO database. We similarly conducted 
transcriptome profiling analysis and found that four of the 
76 genes identified in the above steps showed significant 
differences (P < 0.05) in mRNA level between ASD cases and 
healthy controls: HIST1H1C, HSPA1B, PRPF3, and SERPINA3 
(Table 1). Therefore, differential expression of these four genes in 
the frontal cortex of ASD brains were further validated by RNA-
seq. Inability to validate the remaining 72 genes could be due to 
the small sample size of the RNA-seq dataset. We further checked 
brain Hi-C data and found additional supporting evidence for 
the plausible chromatin interactions between ASD SNPs and 
the target genes (Supplementary Figure 1). Certainly, future 
Hi-C experiments specifically focusing on the frontal cortex 
regions should be performed to examine these interactions. It 
has been reported in the human protein atlas database (https://
www.proteinatlas.org/) (Uhlen et al., 2015) that both the mRNA 
and proteins of ASD target genes HIST1H1C and PRPF3 were 
detected in human brain cerebral cortex; HIST1H1C protein 
level is particularly high. The HSPA1B protein and SERPINA3 
mRNA were also detected in the cerebral cortex. By searching 
the Mouse Genome Informatics (MGI) database (http://www.
informatics.jax.org) (Law and Shaw, 2018), we also found that 
mRNA of mouse HIST1H1C and PRPF3 homologues has been 
detected in mouse brains in previous publications (Mckee et al., 
2005; Diez-Roux et al., 2011). Furthermore, abnormal behavior, 
neurological phenotype, or defects in nervous system have been 
documented for mouse strains carrying mutant Prpf3 or Hspa1b 
genes (Law and Shaw, 2018), suggesting the biological relevance 
of these genes to ASD.

To understand how the 76 genes are involved in ASD 
pathogenesis, we constructed a protein–protein interaction 
(PPI) network (Figure 1) using NetworkAnalyst. The largest 
module consists of 11 of the 76 genes, including three of 
the RNA-seq validated genes (HIST1H1C, HSPA1B, and 
SERPINA3). To fully understand the interactions between 
these genes, we further examined the pathways in which these 
genes are enriched. We found significantly enriched pathways: 
“Antigen processing and presentation“ and “Noncanonical 
activation of NOTCH3“ (Supplementary Table 2). Both 

TABLE 1 | Candidate autism spectrum disorder (ASD) target genes that 
showed significant differential expression in both microarray and RNA-seq 
datasets.

ASD SNP Target gene eQTL 
P-value

Microarray 
P-value

RNA-seq 
P-value

rs75782365 HIST1H1C 0.0015 0.0316 0.0228
rs3132581 HSPA1B 0.0058 0.0121 0.00299
rs11587682 PRPF3 0.017 0.0145 0.0325
rs4905226 SERPINA3 0.014 0.0376 0.00629

SNP, single nucleotide polymorphism; Target Gene, candidate target gene 
identified for each ASD GWAS locus; eQTL P-value, P-value of correlation between 
gene expression level and GWAS SNP genotype in GTEx database or Braineac 
database; Microarray P-value, P-value of the differentially expressed gene in 
microarray meta-analysis; RNA-seq P-value, P-value of the differentially expressed 
gene in RNA-seq analysis.
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of these pathways are highly relevant to ASD pathogenesis 
(Needleman and Mcallister, 2012; Hormozdiari et al., 2015; 
Bennabi et al., 2018; Jones et al., 2018).

Both phenotypic and genetic overlap was observed between 
neuropsychiatric diseases. We found that SNPs in genes 
HISTI1H1C, HSPA1B, PRPF3, and SERPINA3 showed at least 
nominal significant association with four other neuropsychiatric 
diseases [schizophrenia (SCZ), bipolar disorder, major depressive 
disorder (MDD), and attention-deficit hyperactivity disorder 
(ADHD)] in the Broad PGC database (https://data.broadinstitute.
org/mpg/ricopili/) (Ripke and Thomas, 2017) (Table 2).

To understand how ASD SNPs may regulate the expression 
of their target genes, we explored the functional annotations of 
ASD GWAS SNPs corresponding to the 76 target genes in the 
ENCODE (Encode Project Consortium, 2012) and ROADMAP 
(Roadmap Epigenomics Consortium et al., 2015) epigenome 
databases via the HaploReg web portal (Ward and Kellis, 

2016). We found 20 ASD SNPs overlap with histone marks in 
the brain dorsolateral prefrontal cortex (Table 3). This suggests 
that these SNPs may affect chromatin activation through histone 
methylation and acetylation, which in turn affects their target 
gene expression.

We also looked into whether there is any correlation between 
the genotypes of ASD SNPs and methylation at or near their target 
genes. Forty-five of the 76 genes contained probes with methylation 
level correlated with additive SNP genotype (Table 4) at a nominal 
significance level, suggesting that the expression level of these genes 
may be regulated by ASD SNPs through DNA methylation.

DISCUSSION

To find ASD GWAS loci targeted genes, we conducted an analysis 
integrating eQTL, transcriptome, epigenome, and methylation 

FIGURE 1 | Eleven out of 76 proteins encoded by the autism spectrum disorder (ASD) loci target genes showed protein–protein interactions (PPIs). The PPI network 
was constructed using NetworkAnalyst with InnateDB as the source of protein interaction data. The nodes represent proteins, and the size of the nodes reflects the 
number of interaction partners with it. The edges between the nodes indicate known interactions between the proteins.

TABLE 2 | Within genes HISTI1H1C, HSPA1B, PRPF3, and SERPINA3, single-nucleotide polymorphisms (SNPs) are associated with other neuropsychiatric diseases.

ADHD Bipolar MDD SCZ

Gene Best SNP P-value Best SNP P-value Best SNP P-value Best SNP P-value

HIST1H1C rs16891264 0.0529 rs10425 0.0022 rs12210098 0.0024 rs3857546 1.46E−09
HSPA1B rs9267786 0.0202 rs389883 0.000322 rs9368699 0.00562 rs1270942 5.00E−07
PRPF3 rs10494266 0.00081 rs12138453 0.000171 rs16836940 0.00014 rs16835254 0.000105
SERPINA3 rs2268336 0.00107 rs17091191 0.00103 rs1243533 0.0162 rs11625527 0.00403

ADHD, attention-deficit hyperactivity disorder; MDD, major depressive disorder; SCZ, schizophrenia.
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data. We began by analyzing the correlation between SNP 
genotype and mRNA level of genes reflected by eQTL data, and 
we obtained 2,098 target genes that may be regulated by these 
ASD loci. Then, we analyzed the differentially expressed genes 
between cases and controls at the mRNA level using array and 
RNA-seq data. A total of 76 genes with expression correlating 
with ASD SNP genotype were differentially expressed between 
ASD cases and controls in the frontal cortex in array data. Four 
of those genes were further validated by RNA-seq data. Evidence 
also suggested that the expression level of these genes could be 
regulated through histone modification or DNA methylation. 
Therefore, by in silico analysis, we identified candidate genes 
likely controlled by ASD loci in the frontal cortex, which are 
worthy of further experimental validation.

There are multiple lines of evidence suggesting the involvement 
of the four candidate ASD genes in disease etiology. HIST1H1C 
encodes a protein that belongs to the histone cluster 1 H1 
family. In an ASD model system based on haploinsufficiency 
of SHANK3, Darville et al. found that five histone isoforms 
including HIST1H1C were down-regulated upon lithium and 
VPA treatment in neurons differentiated from pluripotent stem 
cells. Lithium and VPA increased levels of SHANK3 mRNA, and 
the authors speculated that SHANK3 may be regulated through an 
epigenetic mechanism involving histone modification (Darville 
et al., 2016). In addition, HIST1H1C may also be involved in other 
brain disease development. For example, HIST1H1C displayed 
consistently significant increased mRNA level in the cortex of 
brains from 7- and 18-month-old mice in an Alzheimer’s disease 
model (Ham et al., 2018). The mRNA level of HIST1H1C is 
up-regulated in hypoxia and is correlated with worse disease 
outcome among neuroblastoma patients (Applebaum et al., 
2016). Mutation in other members of histone cluster 1 H1 family, 
such as HIST1H1E, has been detected in ASD patient and is 

likely to be the underlying causal mutation (Duffney et al., 2018). 
Systematic review indicated that nearly 20% of ASD candidate 
genes play a role in epigenetic regulations, especially histone 
modifications (Duffney et al., 2018). These data support the 
potential involvement of HIST1H1C in ASD development, likely 
through epigenetic regulation of neurodevelopmental genes.

HSPA1B encodes a heat shock protein, which works as 
chaperone for other proteins. In heat shock experiments on 
induced pluripotent stem cells modeling brain development 
under maternal fever, HSPA1B is one of the heat shock genes 
that drastically increased its mRNA level, together with other 
genes involved in neurogenesis and neuronal function (Lin 
et al., 2014). Heat shock proteins target mis-folded proteins and 

TABLE 3 | ASD genome-wide association studies (GWAS) SNPs overlap with 
histone marks in brain dorsolateral prefrontal cortex, based on ENCODE and 
ROADMAP datasets.

SNP Chromatin marks

rs1080500 H3K4me1 H3K27ac
rs1104918 H3K4me1 H3K27ac
rs12045323 H3K4me1 H3K27ac
rs12826178 H3K4me1
rs133047 H3K4me1
rs1550976 H3K4me1
rs169738 H3K4me3 H3K4me1 H3K27ac
rs17292804 H3K4me3 H3K4me1 H3K27ac H3K9ac
rs2021722 H3K4me1 H3K27ac H3K9ac
rs2233375 H3K27ac
rs2297909 H3K4me1 H3K27ac H3K9ac

rs2898883 H3K27ac H3K9ac
rs4150167 H3K4me1 H3K27ac
rs4702 H3K4me3 H3K4me1 H3K27ac H3K9ac
rs548181 H3K4me3 H3K4me1 H3K27ac H3K9ac

rs609412 H3K4me1
rs73416724 H3K4me3 H3K4me1 H3K27ac H3K9ac

rs760648 H3K4me1
rs8321 H3K4me1 H3K9ac
rs880446 H3K4me3 H3K4me1 H3K27ac H3K9ac

TABLE 4 | ASD GWAS SNPs correlate with target gene methylation level at 
nominal significance level.

eQTL_SNP Gene Methylation 
probe

Methylation 
beta

Methylation 
P-value

rs385492 HLA-F cg09296453 −0.204 1.25E−16
rs12887734 ZFYVE21 cg01651570 0.33 9.61E−07
rs4650608 IFI44 cg07107453 −0.0964 3.93E−06
rs2021722 HLA-A cg20408505 −0.0653 0.000391
rs8054556 SEZ6L2 cg09584855 0.0426 0.000398
rs7746199 PGBD1 cg20029652 0.0364 0.000721
rs1080500 SELK cg02011912 0.0449 0.000883
rs11587682 APH1A cg04633021 −0.0633 0.00107
rs880446 TCEA2 cg03946671 −0.141 0.00162
rs1550976 NTM cg04307764 −0.0481 0.00208
rs4150167 HSDL1 cg08941639 −0.253 0.00223
rs2332700 RGS6 cg12963168 0.0372 0.00239
rs2535629 ABHD14A cg09254361 0.0693 0.00261
rs221902 MED6 cg16339264 0.033 0.00265
rs11191419 ACTR1A cg11453585 −0.0485 0.00329
rs11587682 PRPF3 cg04212235 0.106 0.00405
rs6538761 LTA4H cg09725090 0.0222 0.00502
rs12871532 LIG4 cg20776540 −0.0244 0.00547
rs11587682 MCL1 cg17724175 0.108 0.00597
rs72934570 WDR7 cg24533565 −0.0718 0.00636
rs880446 ZBTB46 cg04630273 0.0518 0.00655
rs8009147 ADSSL1 cg21190363 0.0317 0.00854
rs8321 ABCF1 cg05385119 0.148 0.00896
rs1080500 CACNA2D3 cg09890989 0.0324 0.0116
rs4773054 COL4A1 cg02673355 0.0716 0.0118
rs609412 LARS cg17175376 0.022 0.0128
rs169738 NUDT3 cg25055477 0.0178 0.0152
rs2851447 HIP1R cg26682900 −0.0185 0.0167
rs548181 SRPR cg27218829 −0.0302 0.0202
rs72687362 ARC cg08860119 −0.0361 0.0215
rs7914558 SH3PXD2A cg07168060 0.0332 0.0217
rs2233375 INPP5D cg12315466 0.034 0.0226
rs12826178 SHMT2 cg08163918 −0.133 0.025
rs548181 HYLS1 cg21050392 −0.0281 0.0281
rs10255295 ZC3HAV1 cg14341575 0.034 0.0287
rs1797052 POLR3C cg19990379 −0.0364 0.0306
rs3849046 REEP2 cg07368507 0.0279 0.0308
rs1104918 AEN cg21347380 −0.0318 0.0371
rs6453278 AGGF1 cg15817406 −0.0526 0.0384
rs7254215 NOTCH3 cg01282080 −0.0401 0.0388
rs7184114 GPR56 cg25645462 −0.0301 0.0396
rs11735612 PCDH18 cg06787716 −0.0219 0.0398
rs2898883 SPOP cg08001899 0.0471 0.0412
rs133047 XRCC6 cg26919805 0.0557 0.0428
rs73416724 MRPL2 cg01847614 −0.0244 0.0456
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facilitate proper refolding or targeting of damaged proteins for 
degradation (Lin et al., 2014). Its mRNA level is increased in the 
frontal cortex of schizophrenia subjects (Arion et al., 2007). It 
has been shown that HSPA1B also functions in the pathogenesis 
of other neurological conditions, such as Parkinson disease 
(Kalia et al., 2010), progressive supranuclear palsy (Hauser et al., 
2005), and Alzheimer’s disease (Sherman and Goldberg, 2001; 
Muchowski and Wacker, 2005), presumably by facilitating protein 
folding and inhibiting apoptosis (Leak, 2014). Genes enriched in 
multiple signaling pathways, like pathways of “Heterotrimeric 
G-protein signaling pathway” and “B cell activation,” were 
altered by Hspa1b deficiency in an MPTP-induced mouse model 
of Parkinson disease (Ban et al., 2012).

PRPF3 is one of several proteins interacting with U4 and 
U6 small  nuclear ribonucleoproteins, which are components of 
spliceosomes. Mutations in MECP2 (methyl-CpG-binding protein 
2) cause the  neurodevelopmental disorder Rett syndrome. 
The MECP2 protein directly interacts with PRPF3 (Long 
et  al., 2011), and several Rett-associated mutations in MECP2 
affect interaction of MECP2 with PRPF3, implying that 
neurodevelopmental disorders, in general, could be related to 
abnormal mRNA splicing.

SERPINA3 belongs to the serine protease inhibitor 
family. The protein antagonizes the activity of neutrophil 
cathepsin G and mast cell chymase and has been implicated 
in neuroinflammation, neurodegeneration (Baker et al., 2007), 
and other types of brain conditions such as human prion 
diseases (Vanni et al., 2017). The mRNA level of SERPINA3 is 
robustly up-regulated in the prefrontal cortex of schizophrenia 
patients, suggesting its involvement in the pathogenesis of 
neuropsychiatric disorders (Arion et al., 2007; Saetre et al., 2007; 
Fillman et al., 2014).

In summary, we identified genes that may function as ASD 
genetic loci targeted genes in the brain frontal cortex through 
multi-omics data analyses. These genes are worth being further 
characterized for their function in ASD development through 
experimental approaches.
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