
1 August 2019 | Volume 10 | Article 714

ORIGINAL RESEARCH

doi: 10.3389/fgene.2019.00714
published: 16 August 2019

Frontiers in Genetics | www.frontiersin.org

Edited by: 
Mehdi Pirooznia,  

National Heart, Lung, and Blood 
Institute (NHLBI), United States

Reviewed by: 
Ting Ni,  

Fudan University, China 
Celso Teixeira Mendes-Junior, 
University of São Paulo, Brazil

*Correspondence: 
Paolo Provero 

paolo.provero@unito.it

Specialty section: 
This article was submitted to 

Bioinformatics and  
Computational Biology,  
a section of the journal  

Frontiers in Genetics

Received: 26 March 2019
Accepted: 05 July 2019

Published: 16 August 2019

Citation: 
Mariella E, Marotta F, Grassi E, 

Gilotto S and Provero P (2019) The 
Length of the Expressed 3′ UTR Is 

an Intermediate Molecular Phenotype 
Linking Genetic Variants to  

Complex Diseases.  
Front. Genet. 10:714.  

doi: 10.3389/fgene.2019.00714

The Length of the Expressed 3′ 
UTR Is an Intermediate Molecular 
Phenotype Linking Genetic Variants 
to Complex Diseases
Elisa Mariella 1, Federico Marotta 1, Elena Grassi 1, Stefano Gilotto 1 and Paolo Provero 1,2*

1 Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy, 2 Center for Tranlational 
Genomics and Bioinformatics, San Raffaele Scientific Institute, Milan, Italy

In the last decades, genome-wide association studies (GWAS) have uncovered 
tens of thousands of associations between common genetic variants and complex 
diseases. However, these statistical associations can rarely be interpreted functionally 
and mechanistically. As the majority of the disease-associated variants are located far 
from coding sequences, even the relevant gene is often unclear. A way to gain insight 
into the relevant mechanisms is to study the genetic determinants of intermediate 
molecular phenotypes, such as gene expression and transcript structure. We propose 
a computational strategy to discover genetic variants affecting the relative expression 
of alternative 3′ untranslated region (UTR) isoforms, generated through alternative 
polyadenylation, a widespread posttranscriptional regulatory mechanism known to have 
relevant functional consequences. When applied to a large dataset in which whole genome 
and RNA sequencing data are available for 373 European individuals, 2,530 genes with 
alternative polyadenylation quantitative trait loci (apaQTL) were identified. We analyze and 
discuss possible mechanisms of action of these variants, and we show that they are 
significantly enriched in GWAS hits, in particular those concerning immune-related and 
neurological disorders. Our results point to an important role for genetically determined 
alternative polyadenylation in affecting predisposition to complex diseases, and suggest 
new ways to extract functional information from GWAS data.

Keywords: human genetic variants, alternative polyadenylation, quantitative trait loci (QTL), whole-genome 
sequencing (WGS), RNA sequencing (RNA-Seq), genome-wide association studies (GWAS)

INTRODUCTION

Understanding the relationship between human genotypes and phenotypes is one of the central goals 
of biomedical research. The first sequencing of the human genome (International Human Genome 
Sequencing Consortium, 2001; Venter et al., 2001) and the following large-scale investigations of 
genetic differences between individuals by efforts such as the 1000 Genome Project Consortium 
(The 1000 Genomes Project Consortium, 2015) provided the foundation for the study of human 
genetics at the genome-wide level.

Genome-wide association studies (GWAS) examine common genetic variants to identify 
associations with complex traits, including common diseases. Long lists of genetic associations 
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with disparate traits have been obtained, but their functional 
interpretation is far from being straightforward (Visscher et al., 
2017). Indeed, because of linkage disequilibrium, GWAS identify 
genomic regions carrying multiple variants among which it 
is not possible to identify the causal ones without additional 
information. Furthermore, most loci identified in human GWAS 
are in noncoding regions, presumably exerting regulatory effects, 
but usually, we do not know the identity of the affected gene or 
the molecular mechanism involved.

A possible way to gain insight into the mechanisms behind 
GWAS associations is to investigate the effect of genetic variants 
on intermediate molecular phenotypes, such as gene expression 
(Cookson et al., 2009; Albert and Kruglyak, 2015). Expression 
quantitative trait loci (eQTL) are genomic regions carrying 
one or more genetic variants affecting gene expression. Besides 
their intrinsic interest in understanding the control of gene 
expression, eQTL studies can be exploited for the interpretation 
of GWAS results, helping to prioritize likely causal variants and 
supporting the formulation of mechanistic hypotheses about the 
links between genetic variants and diseases.

Recent studies have shown that genetic variants acting on the 
whole RNA processing cascade are at least equally common as, 
and largely independent from, those that affect transcriptional 
activity and that they can be a major driver of phenotypic 
variability in humans (Manning and Cooper, 2017). Therefore, it is 
important to identify the genetic variants associated to transcript 
structure, including splicing and alternative untranslated 
region (UTR) isoforms, besides those affecting transcriptional 
levels, and different approaches have been proposed to this end 
(Lappalainen et al., 2013; Monlong et al., 2014). From these 
studies, it emerges in particular that genetic variants frequently 
determine changes in the length of the expressed 3′ UTRs, 
and that these variants can be located not only within the 3′ 
UTR itself but also in regulatory regions outside the transcript 
(Lappalainen et al., 2013). In addition, genome-wide analyses 
specifically focused on alternative splicing have been performed 
(Ardlie et al., 2015; Xiong et al., 2015).

Polyadenylation is one of the posttranscriptional modifications 
affecting pre-mRNAs in the nucleus and involves two steps: the 
cleavage of the transcript and the addition of a poly(A) tail (Elkon 
et al., 2013; Tian and Manley, 2017). The most important regulatory 
elements involved are the polyadenylation signal (PAS) and other 
cis-elements, usually located within the 3′ UTR, but multiple 
and diversified regulatory mechanisms have been described 
(Oktaba et al., 2015; Yue et al., 2018). The PAS is recognized by 
the cleavage and polyadenylation specificity factor (CPSF) that, 
together with other protein complexes, induces the cleavage of the 
transcript in correspondence of the downstream poly(A) site. The 
large majority of human genes has multiple poly(A) sites so that 
alternative polyadenylation (APA) is a widespread phenomenon 
contributing to the diversification of the human transcriptome 
through the generation of alternative mature transcripts with 
different 3′ ends. Such transcripts are translated into identical 
proteins, but protein level, localization, and even interactions can 
depend on the 3′ end of the transcript (Mayr, 2018).

APA events have been grouped into classes based on the 
location of the alternative poly(A) site and the type of change 

determined by their differential usage (Elkon et al., 2013). In 
this work, we have taken into consideration only the simplest 
and most frequent mode (tandem 3′ UTR APA), in which two 
poly(A) sites located within the same terminal exon, one in a 
proximal and one in a distal position, produce transcripts that 
differ only in the length of the 3′ UTR. Such variation in 3′ UTR 
length can have an important functional impact, for example by 
affecting the binding of microRNAs and RNA-binding proteins 
and thus transcript abundance, translation, and localization. 
Moreover, APA regulation is strongly tissue and cell type 
dependent (Sandberg et al., 2008; Ji et al., 2009; Mayr and Bartel, 
2009; Fu et al., 2011; Masamha et al., 2014), and several examples 
are known of altered APA regulation associated to human 
diseases (Chang et al., 2017b; Manning and Cooper, 2017).

How genetic variants influence APA has not been 
comprehensively investigated in a large human population yet. 
A recent analysis of whole-genome sequencing (WGS) data 
from Lappalainen et al. (2013) found hundreds of common 
single nucleotide polymorphisms (SNPs) causing the alteration 
or degradation of motifs that are similar to the canonical PAS 
(Ferreira et al., 2016) but did not extend the analysis to other 
possible mechanisms. Other studies found strong associations 
between genetic variants and APA regulation (Kwan et al., 
2008; Thomas and Sætrom, 2012; Yoon et al., 2012; Lappalainen 
et al., 2013; Zhernakova et al., 2013; Monlong et al., 2014), but 
a systematic investigation based on a large number of samples 
and variants, specifically targeted to APA rather than generically 
to transcript structure, and unbiased in the choice of variants to 
examine, is not yet available.

Here, we propose a new computational strategy for the genome-
wide investigation of the influence of genetic variants on the 
expression of alternative 3′ UTR isoforms in a large population. In 
particular, we analyzed WGS data paired with standard RNA-Seq 
data obtained in 373 European (EUR) individuals (Lappalainen 
et al., 2013). Statistically, our approach is analogous to methods 
commonly implemented in eQTL mapping analysis, and it aims 
to overcome the limitations illustrated above for the specific 
purpose of correlating variants to 3′ UTR isoforms.

A central task, preliminary to the analysis of genetic variants, 
is thus the quantification of the alternative 3′ UTR isoforms. 
Various strategies have been implemented to this end, from 
custom analysis pipelines for microarray data (Lembo et al., 
2012), to the development of next-generation sequencing 
technologies specifically targeted to the 3′ end of transcripts, such 
as the serial analysis of gene expression (SAGE) (Ji et al., 2009) 
and sequencing of APA sites (SAPAs) (Fu et al., 2011), allowing 
also the identification of previously unannotated APA sites.

More recently, tools able to capture APA events from standard 
RNA-Seq data have been developed. In general, these approaches 
can be divided into two categories: those that exploit previous 
annotation of poly(A) sites (Grassi et al., 2016; Ha et al., 2018), 
such the ones provided by PolyA_DB2 (Lee et al., 2007) and 
APASdb (You et al., 2015), and those that instead try to infer 
their location from the data (Masamha et al., 2014). Although 
the latter approach potentially allows analyzing also previously 
unannotated sites, the former leads to higher sensitivity (Grassi 
et al., 2016; Ha et al., 2018) and was thus preferred in this study. 
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Undoubtedly, approaches based on standard RNA-Seq are not as 
powerful and accurate as technologies that specifically sequence 
the 3′ ends. However, they allow studying this phenomenon 
in an uncomparably larger number of samples and conditions, 
including the recently generated large-scale transcriptomic 
datasets of normal individuals that we use in this work.

RESULTS

Genetic Variants Affect the Relative 
Expression of Alternative 3′ UTR Isoforms 
of Thousands of Genes
To investigate the effect of human genetic variants on the 
expression of alternative 3′ UTR isoforms, we developed a 
computational approach similar to the one commonly used for 
eQTL analysis (Figure 1). It was applied to a large dataset in 
which WGS data paired with RNA-Seq data are available for 373 
European (EUR) individuals [GEUVADIS dataset (Lappalainen 
et al., 2013)]. A collection of known alternative poly(A) sites 
(Lee et al., 2007) was used, together with a compendium of 
human transcripts, to obtain an annotation of alternative 3′ 
UTR isoforms that was then combined with RNA-Seq data to 
compute, for each gene, the expression ratio between short and 
long isoform (m/M value) in each individual.

Linear regression was then used to identify associations between 
the m/M values of each gene and the genetic variants within a cis-
window including the gene itself and all sequence located within 
1 Mbp from the transcription start site (TSS) or the transcription 
end site (TES). This led to the fitting of ~30 million linear models, 
involving ~6,300 genes and ~5.3 million variants. About 190,000 

models, involving 2,530 genes and ~160,000 variants, revealed a 
significant association (Figure 2, Table 1, File S1 and File S2).

Our set of significant genes shows only moderate overlap 
with genes, for which eQTLs or transcript ratio QTLs (trQTLs) 
were reported in Lappalainen et al. (2013) from the same data 
(Figure 3). Alternative polyadenylation can result in changes 
in gene expression levels as a consequence of the isoform-
dependent availability of regulatory elements affecting the 
stability of transcripts, such as microRNA binding sites (Tian 
and Manley, 2017). In this case, apaQTLs should also be eQTLs. 
However, APA may also have effects that do not imply changes 
in expression levels, including the modulation of mRNA 
translation rates (Spies et al., 2013; Floor and Doudna, 2016) 
and localization (An et al., 2008), and protein cytoplasmic 
localization (Berkovits and Mayr, 2015). Similarly, a complete 
overlap with trQTLs is not expected because they were identified 
by taking into account all the annotated alternative transcripts of 
a gene including alternative splicing and transcription initiation. 
The identification of apaQTLs for several genes for which trQTLs 
were not identified suggests that focusing on a specific class of 
transcript structure allows higher sensitivity.

These results show that a large number of genetic 
determinants of alternative polyadenylation can be inferred from 
the analysis of standard RNA-Seq data paired with the genotypic 
characterization on the same individuals.

apaQTLs Are Preferentially Located Within 
Active Genomic Regions
Just like eQTLs, we expect apaQTLs be located within genomic 
regions that are active in the relevant cell type (lymphoblastoid 

FIGURE 1 | Schematic representation of the method. Genotypic data paired with RNA-Seq data from a large cohort of individuals are required to perform alternative 
polyadenylation quantitative trait loci (apaQTL) mapping analysis. RNA-Seq data are exploited, together with an annotation of alternative 3′ untranslated region 
(UTR) isoforms, to compute for each gene the m/M value that is proportional to the ratio between the expression of its short and long 3′ UTR isoforms. Then, the 
association between the m/M values of a gene and each nearby genetic variant is evaluated by linear regression. Genotypes are defined in the standard way: 0 
means homozygous for the reference allele, 1 means heterozygous, and 2 indicates the presence of two copies of the alternative allele.
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cells for our data). To verify this hypothesis, we superimposed the 
apaQTLs to the ChromHMM annotation of the human genome 
for the GM12878 cell line (Ernst et al., 2011) and used logistic 
regression, as detailed in the Material and Methods, to determine 
the enrichment or depletion of apaQTLs for each chromatin 
state, expressed as an odds ratio (OR). As expected, significant 
ORs >1 were obtained for active genomic regions, such as 
transcribed regions, promoters, and enhancers, suggesting that 
genetic variants have a higher probability of being apaQTLs 
when they are located in active regions. Conversely, apaQTLs 
were depleted in repressed and inactive chromatin states. Similar 
results were obtained using broad chromatin states (Figure 4), 
defined following Ernst et  al. (2011) or all 15 chromatin states 
reported by ChromHMM (Figure S1).

As a control, the same enrichment analysis was performed 
with the ChromHMM annotation obtained in a different cell 

type, namely, normal human epithelial keratinocytes (NHEK). All 
NHEK active chromatin states showed a reduced enrichment in 
apaQTLs compared with GM1278, and regions repressed in NHEK 
cells actually showed significant enrichment of lymphoblastoid 
apaQTLs (Figure S2 and Figure S3). Taken together, these results 
show that genetic variants affecting alternative polyadenylation 
tend to be located in cell-type-specific active chromatin regions.

The detection of a significant apaQTL enrichment within 
promoters and enhancers suggests that also these genomic regions 
may be involved in the APA regulation, in agreement with the 
similar enrichment found, generically for trQTLs, in Lappalainen 
et al. (2013). However, these results could also be explained, 
in principle, by linkage disequilibrium between promoters or 
enhancers and 3′ UTR regions. To evaluate the prevalence of this 
phenomenon, we observed that among 2,113 (3,192) significant 
genetic variants surviving linkage disequilibrium (LD) pruning 
(see Material and Methods) inside promoters (enhancers), only 
288 (376) are in LD (R2 > 0.8) with significant genetic variants 
within 3′ UTRs. Furthermore, the reported enrichments 
remained highly significant after the exclusion of these variants, 
supporting the idea that promoters and enhancers have an 
independent role in the genetic component of APA regulation.

In the following, we will divide apaQTLs in two classes: 
intragenic apaQTLs are those located inside one of the genes 

FIGURE 2 | Manhattan plot illustrating the results of the apaQTL mapping analysis. For each fitted model, the −log10 nominal P value is shown according to the 
position of the tested genetic variant. The red line indicates the threshold for genome-wide statistical significance, after multiple-testing correction (nominal P < 3.1 × 
10−4, corresponding to corrected empirical P < 0.05).

TABLE 1 | Results of alternative polyadenylation quantitative trait loci (apaQTL) 
mapping analysis.

Total Significant

Models 30,136,480 192,715
Genes 6,256 2,530
Variants 5,309,860 160,223
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whose isoform ratio we are able to analyze, while all other apaQTLs 
will be referred to as extragenic (note that these might be located 
inside a gene for which we are unable to perform the analysis, for 
one of the reasons explained in the Material and Methods).

Intragenic apaQTLs Are Enriched in 
Coding Exons and 3′ UTRs
Having established that genetic variants have a widespread influence 
of the expression of alternative 3′ UTR isoforms, we turned to 

their putative mechanisms of action. First of all, we considered the 
distribution of intragenic apaQTLs among regions contributing 
to the mRNA versus introns. As shown in Figure 5, intragenic 
apaQTLs are enriched in coding exons and 3′ UTRs and depleted 
in introns and 5′ UTRs. The depletion of introns suggests that most 
intragenic apaQTLs exert their regulatory role at the transcript level, 
e.g., by modulating the binding of trans-acting factors to the mRNA.

Among mRNA regions, the enrichment of 3′ UTRs is expected, 
since these regions contain several elements involved in the 

FIGURE 3 | Comparison of genes with different molecular QTLs. Overlap between genes with significant alternative polyadenylation QTL (apaQTL), expression QTL 
(eQTL), and transcript ratio QTL (trQTL).

FIGURE 4 | Enrichment of apaQTLs within active genomic regions in the GM12878 cell line. For each broad state, that was defined starting from the ChromHMM 
annotation, the odds ratio (OR) obtained by logistic regression and its 95% CI are shown.
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regulation of both alternative polyadenylation and mRNA stability. 
The enrichment of coding exons could be ascribed to regulatory 
elements residing in these portions of the mRNAs or to residual 
effects of LD with variants located in the 3′ UTR, notwithstanding 
the LD pruning procedure implemented in the enrichment analysis 
(see Material and Methods). Note that while several poly(A) sites 
are located upstream of the last exon (Tian et al., 2007), within 
both intronic sequences and internal exons, such sites were not 
taken into account in our analysis. Finally, the depletion of 5′ 
UTRs might be due to the distance of these elements from the 
polyadenylation loci and to the fact that these regions are mostly 
involved in other regulatory mechanisms, such as translational 
regulation (Hinnebusch et al., 2016). In the following, we examine 
in more detail three possible mechanisms by which intragenic 
apaQTLs could exert their action.

Creation and Destruction of PAS Motifs
The first possibility is direct interference with the APA 
regulation, favoring the production of one of the two isoforms in 
individuals with a particular genotype. A comprehensive atlas of 
high-confidence PAS has been recently reported (Gruber et al., 
2016). In addition to the canonical PAS motifs (AAUAAA and 
AUUAAA), it contains 10 previously known signals and 6 new 
motifs. Exploiting this resource, we were able to identify SNPs 
that cause the creation or the destruction of putative functional 
PAS motifs, and, as expected, we found that they were enriched 
among apaQTLs [OR = 1.72, 95% confidence interval (CI) = 
1.08−2.75, P = 0.0216]. In total, 42 PAS-altering variants were 
found to be apaQTLs of the gene in which they reside. While 
expected, this result can be considered to validate our strategy.

A few examples are worth discussing in detail. SNP rs10954213 
was shown by several studies (Cunninghame Graham et al., 2007; 
Graham et al., 2007; Yoon et al., 2012) to determine the preferential 
production of the short isoform of the IRF5 transcription factor 
through the conversion of an alternative PAS motif (AAUGAA) 
into the canonical one (AAUAAA) in a proximal position within 
the 3′ UTR. Consistently, we found that this variant is associated 
with higher prevalence of the short isoform (Figure 6). Moreover, 
the same variant was associated to higher risk of systemic lupus 
erythematosus (SLE) and higher IRF5 expression, which could be 

due to the loss of AU-rich elements (ARE) in the short transcript 
isoform (Yoon et al., 2012). Globally, these findings are in agreement 
with the known involvement of IRF5 in several pathways that are 
critical for the onset of SLE [type I IFN production, M1 macrophage 
polarization, autoantibody production, and induction of apoptosis 
(Lazzari and Jefferies, 2014)].

A similar trend was detected in the case of the rs9332 variant, 
located within the 3′ UTR of the MTRR gene, encoding an enzyme 
essential for methionine synthesis (Figure 7). This variant was 
reported to be associated with a higher risk of spina bifida, along with 
other variants within the same gene (Shaw et al., 2009). We found 
that the variant is associated with the increased relative expression 
of the short isoform of the MTRR transcript, as a consequence of 
the creation of a proximal canonical PAS. We can thus speculate 
that, similarly to what was shown for IRF5, this posttranscriptional 
event could lead to a variation in the activity of the enzyme activity 
and ultimately to increased disease susceptibility.

The same mechanism might provide putative mechanistic 
explanations for associations found by GWAS studies. For example, 
we found the variant rs5855 to be an apaQTL for the PAM gene 
(Figure S4), essential in the biosynthesis of peptide hormones and 
neurotransmitters (Eipper et al., 1983; Czyzyk et al., 2005; Gaier et al., 
2014). No eQTLs or trQTLs for this gene were revealed by the analysis 
of the same data reported in Lappalainen et al. (2013). This variant 
replaces an alternative PAS motif (AGUAAA) with the canonical 
AAUAAA, thus presumably increasing its strength. This PAS motif is 
located 26 bps upstream of an APA site corresponding to a 3′ UTR of 
~450 bps, instead of the ~2,000 bps of the canonical isoform, lacking 
several predicted microRNA binding sites. Indeed, our analysis 
revealed a shortening of the 3′ UTR in individuals with the alternate 
allele, i.e., the canonical PAS motif. Notably, the variant is in strong 
LD (R2 = 0.90) with the intronic variant rs10463554, itself an apaQTL 
for PAM, which has been associated to Parkinson’s disease in a recent 
meta-analysis of GWAS studies (Chang et al., 2017a).

Conversely, the destruction of a canonical, proximal PAS motif 
leads to shortening of the 3′ UTR of BLOC1S2 (Figure  S4). The 
variant rs41290536 replaces the canonical PAS motif AAUAAA with 
the noncanonical one AAUGAA 17 bps upstream of a poly(A) site 
corresponding to a UTR length of ~750 bps compared to the ~2,200 
of the longest isoform. The variant is in complete LD (R2 = 1) with two 

FIGURE 5 | Enrichment of intragenic apaQTLs within coding and noncoding transcript regions. For each gene region, the OR obtained by logistic regression and its 
95% CI are shown.
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variants that have been associated to predisposition to squamous cell 
lung carcinoma (rs28372851 and rs12765052) (McKay et al., 2017).

Alteration of MicroRNA Binding
In an alternative scenario, genetic variants can influence the 
relative expression of alternative 3′ UTR isoforms by acting on 

the stability of transcripts, for example through the creation 
or destruction of microRNA binding sites. For each gene with 
alternative 3′ UTR isoforms, we divided the 3′ UTR into two 
segments: the “PRE” segment, common to both isoforms, and the 
“POST” segment, contained only in the longer isoform. Variants 
altering microRNA binding sites located in the POST segment 

FIGURE 6 | (A) Boxplot showing the variation of the log2-transformed m/M values obtained for IRF5 as a function of the genotype of the individuals for rs10954213. 
(B) LocusZoom plot (Pruim et al., 2010) illustrating the results obtained for IRF5 in the genomic region around rs10954213 (100 kb both upstream and downstream 
its genomic location). In the top panel, each tested genetic variant was reported as a function of both its genomic coordinate and its association level with IRF5 
(log10-transformed nominal P value); the points color reflects the linkage disequilibrium (LD) level (R2) between rs10954213 and each of the other genetic variants 
in the locus. The bottom panel shows the genes and their orientation in the locus. (C) Figure adapted from the UCSC Genome Browser screenshot. RNA-Seq 
tracks, reporting coverage per million mapped reads, are shown for three representative individuals: NA12778 (homozygous for the reference allele), HG00325 
(heterozygous) and NA12872 (homozygous for the alternative allele). IRF5 RefSeq, IRF5 PRE/POST segments, poly(A) sites, and common SNPs are shown. The 
rs10954213 variant and the affected poly(A) site (Hs.521181.1.20) are highlighted.
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can result in the variation of the relative isoform expression since 
they affect only the expression of the long isoform.

For example, we found that the rs8984 variant is associated 
with an increased prevalence of the long transcript isoform of 
the CHURC1 gene, an effect that could be due to the destruction 
of a binding site recognized by microRNAs of the miR-582-5p 
family within the POST segment of the gene (Figure S5). More 
generally, we found that apaQTLs are enriched, albeit slightly, 

among the genetic variants that create or break putative functional 
microRNA binding sites (OR = 1.15, 95% CI = 1.02−1.30, P = 
0.022). However, we could not find significant agreement between 
the predicted and actual direction of the change in isoform ratios 
for these cases. Together with the marginal significance of the 
enrichment, this result suggests that the alteration of microRNA 
binding sites is not among the most relevant mechanisms in the 
genetic determination of 3′ UTR isoform ratios.

FIGURE 7 | (A) Boxplot showing the variation of the log2-transformed m/M values obtained for MTRR as a function of the genotype of the individuals for rs9332. 
(B) LocusZoom plot illustrating the results obtained for MTRR in the genomic region around rs9332 (100 kb both upstream and downstream its genomic location). 
(C) Figure adapted from the UCSC Genome Browser screenshot. RNA-Seq tracks, reporting coverage per million mapped reads, are shown for three representative 
individuals: HG00268 (homozygous for the reference allele), NA12340 (heterozygous), and NA11994 (homozygous for the alternative allele). MTRR RefSeq, MTRR 
PRE/POST segments, poly(A) sites, and common SNPs are shown. The rs9332 variant and the affected poly(A) site (Hs.481551.1.38) are highlighted.
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Alteration of RNA-Protein Binding
RNA-binding proteins (RBPs) play important roles in the 
regulation of the whole cascade of RNA processing, including 
co- and posttranscriptional events. Although many of them have 
not been fully characterized yet, a collection of 193 positional 
weight matrices (PWMs) describing a large number of RNA 
motifs recognized by human RBPs has been obtained through 
in vitro experiments (Ray et al., 2013). Here, we exploited this 
resource to identify SNPs that alter putative functional RBP 
binding sites. Consistently with the involvement of RBPs in the 
regulation of alternative polyadenylation, mRNA stability, and 
microRNA action, we found a highly significant enrichment of 
RBP-altering SNPs among intragenic apaQTLs (OR = 1.48, 95% 
CI = 1.31–1.66, P = 8.54 × 10−11).

Specifically, we obtained a positive and significant OR for 
20 individual RBP-binding motifs (Table S1). Although in 
most cases the enrichment is modest, some of the enriched 
motifs correspond to RNA-binding domains found in RBPs 
with a previously reported role in polyadenylation regulation 
[members of the muscle blind protein family (Shi and Manley, 
2015; Ha et al., 2018), KHDRBS1 (La Rosa et al., 2016), and 
HNRNPC (Gruber et al., 2016)]. Other enriched RNA-binding 
motifs are associated with splicing factors (RBM5, SRSF2, 
SRSF9, and RBMX) and other RBPs that may be involved in 
RNA processing (such as members of the MEX3 protein family 
and HNRNPL). On the contrary, only one significant motif is 
associated with an RBP that may be involved in RNA degradation 
[CNOT4 (Miller and Reese, 2012)]. The involvement of several 
splicing factors is consistent with evidence supporting a 
mechanistic interplay between polyadenylation and splicing, 
which goes beyond the regulation of the usage of intronic 
poly(A) sites (Gunderson et al., 1994; Lutz et al., 1996; Liang 
and Lutz, 2006; Millevoi et al., 2006).

Extragenic apaQTLs Act in-Cis Through 
the Perturbation of Regulatory Elements
Understanding the function of extragenic apaQTLs is less 
straightforward because, although there are few examples of 
DNA regulatory elements contributing to APA regulation 
(Oktaba et al., 2015), it is commonly believed that APA is 
mainly controlled by cis-elements located within transcripts, 
both upstream and downstream of the poly(A) sites (Tian and 
Manley, 2017).

To further explore this aspect we took advantage of a 
different annotation of active genome regions, which includes 
the association between regulatory regions and target genes, 
namely, the cis-regulatory domains (CRDs) identified in 
lymphoblastoid cell lines in Delaneau et al. (2019). Extragenic 
apaQTLs were indeed found to be enriched in CRDs (OR = 1.73, 
95% CI = 1.69–1.78, P < 10−16). The 3D structure of the genome 
is a key aspect of gene regulation (Krijger and de Laat, 2016), 
as it determines physical contacts between distal regulatory 
regions and proximal promoters. In particular, CRDs have been 
described as active sub-domains within topologically associating 
domains (TADs), containing several noncoding regulatory 
elements, both proximal and distal. The perturbation of those 

regulatory elements by genetic variants can lead to the alteration 
of gene expression and perhaps interfere with other processes 
such as alternative polyadenylation, as suggested by our results. 
Importantly, CRDs have been assigned to the nearby genes they 
regulate. We could thus observe that extragenic apaQTLs tend 
to fall within CRDs that have been associated with their target 
genes much more frequently than expected by chance. Indeed, 
this correspondence was verified for 27,527 extragenic apaQTLs, 
while the same degree of concordance was never obtained in 100 
permutations in which each extragenic apaQTL was randomly 
associated to a gene in its cis-regulatory window (median number 
of correspondences, 12,571). These results suggest an important 
role of genetic variants located in active, nontranscribed cis-
regulatory regions in regulating alternative polyadenylation of 
the target genes.

A Role for apaQTLs in Complex Diseases
Since common genetic variation is involved in complex 
diseases, often by affecting gene regulation, a natural question 
is whether apaQTLs can be used to provide a mechanistic 
explanation for some of the genetically driven variability 
of complex traits, thus adding 3′ UTR length to the list of 
useful intermediate phenotypes. Besides the specific examples 
discussed above, we found an overall striking enrichment 
among apaQTLs of genetic variants reported in the NHGRI-
EBI GWAS Catalog (MacArthur et al., 2017) (OR = 3.17, 95% 
CI = 3.01−3.33, P < 10−16).

We also investigated the enrichment of each trait category 
defined by the Experimental Factor Ontology (EFO) and then 
for each individual trait. In line with the fact that the apaQTL 
mapping was performed in lymphoblastoid cells, the strongest 
enrichment was observed for immune system disorders (OR = 
5.41, 95% CI = 4.52−6.45, P = 2.50 × 10−77) (Figure 8 and Table S2). 
However, a strong enrichment was also detected for almost all the 
other tested categories, including neurological disorders (OR = 
4.32, 95% CI = 3.86−4.83, P = 2.47 × 10−142) and cancer (OR = 
3.96, 95% CI = 3.36−4.64, P = 4.15 × 10−63).

A significant enrichment was detected for 95 individual 
complex traits, including several diseases. Among these, the 
largest ORs were observed for autism spectrum disorder (OR = 
42.6, 95% CI = 32.9−55.5, P = 2.36 × 10−174), squamous cell lung 
carcinoma (OR = 26.1, 95% CI = 15.7−43.3, P = 1.29 × 10−36), 
lung carcinoma (OR = 17.9, 95% CI = 12.7−25.2, P = 9.63 × 
10−62), schizophrenia (OR = 10.6, 95% CI = 9.01−12.4, P = 1.25 × 
10−182), and HIV-1 infection (OR = 6.51, 95% CI = 3.75−10.8, 
P= 2.28 × 10−12). The complete list of enriched traits can be  
found in File S3.

We observed that apaQTLs that are also GWAS hits often 
map to genes in the human leukocyte antigen (HLA) locus, 
suggesting that, in at least some cases, the enrichment could be 
mostly driven by this genomic region. Somewhat unexpectedly, 
this was particularly evident for neurological disorders. To 
clarify this point, we evaluated all enrichments after excluding 
the variants in the HLA locus. Although in some cases the 
OR decreased after removing HLA variants, for most GWAS 
categories, the enrichment was still significant (Figure S6 and 
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Table S3). For example, we found 155 apaQTLs associated 
with autism spectrum disorder, 116 of which affecting HLA 
genes. After the exclusion of HLA variants, the enrichment 
was still highly significant (OR = 10.66, 95% CI = 6.92−15.95,  
P = 7.05 × 10−29). On the contrary, the enrichment of variants 
associated to pulmonary adenocarcinoma is driven by the HLA 
locus and becomes nonsignificant after excluding HLA variants 
(OR = 1.35, 95% CI = 0.22−4.39, P = 0.68). The complete list of 
enriched traits after the exclusion of HLA variants can be found 
in File S4.

The Effect of Genetic Variants on APA Can 
be Confirmed in Patients
As briefly discussed above, the rs10954213 variant is associated 
with a higher risk of SLE. Evidence about the related molecular 
mechanism arose from the analysis of cell lines derived from 
healthy individuals (Cunninghame Graham et al., 2007; Graham 
et al., 2007), and the effect of the variant on IRF5 expression in 
blood cells was confirmed in SLE patients (Kozyrev et al., 2007; 
Feng et al., 2010). However, direct evidence on the effect of this 
variant on APA regulation in SLE patients is still missing.

To assess whether rs10954213 affects IRF5 APA regulation 
in SLE patients, we analyzed RNA-Seq data derived from whole 

blood cells in 99 patients (Hung et al., 2015). After the exclusion 
of 52 individuals whose genotype cannot be determined with 
certainty from RNA-Seq reads, we detected a strong difference in 
IRF5 m/M values among the three rs10954213 genotypes, with the 
alternative allele associated with higher m/M values, i.e., shorter 3′ 
UTR (Kruskal−Wallis test P = 2.49 × 10−8; Figure 9). Therefore, the 
variant has, at least qualitatively, the same effect in the whole blood 
of SLE patients as in lymphoblastoid cell lines of normal individuals.

DISCUSSION

We used a new efficient strategy to study how human genetic 
variants influence the expression of alternative 3′ UTR isoforms. 
This issue has been previously investigated with different 
approaches (Kwan et al., 2008; Thomas and Sætrom, 2012; 
Lappalainen et al., 2013; Zhernakova et al., 2013; Monlong et al., 
2014). The method we propose combines wide applicability, 
being based on standard RNA-Seq data, with the high sensitivity 
allowed by limiting the analysis to a single type of transcript 
structure variant, namely, 3′ UTR length. Such higher sensitivity 
led us to discover thousands of variants associated with 3′ UTR 
length that were not identified in a general analysis of transcript 
structure from the same data in Lappalainen et al. (2013). 

FIGURE 8 | Enrichment of genome-wide association studies (GWAS) hits among apaQTLs, for different categories of complex traits. For each category, the OR 
obtained by logistic regression and its 95% CI are shown.
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Moreover, the significant overlap between our apaQTLs and 
the eQTLs identified in Lappalainen et al. (2013) confirms the 
known relevant role of 3′ UTRs in gene expression regulation. 
However, the regulation of 3′ UTR length is known to affect 
regulatory processes that do not directly alter mRNA abundance, 
such as regulation of translation efficiency, mRNA localization, 
and membrane protein localization (Elkon et al., 2013; Berkovits 
and Mayr, 2015). Indeed, most of the apaQTLs we found were 
not identified as eQTLs in Lappalainen et al. (2013).

The various mechanisms underlying the association between 
genetic variants and the relative abundance of 3′ UTR isoforms 

can be classified in two main classes based on whether they 
affect the production or degradation rates of the isoforms. 
The production-related mechanisms include the alteration of 
APA sites, of cis-regulatory elements located in promoters and 
enhancers, and of binding sites of RBPs involved in nuclear RNA 
processing; the degradation-related mechanisms include the 
alteration of the binding sites of microRNAs and cytoplasmatic 
RBPs affecting mRNA stability. Taken together, our results 
suggest that the genetic effects on 3′ UTR isoforms act prevalently 
at the level of production, as shown by the strong enrichment of 
apaQTLs in nontranscribed regulatory regions and among the 

FIGURE 9 | (A) The effect of rs10954213 on the relative expression of the IRF5 alternative isoforms was investigated also in a small cohort of systemic lupus 
erythematosus (SLE) patients. The boxplot shows the variation of the log2-transformed m/M values obtained for IRF5 as a function of the genotype of the individuals. 
(B) Figure adapted from the UCSC Genome Browser screenshot. RNA-Seq tracks, reporting coverage per thousand mapped reads, are shown for three representative 
individuals: SRR2443195 (homozygous for the reference allele), SRR2443197 (heterozygous), and SRR2443242 (homozygous for the alternative allele). IRF5 RefSeq, 
IRF5 PRE/POST segments, poly(A) sites, and common SNPs are shown. The rs10954213 variant and the affected poly(A) site (Hs.521181.1.20) are highlighted.
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variants creating or disrupting APA sites and by the relatively 
weak enrichment of variants creating or disrupting microRNA 
binding sites. In addition, the results on altered RBP binding sites 
confirm this picture, since most motifs altered by apaQTLs are 
associated to nuclear RBPs involved in nuclear RNA processing.

In particular, we identified several apaQTLs creating or 
destroying putative functional PAS motifs. However, it should 
be noted that our ability to detect these events is intrinsically 
limited by the motif repertoire that we used (Gruber et al., 2016), 
which might miss some of the rarest alternative PAS motifs. For 
example, we found that the rs6151429 variant is associated with 
the increased expression of the long isoform of the transcript 
codified by the Arylsulfatase A (ARSA) gene (Figure S4), in 
agreement with previous evidence (Gieselmann et al., 1989). 
However, we did not include this variant among those disrupting 
a PAS motif since the disrupted motif (AAUAAC) is not included 
in the catalog that we used. In addition, we considered only PAS-
altering single nucleotide substitutions, while also other types 
of genetic variants can modify the PAS landscape of a gene. For 
example, a small deletion (rs374039502) causes the appearance 
of a new PAS motif within the TNFSF13B gene and has been 
associated with a higher risk of both multiple sclerosis and SLE 
in the Sardinian population (Steri et al., 2017).

We observed a strong enrichment of apaQTLs in regulatory 
regions such as promoters and enhancers, as previously found for 
variants generically affecting transcript structure in Lappalainen 
et al. (2013). These results point to an important role of DNA-
binding cis-acting factors in the regulation of 3′ UTR length and 
to the existence of a widespread coupling between transcription 
and polyadenylation (Ji et al., 2011; Elkon et al., 2013). The 
mechanisms behind this coupling are thought to include the 
interaction between rates of Pol II elongation and alternative 
polyadenylation and the recruitment, by the transcription 
machinery, of trans-acting factors affecting PAS choice (Tian 
and Manley, 2017). Moreover, it has been shown that RBPs 
involved in APA regulation can interact with promoters  
(Oktaba et al., 2015).

Regarding the effect of genetic variants on mRNA stability, 
we focused on the perturbation of microRNA binding, taking 
into account both the creation and the destruction of microRNA 
binding sites within transcripts. The relevance of mRNA stability 
seemed to be confirmed by a modest enrichment of microRNA-
altering SNPs among intragenic apaQTL; however, the direction 
of their effect on microRNA binding is not statistically consistent 
with the expected direction of the change in 3′ UTR isoform 
ratio. The same type of ambiguity has been previously reported 
with regard to the relationship between the effect of SNPs on 
microRNA binding and gene expression levels (Võsa et al., 2015) 
and makes us doubt whether these microRNA-altering apaQTLs 
are truly causal for the associated gene. These results suggest that 
the alteration of microRNA binding may not be a predominant 
mechanism explaining the variation of the expression of 
alternative 3′ UTR isoforms across individuals. Limitations in 
the accuracy of predicted micorRNA binding sites might also 
contribute to this result.

Another possible mechanism of action of intragenic apaQTLs 
is the perturbation of the regulatory action of RBPs, as indicated 

by the modest but highly significant enrichment of SNPs altering 
RNA-binding motifs. However, the lack of strong enrichments 
when considering each motif individually suggests that specific RBP 
motifs may have a small regulatory impact on APA that may also 
depend on the context, as recently suggested (Ha et al., 2018). As in 
the case of microRNAs, also our limited knowledge of the binding 
preferences of RBPs might limit our power to detect their effects: 
More sophisticated models should take into account the highly 
modular structure of RBPs that often include multiple RNA-binding 
domains (RBDs), the emerging importance of both the binding 
context and the RNA structure and even more sophisticated modes 
of RNA binding (Dominguez et al., 2018; Hentze et al., 2018).

Furthermore, it is reasonable to assume that also noncanonical 
modes of APA regulation can be affected by genetic variants 
and therefore drive the detection of variable isoform expression 
ratios. For example, it has been recently suggested that an 
epitranscriptomic event, the m6A mRNA methylation, can be 
associated with alternative polyadenylation (Yue et al., 2018). In 
addition, recently published results suggest that genetic variants 
could affect APA regulation also in an indirect way, without 
affecting the regulatory machinery. Past studies have reported 
that a narrow range of 10–30nt between the PAS and the poly(A) 
site is required for efficient processing; however, Wu and Bartel 
(2017) suggested that also greater distances can sometimes be 
used, thanks to RNA folding events that bring the PAS and the 
poly(A) site closer to each other. Therefore, we can speculate that, 
if a genetic variant affects RNA folding in such a way as to modify 
the distance between the PAS and the poly(A) site, it could also 
influence APA regulation.

While the mechanisms discussed above act at the level of 
the primary or mature transcript, our results revealed a perhaps 
unexpectedly large number of extragenic apaQTLs, mostly 
located in regulatory regions. These apaQTLs point to an 
important role of DNA-binding elements such as transcription 
factors in regulating alternative polyadenylation through long-
distance interactions with cleavage and polyadenylation factors. 
The investigation of these mechanisms is thus a promising avenue 
of future research.

Alternative polyadenylation can affect several biological 
processes, influencing mRNA stability, translation efficiency, 
and mRNA localization (Tian and Manley, 2017). Therefore, it 
is not surprising that its perturbation has been associated with 
multiple pathological conditions (Chang et al., 2017b; Manning 
and Cooper, 2017). In the present study, we detected a strong 
enrichment of GWAS hits among apaQTLs, supporting the idea 
that 3′ UTR length is a useful addition to the list of intermediate 
molecular phenotypes that can be used for a mechanistic 
interpretation of GWAS hits. In particular, we identified genetic 
variants previously associated to neurological disorders, such as 
autism, schizophrenia, and multiple sclerosis, which may act by 
affecting the regulation of polyadenylation. The importance of 
posttranscriptional events in the onset of neurological diseases 
has been recently confirmed by two studies, demonstrating 
that genetic variants affecting alternative splicing (sQTL) give 
a substantial contribution to the pathogenesis of schizophrenia 
(Takata et al., 2017) and Alzheimer’s disease (Raj et al., 2018). We 
also observed that the relevant apaQTLs often map to HLA genes 
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but that the enrichment is not explained by the HLA locus alone. 
On the other hand, examples of APA events involving HLA genes 
have been reported (Hoarau et al., 2004; Kulkarni et al., 2017), 
and genes encoding antigen-presenting molecules account for 
the highest fraction of genetic risk for many neurological diseases 
(Misra et al., 2018).

A gene-based alternative approach to the interpretation of 
GWAS has been recently proposed. In the original implementation 
of Transcriptome Wide Association Studies (TWAS) (Gamazon 
et al., 2015), eQTL data obtained in a reference dataset are used 
to predict the genetic component of gene expression in GWAS 
cases and controls, which is then correlated with the trait of 
interest, thus allowing the identification of susceptibility genes. 
More recently, Gusev et al. (2016) proposed a summary-based 
TWAS strategy in which the association between the genetic 
component of gene expression and a trait is indirectly estimated 
through the integration of SNP–expression, SNP–trait, and SNP–
SNP correlation data. Furthermore, this kind of analysis has 
also been performed exploiting a collection of sQTLs, leading to 
the identification of new susceptibility genes for schizophrenia 
(Gusev et al., 2018) and Alzheimer’s disease (Raj et al., 2018). 
In a similar way, apaQTLs could be used to discover cases in 
which the association between genes and diseases is driven by 
the alteration of the expression of alternative 3′ UTR isoforms.

We are aware of some limitations of this study. First, the 
simple model that we used for the definition of alternative 3′ 
UTRs isoforms limits the type of events that can be detected 
because we can see only events involving poly(A) sites located 
within the transcript segments taken into account for the 
computation of the m/M values (the PRE and the POST 
segments). Nonetheless, the adoption of this simple model 
significantly reduces the computational burden and might be 
sufficient to indicate general trends that can be subsequently 
further investigated with more sophisticated models. Indeed, it 
has been previously shown, in a slightly different context (i.e., 
the comparison of APA events detected in different cellular 
conditions or tissues), that the results obtained with our model 
are comparable with those obtained exploiting a more complex 
model that takes into account all the possible APA isoforms 
of a gene, especially because also genes with multiple poly(A) 
sites mainly use only two or a few of them (Grassi et al., 2016). 
Second, our strategy depends on a preexisting annotation of 
poly(A) sites. Methods that infer the location of poly(A) sites 
from RNA-Seq data are available, but they can have lower 
sensitivity in the detection of APA events (Grassi et al., 2016; 
Ha et al., 2018). In addition, although the method is generally 
able to successfully discriminate APA events from alternative 
splicing events, it may give rise to spurious associations when 
intron retention is present within the 3′ UTRs, and therefore, 
such special cases should be inspected with particular attention. 
Finally, we examined only a single cell type (lymphoblastoid 
cells) to demonstrate the feasibility of apaQTL mapping 
analysis. A broader investigation, exploiting data such as those 
provided by Genotype–Tissue Expression (GTEx) consortium 
(Aguet et al., 2017), would be particularly valuable. Indeed, 
APA regulation seems to be significantly tissue specific and 

global trends of poly(A) sites selection in specific human tissues 
have been described: for example transcripts in the nervous 
system and brain are characterized by preferential usage of 
distal PAS, whereas in the placenta, ovaries and blood the usage 
of proximal PAS is preferred (Elkon et al., 2013).

In conclusion, we have identified thousands of common genetic 
variants associated with alternative polyadenylation in a population 
of healthy human subjects. Alternative polyadenylation is a 
promising intermediate molecular phenotype for the mechanistic 
interpretation of genetic variants associated to phenotypic traits 
and diseases.

MATERIAL AND METHODS

Data Sources
Human Genome and Transcriptome
The coordinates of the NCBI Reference Sequences (RefSeqs) in 
the human genome (hg19) were downloaded from the UCSC 
Genome Browser (09/04/2015) (O’Leary et al., 2016; Casper et al., 
2017). The corresponding transcript-gene map was downloaded 
from NCBI (version 69) and the Bioconductor R package org.
Hs.eg.db v3.4.0 (Carlson, 2016) was used to associate each Entrez 
Gene Id to its gene symbol. In addition, the reference sequence 
of the hg19 version of the human genome was downloaded from 
the ENSEMBL database, and a collection of poly(A) sites was 
obtained from PolyA_DB2 (10/02/2014) (Lee et al., 2007).

ChromHMM annotations (Ernst et al., 2011) were downloaded 
from the UCSC Genome Browser for the GM12878 and the NHEK 
cell lines (http://genome-euro.ucsc.edu/cgi-bin/hgFileUi?db=hg1
9&g=wgEncodeBroadHmm). In addition, the coordinates of cis 
regulatory domains (CRDs) and their association with genes were 
downloaded for lymphoblastoid cells from ftp://jungle.unige.ch/
SGX/ (Delaneau et al., 2019).

WGS and RNA-Seq Data
We exploited the RNA-Seq data obtained by the GEUVADIS 
consortium in lymphoblastoid cell lines of 462 individuals 
belonging to different populations, but we considered only 373 
individuals with European ancestry (EUR). BAM files were 
downloaded from the E-GEUV-1 dataset (Lappalainen et al., 
2013) in the EBI ArrayExpress archive (https://www.ebi.ac.uk/
arrayexpress/files/E-GEUV-1/). We also downloaded genotypic 
data for the same individuals and the results of the eQTL/
trQTL mapping analyses. The downloaded VCF files include 
genotypes for 465 individuals: among the 462 of them for which 
also RNA-Seq data are available, the large majority had been 
previously subjected to whole-genome sequencing (WGS) by 
the 1000 Genome Project (Phase 1) (The 1000 Genomes Project 
Consortium, 2015), but the GEUVADIS consortium additionally 
obtained genomic data for 41 of them through genotyping 
with single nucleotide polymorphism (SNP) array followed by 
genotype imputation (Lappalainen et al., 2013). Furthermore, 
whole-blood RNA-Seq data for 99 individuals affected by SLE 
were downloaded from the NCBI SRA database (SRP062966) 
(Leinonen et al., 2011; Hung et al., 2015).
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Regulatory Motifs and Related Expression Data
Different collections of regulatory motifs were downloaded. A 
list of 18 PAS motifs was obtained from Gruber et al. (2016), 
microRNA seeds were downloaded from TargetScan 7.2 
(Agarwal et al., 2015), and positional weight matrices (PWMs) 
describing the binding specificities of RNA-binding proteins 
were downloaded from the CISBP-RNA dataset (Ray et al., 
2013), including both the experimentally determined motifs 
and those that were inferred from related proteins. In addition, 
the list of microRNAs and RBPs expressed in lymphoblastoid 
cells were obtained from the expression data available in the 
E-GEUV-2 and E-GEUV-1 datasets on the EBI ArrayExpress 
archive (https://www.ebi.ac.uk/arrayexpress/files/E-GEUV-2/) 
(Lappalainen et al., 2013).

GWAS Catalog
A collection of genomic loci associated with human complex traits 
was obtained by downloading the NHGRI-EBI GWAS Catalog, 
v1.0.2 (MacArthur et al., 2017). This resource is continuously 
updated: the version we used was downloaded on October 10, 2018, 
and it was mapped to GRCh38.p12 and dbSNP Build 151. From 
the same website, we also downloaded a file showing the mapping 
of all the reported traits to the Experimental Factor Ontology 
(EFO) terms (Malone et al., 2010), including the parent category 
of each trait (the version of the downloaded file was r2018-09-30). 
In addition, the dbSNP Build 151 (Sherry et al., 1999) collection of 
human genetic variants was downloaded for hg19.

Annotation of Alternative 3′ UTR Isoforms
We considered the human transcripts included in RefSeq 
and associated them with the corresponding Entrez Gene 
Id. Moreover, we collapsed together the structures of all the 
transcripts assigned to a gene, using the union of all the exons 
of the various transcripts associated to a gene and defining the 3′ 
or 5′ UTR using, respectively, the most distal coding end and the 
most proximal coding start. The annotation of the resulting gene 
structures can be found in the supplementary data (see File S5).

The coordinates of the human poly(A) sites were converted 
from hg17 to hg19 using liftover (Hinrichs et al., 2006) and then 
combined with the gene structures defined above to define the 
alternative 3′ UTR isoforms. For the definition of alternative 3′ 
UTR isoforms, we adopted a simple model taking into account 
only two alternative poly(A) sites for each gene because previous 
evidence suggests that also genes with multiple poly(A) sites 
mainly use only two of them (Grassi et al., 2016). In particular, 
for each gene, we selected the most proximal poly(A) site among 
those falling within exons, preferring those located within the 
3′ UTR, and the end of the gene as the distal poly(A) site. In 
this way, we were able to define two segments of interest for each 
gene: the PRE segment, extending from the beginning of the 
last exon to the proximal poly(A) site, and the POST segment, 
from the proximal poly(A) site to the end of the gene. The PRE 
fragment is assumed to be contained into both the long and the 
short isoform, while the POST segment should be contained 
exclusively into the long isoform. The GTF file used for the 
computation of m/M values is available as File S6.

The relative prevalence of the short and long isoforms are 
evaluated, as described below, based on the number of RNA-Seq 
reads falling into the PRE and POST regions. While the whole 
region from the transcription start site to the proximal poly(A) 
site could be taken, in principle, as the PRE region, we chose to 
limit it to the last exon to minimize the confounding effect of 
alternative splicing.

Computation of m/M Values
Using the Bioconductor R package Roar (Grassi et al., 2016), 
for each gene with alternative 3′ UTR isoforms, we obtained an 
m/M value in each individual. The m/M value estimates the ratio 
between the expression of the short and the long isoform of a 
gene in a particular condition and the m/Ma,i of gene a in the ith 
individual is defined as
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The m/M values were computed for 14,542 genes for which 
we were able to define alternative 3′ UTR isoforms. Infinite and 
negative values of m/M (that happen when the POST region does 
not produce any reads, and when the POST region produces 
more reads than the PRE region after length normalization, 
respectively) were considered as missing values. Then, only those 
on autosomal chromosomes (chr1-22) and with <100 missing 
m/M values were selected for the following investigation, leaving 
us with 6,256 genes.

Genotypic Data Preprocessing
Starting from the downloaded VCF files, we extracted genotypic 
data for 373 EUR individuals for whom also RNA-Seq data are 
available using VCFtools (Danecek et al., 2011). In addition, only 
common genetic variants with minor allele frequency (MAF) > 5% 
were considered in all the following analyses. The MAF values were 
computed taking into account that the reference allele reported in 
the VCF file may not always be the most frequent one in the EUR 
population considered by itself, and we conservatively attributed 
the most frequent homozygous genotype to individuals for which 
the genotype was missing, thus being sure to exclude all the less 
frequent variants from the analysis. We are aware that these MAF 
values may be an underestimate of the real ones, and therefore, in 
all the enrichment analyses (see below for details), we instead used 
MAF values obtained ignoring individuals with missing data.

Principal Component Analysis of 
Genotypic Data
It is known that special patterns of linkage disequilibrium (LD) 
can cause artifacts when a principal component analysis (PCA) 
is used to investigate population structure (Price et al., 2008). 
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We filtered out all the genetic variants falling within 24 long-
range LD (LRLD) regions whose coordinates were derived from 
Price et al. (2008). In addition, following Novembre et al. (2008), 
we performed an LD pruning of the genetic variants using the 
–indep-pairwise function from PLINK v1.9 (Chang et al., 2015) 
to recursively exclude genetic variants with pairwise genotypic 
R2 > 80% within sliding windows of 50 SNPs (with a 5-SNP 
increment between windows). Also in this case, VCFtools 
(Danecek et al., 2011) was used to apply all these filters to the 
VCF files, and finally, EIGENSTRAT v6.1.4 (Price et al., 2006) 
was used to run the PCA on the remaining genotypic data at the 
genome-wide level.

apaQTL Mapping
From a statistical point of view, we adopted the same strategy 
used in standard eQTL mapping analyses (Lappalainen et al., 
2013) to identify genetic variants that influence the expression 
level of the alternative 3′ UTR isoforms of a gene. For each of 
the 6,256 examined genes, we defined a cis-window as the region 
spanning the gene body and 1 Mbp from both its TSS and its TES. 
Then, for each gene, a linear model was fitted, independently for 
each genetic variant within its cis-window, using the genotype 
for the genetic variant as the independent variable and the log2-
transformed m/M value of the gene as the dependent variable:

log ( / ), , ,2 0 1 2
1

3

m M g I gPCa i j i i n n i a
n

= + × + × + × +
=

∑β β β α ε  (2)

where log2(m/Ma,i) is the log2 transformed m/M value computed 
for the a gene in the ith individual, gj,i is the genotype of the 
ith individual for the jth genetic variant, Ii is the imputation 
status (0–1) of the ith individual, gPCn,i is the value of the nth 
principal component (PC) obtained from genotypic data for 
the ith individual, β0 is the intercept, β1, β2, and αn are the fitted 
regression coefficients, and ϵa is the error term for the gene a.

The fitting of the linear models was performed using the 
CRAN R package MatrixEQTL (Shabalin, 2012). Genotypes were 
represented using the standard 0/1/2 codification, referring to 
the number of alternative alleles present in each individual, and 
matrices with genotypic information were obtained from VCF 
files exploiting the Perl API (Vcf.pm) included in the VCFtools 
suite (Danecek et al., 2011). Following Lappalainen et al. (2013), 
in all our models, we included both the imputation status of the 
individuals and the first three PCs obtained from genotypic data 
as covariates, to correct for possible biases due to population 
stratification (Figure S7) or genotype imputation.

The observed distribution of nominal P values was compared 
with the expected one in quantile–quantile plots (Q–Q plots), 
revealing the expected inflation due to the LD issue (Figure S8). 
A permutation-based procedure was implemented (Churchill 
and Doerge, 1994): all the models were fitted again after the 
random shuffling of the m/M values of each gene across samples; 
then, for each gene–variant pair, we counted how many times 
we obtained a random P value less than its nominal P value and 
divided this value by the total number of random tests performed. 

Finally, to control for multiple testing, the empirical P values were 
corrected with the Benjamini–Hochberg procedure (Benjamini 
and Hochberg, 1995) and models with a corrected empirical  
P < 0.05 were considered statistically significant. Manhattan plots 
were drawn using the CRAN R package qqman (Turner, 2018).

Comparison With Other Molecular QTLs
To compare the genes for which we detected one or more 
apaQTLs with those for which eQTL/trQTL were reported 
(Lappalainen et al., 2013), we translated the Ensembl Gene IDs 
(ENSG) to NCBI Entrez Gene IDs using Ensembl v67 (Zerbino 
et al., 2018) retrieved using the Bioconductor R package biomaRt 
v2.30 (Durinck et al., 2005, Durinck et al., 2009). Two hundred 
twenty-nine ENSGs could not be translated with this procedure 
and were therefore excluded from this analysis.

Enrichment Analyses
To functionally characterize the apaQTLs, we analyzed the 
enrichment of several features among such variants, including their 
genomic location, their ability to alter known regulatory motifs, 
and their association with complex diseases. All enrichments were 
evaluated through multivariate logistic regression to allow correcting 
for covariates. In this section, we provide an overview of the method 
but refer to the following subsections for details about each analysis.

For each feature, we first established which genetic variants were 
potentially associated with the feature (for example, only variants 
in the 3′ UTR can alter microRNA binding sites). Therefore, each 
enrichment analysis started with the selection of the “candidate 
variants” that were subsequently subjected to an LD-based pruning 
to obtain a subset of independent candidate variants [the same 
strategy was implemented for example in Li et al. (2013) to evaluate 
the enrichment of GWAS hits among eQTLs]. LD-based pruning 
was always performed using PLINK with the same parameters used 
in the case of the PCA of genotypic data (see above) but applied in 
each case to the candidate variants only. To each candidate variant 
surviving pruning, we attributed a binary variable indicating 
whether it has the feature under investigation. Finally, these variants 
are classified as apaQTLs (i.e., corrected empirical P < 0.05 for at 
least one gene) and null variants (i.e., nominal P > 0.1 in all the 
fitted models). We excluded the “gray area” variants with nominal 
P < 0.1 but empirical corrected P > 0.05 as they are likely to contain 
many false negatives. Finally, we fitted a multivariate logistic model 
in which the dependent variable is the apaQTL/null status of the 
variant, and the independent variables are the feature of interest and 
covariates. The latter always include the MAF of the variant, since 
variants with higher MAF are more likely to be found as significant 
apaQTLs, and possibly other covariates depending on the feature 
under examination (see below).

The logistic model can thus be written as:

 t Feature ariatesj j j= + × + +β β0 1 cov   (3)

 
Pr( )

exp
apaQTL j t j

=
+ −

1
1  (4)
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where Featurej is a binary variable indicating whether the genetic 
variant j has the feature of interest, β0 is the intercept, β1 is the 
regression coefficient for the feature, ϵj is the error term, and 
Pr(apaQTL)j is the fitted probability that the genetic variant j is an 
apaQTL. As expected, in our models, the regression coefficient of the 
MAF was always positive. The regression coefficient of the Feature 
term and its associated P value were used to establish if having the 
feature under investigation influences the probability of being an 
apaQTL and to compute the corresponding odds ratio (OR).

Chromatin States
This analysis was performed independently for two cell types 
(the GM12878 and NHEK cell lines). In both cases, the candidate 
variants were virtually all the genetic variants for which the 
apaQTL models were fitted, but we excluded those not associated 
with any chromatin state and all the structural variants because 
their length can prevent them from being univocally associated 
with a chromatin state.

Each of the 15 chromatin states and 6 broad chromatin classes 
(promoter, enhancer, insulator, transcribed, repressed, and 
inactive) defined in Ernst et al. (2011), separately for the two cell 
lines, was treated as a binary feature to be used as a regressor in 
Eq. (3), with value 1 assigned to the variants falling within a DNA 
region associated to the given chromatin state. Only the MAF 
was included in the covariates.

Gene Regions
The candidate variants were all the intragenic variants for 
which the apaQTL models were fitted. We defined as intragenic 
all variants falling between the start and the end of the gene, 
plus 1,000 bps after the end (to take into account possible 
misannotations of the 3′ UTR).

Independent enrichment analyses were performed for the 
following sequence classes: coding exons, introns, 5′ UTR, and 
3′ UTR. For each class, the binary feature used as a regressor was 
assigned the value 1 for variants falling within the class and 0 
otherwise. Only the MAF was included in the covariates.

Cis Regulatory Domains
The candidate variants were all the extragenic variants (i.e., 
all variants that are not intragenic according to the definition 
given above) for which an apaQTL model was fitted. The binary 
feature was given value 1 for variants falling within a CRD and 0 
otherwise. Besides the MAF, the distance from the nearest gene 
was included as a covariate, since variants closer to a gene are 
more likely to be apaQTLs.

To verify that the apaQTLs tend to be included in the 
CRDs specifically associated to the gene on which they act, we 
translated the CRD–gene associations provided in Delaneau 
et al. (2019) into Entrez Gene IDs, and we counted how many 
genetic variants fall within a CRD associated to at least one 
gene for which the variant is an apaQTL. This number was then 
compared with that obtained in the same way after randomly 
assigning a target gene to each extragenic variant within 
the cis-window used for apaQTL analysis (100 independent 
randomizations were used).

Alteration of Putative Functional Motifs
Similar strategies were implemented to investigate the alteration 
of different types of putative functional motifs by intragenic 
variants. This analysis was restricted to single nucleotide 
polymorphisms (SNPs), excluding therefore both indels and 
structural variants. For all SNPs, we reconstructed the sequence 
of both the reference (REF) and the alternative (ALT) allele in the 
20-bp region around each candidate genetic variant to determine 
whether the ALT allele creates or destroys a functional motif with 
respect to the REF allele. The functional motifs analyzed included 
PAS motifs, microRNA binding sites, and RBP binding sites.

To each candidate variant surviving LD pruning we associated, 
using PLINK, a list of tagging variants with genotypic R2 > 80% 
and a binary feature value of 1 if the candidate variant itself or any 
of its tagging variant altered a functional motif. The enrichment 
of apaQTLs among motif-affecting variants was then evaluated 
with the logistic model described by Eq. 3. In the following, 
we describe the details of the logistic model for each class of 
functional motifs.

PAS motifs. The PAS motif is always located upstream of its 
target poly(A) site. It has been suggested that a narrow range 
of 10–30 nt is required for efficient processing, but recent work 
suggests that also larger distances can be functional thanks to 
RNA folding processes bringing the poly(A) site closer to the PAS 
(Wu and Bartel, 2017). Assuming that a PAS-altering SNP would 
affect the usage of its nearest poly(A) site, we associated to each 
intragenic SNP the nearest downstream poly(A) site, selected 
those for which such poly(A) site was located within the PRE/
POST segments, and retained as candidate variants only those 
whose distance from the corresponding poly(A) site was between 
10 and 100 nt. PAS-altering variants were defined as those for 
which a particular PAS motif was found in either the REF or the 
ALT sequence, but not in both (note that the interconversion 
between PAS motifs is considered as well, assuming that they can 
have different strength).

microRNA binding sites. microRNA binding sites located 
downstream of a poly(A) site, and hence in the POST segment, 
can affect the relative abundance of the long and short isoforms by 
allowing the selective degradation of the former by microRNAs. 
Therefore, we chose as candidate variants all the SNPs within the 
POST segment of the genes analyzed. Putative microRNA binding 
sites were classified, as in Agarwal et al. (2015), in three classes: 
8mer, 7mer-m8, and 7mer-A1 (matches classified as 6-mer were 
not considered). A variant was defined to alter a microRNA 
binding site if a putative binding site was present in either the 
REF or the ALT sequence, but not in both, or if the site class was 
different between the REF and the ALT sequences. Moreover, 
altering variants were classified as creating (destroying) a binding 
site if only the ALT (REF) sequence contained a binding site or if 
the ALT (REF) sequence contained a stronger binding site than 
the REF (ALT), according to the hierarchy 8mer > 7mer-m8 > 
7mer-A1 match. Only microRNA families conserved across 
mammals or broadly conserved across vertebrates and expressed 
in lymphoblastoid cells were considered. Following Lappalainen 
et al. (2013), each microRNA was considered expressed if its 
expression value was >0 in at least 50% of the samples, and each 
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microRNA family was considered expressed if at least one of its 
microRNAs was expressed.

RBP motifs. The candidate variants were all the intragenic 
SNPs. FIMO (Grant et al., 2011) was used to scan the REF 
and ALT sequences around each candidate variant, using as 
background the nucleotide frequencies on the sequence of all 
the analyzed genes. A motif was considered altered if its score 
was >80% the score of the perfect match in only one of two 
alleles. As in the case of microRNAs, only motifs corresponding 
to RBPs expressed in lymphoblastoid cell lines were considered. 
Enrichment was evaluated both for SNPs altering any RBP motif 
and for each expressed RBP separately.

GWAS Hits
We considered only the GWAS catalog records referring to a 
single genetic variant on autosomal chromosomes for which 
all the fields CHR_ID, CHR_POS, SNPS, MERGED, SNP_ID_
CURRENT, and MAPPED_TRAIT_URI were available, as well 
as the RSID. The coordinates of the selected genetic variants in 
hg19 were derived from dbSNP Build 151. We thus obtained 
56,672 genetic variants associated with at least one complex trait. 
Furthermore, starting from the EFO URI(s) reported for each 
association, we obtained the corresponding EFO Parent URI(s) 
from the EFO annotation file.

All variants examined as potential apaQTLs were considered as 
our candidate variants. A binary feature value of 1 was attributed 
to each candidate variant surviving LD pruning and associated 
to a trait, or with a tagging variant associated to a trait, as in the 
case of motif-altering variants. Enrichment was evaluated for all 
trait-associated variants together, for each single trait, and for trait 
categories defined based on the EFO ontology. Only traits and trait 
categories associated with at least 100 GWAS hits were analyzed. 
The same analysis was also performed after excluding all variants 
within the HLA locus, as defined by The Genome Reference 
Consortium (https://www.ncbi.nlm.nih.gov/grc/human/regions/
MHC?asm=GRCh37).

The rs10954213 Variant in SLE Patients
In the analysis of SLE patient RNA-seq data, we were interested 
in the IRF5 gene only. Therefore, RNA-Seq reads were aligned 
to a reduced genome comprising the gene sequence and an 
additional 50 bp at its 3′ end using Bowtie v2.2.3 (Langmead et al., 
2009) and TopHat v2.0.12 (Trapnell et al., 2009). As genotypic 
data were not available for these individuals, we inferred the 
rs10954213 variant status from the relative proportion of A and 
G in the RNA-Seq reads. Initially, individuals were considered 
homozygous for the reference (G) or for the alternative (A) allele 

when the same nucleotide was present in all the reads, and a single 
read with a different nucleotide was considered sufficient to call 
a heterozygous individual. Then, genotype quality was assessed 
using VCFx version 1.2b (Castelli et al., 2015; Lima et al., 2016) 
with default parameters to filter out low-confidence genotypes. 
In this way, we obtained 11 homozygotes for the reference 
allele, 22 heterozygotes, and 14 homozygotes for the alternative 
allele (Figure S9), while 52 individuals with missing genotype 
information were excluded from the subsequent analysis. 
Notably, the genotypes are in Hardy–Weinberg equilibrium 
(chi-squared P = 0.705). A Kruskal–Wallis test was then used to 
evaluate the differences in m/M values between genotypes.
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