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As a widespread post-translational modification of proteins, calpain-mediated cleavage 
regulates a broad range of cellular processes, including proliferation, differentiation, 
cytoskeletal reorganization, and apoptosis. The identification of proteins that undergo 
calpain cleavage in a site-specific manner is the necessary foundation for understanding 
the exact molecular mechanisms and regulatory roles of calpain-mediated cleavage. In 
contrast with time-consuming and labor-intensive experimental methods, computational 
approaches for detecting calpain cleavage sites have attracted wide attention due to their 
efficiency and convenience. In this study, we established a novel computational tool named 
DeepCalpain (http://deepcalpain.cancerbio.info/) for predicting the potential calpain 
cleavage sites by adopting deep neural network and the particle swarm optimization 
algorithm. Through critical evaluation and comparison, DeepCalpain exhibited superior 
performance against other existing tools. Meanwhile, we found that protein interactions 
could enrich the calpain-substrate regulatory relationship. Since calpain-mediated 
cleavage was critical for cancer development and progression, we comprehensively 
analyzed the calpain cleavage associated mutations across 11 cancers with the help 
of DeepCalpain, which demonstrated that the calpain-mediated cleavage events were 
affected by mutations and heavily implicated in the regulation of cancer cells. These 
prediction and analysis results might provide helpful information to reveal the regulatory 
mechanism of calpain cleavage in biological pathways and different cancer types, which 
might open new avenues for the diagnosis and treatment of cancers.

Keywords: calpain, cleavage site, prediction, cancer mutation, deep learning

INTRODUCTION

With a nucleophilic cysteine at the catalytically active site, calpains (calcium-activated non-
lysosomal proteases) are an important evolutionarily well-conserved family of Ca2+-dependent 
cysteine proteases (Croall and Ersfeld, 2007; Ono and Sorimachi, 2012). In mammalians, calpains 
are diffusely expressed, and there are approximately 16 known genes of the calpain superfamily at 
present, among which the calpain 1 (μ-calpain) and calpain 2 (m-calpain) are the most well-studied 
isoforms called the “conventional” calpains (Goll et al., 2003; Franco and Huttenlocher, 2005; 
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Croall and Ersfeld, 2007). Through cleaving various substrates, 
calpains play a pivotal role in a wide range of cellular and 
physiological processes, such as the regulation of embryogenesis, 
differentiation, signal transduction, apoptosis, and necrosis as 
well as remodeling of cytoskeletal attachments in the process 
of cell migration and cell cycle progression (Schoenwaelder 
et al., 1997; Squier et al., 1999; Glading et al., 2002; Franco and 
Huttenlocher, 2005; Tan et al., 2006; Croall and Ersfeld, 2007). 
Moreover, there are numerous studies have indicated that 
aberrant activities of calpains are closely related to a variety of 
diseases and cancers, including neurodegeneration, limb girdle 
muscular dystrophies, type II diabetes, and tumorigenesis 
(Branca, 2004; Tompa et al., 2004; Bertipaglia and Carafoli, 2007; 
Storr et al., 2011). Therefore, the identification of precise cleavage 
sites in calpain substrates is fundamental for dissecting the exact 
molecular mechanisms and calpain function.

Current experimental approaches for the identification 
of calpain cleavage sites mainly include Edman N-terminal 
sequencing, mass spectrometry, and a peptide library approach; 
thus, a large number of calpain cleavage proteins and sites have 
been experimentally verified. The database CaMPDB (Duverle 
et al., 2010), which contains calpains, substrates, and cleavage 
sites as well as upstream inhibitors, has been constructed based 
on information extracted from the literature. Although the 
application of current experimental techniques has increased 
the number of experimentally identified calpain substrates with 
cleavage sites, there are also numerous substrates and cleavage 
sites that remain to be discovered. Moreover, the identification 
and characterization of calpain substrates and cleavage sites 
by experiments are usually expensive, time-consuming, and 
laborious. Therefore, the computational approaches developed 
to accurately predict calpain substrates and cleavage sites may 
complement and guide the experimental studies to promote the 
discovery of putative cleavage sites.

In 2004, Tompa et al. (2004) collected 49 calpain substrates 
with 106 cleavage sites from the literature and studied the 
preferences of amino acid residues around cleavage sites. Then, 
a position-specific scoring matrix (PSSM) was generated to 
predict potential cleavage sites, while the preferred amino acids 
for μ-calpain and m-calpain recognition were identified as Leu, 
Thr, and Val residues in the P2 position and Lys, Tyr, and Arg 
residues in the P1 position. Using this information, an online 
tool called PoPS (Boyd et al., 2005), which allows the users to 
build their computational models of protease specificity based 
on their own training data, was developed. Through the scoring 
methods of frequency and substitution matrix, Verspurten 
et  al. (2009) developed SitePrediction to predict the potential 

cleavage sites of proteinase substrates. In 2011, DuVerle et al. 
(2010, 2011) built an online resource CaMPDB, which also 
provided a cleavage site prediction tool for calpains, and then, the 
calpain cleavage prediction was further updated by adopting the 
approach of multiple kernel learning. Based on the GPS (group-
based prediction system) algorithm (Xue et al., 2008), the in 
silico prediction tool GPS-CCD (Liu et al., 2011) was developed 
to predict potential cleavage sites for calpain, which provided 
both of the online service and local software packages. Later,  
Fan et al. (2013) constructed the LabCaS program for the prediction 
of the calpain-specific cleavage sites based on conditional random 
fields algorithm. These computational approaches can be roughly 
classified into two categories: 1) methods based on sequence 
alignment, including PoPS (Boyd et al., 2005), SitePrediction 
(Verspurten et al., 2009), and GPS-CCD (Liu et  al., 2011); and 
2) methods based on machine learning, including CaMPDB 
(Duverle et al., 2010; Duverle et al., 2011) and LabCaS (Fan et 
al., 2013). Generally speaking, sequence alignment-based tools 
use the amino acid substitution matrix to calculate the similarity 
score between two sequences, whereas the approaches based on 
machine learning extract the features from sequence by feature 
engineering and then select a machine-learning algorithm to 
build the model. To date, although a number of predictors with 
good prediction performance have been developed, the main 
limitations of these methods are that sequence alignment-based 
approaches rely on the amino acid substitution matrix to achieve 
the best result and the machine learning-based approaches 
depend heavily on data preprocessing and feature selection.

To provide a promising and credible solution, deep learning 
method was applied in our work (Lecun et al., 2015; Li et al., 
2019). As a branch of machine learning, deep learning has 
overcome some key issues and can learn complex features 
through a combination of simpler features extracted from 
sequence. To date, deep learning techniques have been adopted in 
a number of bioinformatics studies, such as biological sequence 
analysis. For example, DeepBind (Alipanahi et al., 2015) was 
developed to predict the sequence specificities of RNA- and 
DNA-binding proteins based on convolutional neural network 
(CNN). By combining CNN with a two-dimensional attention 
mechanism, MusiteDeep (Wang et al., 2017) was constructed for 
the general and kinase-specific phosphorylation sites prediction. 
Recently, Xie et al. (2018) established a computational tool 
called DeepNitro by combining primary sequence features and 
deep neural network (DNN) for predicting protein nitration 
and nitrosylation sites. Compared with the traditional machine 
learning-based methods, these approaches have reached a better 
prediction performance with the same features. However, to date, 
an available deep-learning framework for calpain cleavage site 
prediction is still lacking.

Inspired by the research of Li et al. (2018) and Zou et al. 
(2018), here, we present a novel deep-learning framework named 
DeepCalpain for predicting calpain cleavage sites. First, 442 
experimentally identified cleavage sites in 169 proteins with 176 
cleavage sites for μ-calpain and 256 cleavage sites for m-calpain 
were collected. Then, we extracted four effective features from 
the query sequences, including amino acid composition (AAC), 
binary encoding profiles (BE), PSSM, and composition of 

Abbreviations: DeepCalpain, deep learning-based calpain cleavage sites 
prediction; GPS, Group-based prediction system; CNN, convolutional neural 
network; DNN, deep neural network; AAC, amino acid composition; CKSAAP, 
composition of k-spaced amino acid pairs; PSSM, position-specific scoring matrix; 
BE, binary encoding profiles; PSO, particle swarm optimization; Sn, sensitivity; 
Sp, specificity; Pr, precision; AUC, area under the ROC curve; ROC, receiver 
operating characteristic curve; Phylo-HMM, phylogenetic hidden Markov model; 
PPI, protein-protein interaction; CCRM, calpain cleavage related mutation; 
VAF, variant allele fraction; HNSC, head-neck squamous cell carcinoma; LIHC, 
liver hepatocellular carcinoma; RNN, recurrent neural network; GCN, graph 
convolutional neural network.
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k-spaced amino acid pairs (CKSAAP). These abstracted sequence 
features of calpain cleavage sites were then integrated with DNN 
to construct the predictor, while the particle swarm optimization 
(PSO) algorithm was adopted to optimize the hyperparameters 
of the model. Moreover, 4-, 6-, 8-, and 10-fold cross-validations 
of the training data demonstrated acceptable performance 
and robustness of the prediction system. By comparison, 
DeepCalpain outperformed other existing tools. In addition, we 
comprehensively analyzed calpain cleavage associated mutations 
across 11 cancers with the help of DeepCalpain to reveal the 
regulatory roles of calpain-mediated cleavage in biological 
pathways and cancer development and progression, which will 
provide certain help for the diagnosis and treatment of cancer.

METHODS

Data Collection and Preparation
We searched the literatures from PubMed (http://www.ncbi.
nlm.nih.gov/pubmed) to retrieve the published experimentally 
identified substrates with cleavage sites for calpain using the 
keyword “calpain.” The sequence of each protein was retrieved 
from the UniProt database (UniProt Consortium, 2015), and the 
exact cleavage positions were noted. After removing redundant 
data, 442 unique cleavage sites in 169 proteins were finally 
obtained, including 176 cleavage sites for μ-calpain and 256 
cleavage sites for m-calpain (Table S1).

With the calpain cleavage sites in the center and surrounded 
by 15 residues of upstream and downstream, we generated 
the calpain cleavage peptides for feature extraction. All 
experimentally identified cleavage sites were regarded as the 
positive dataset, whereas all sites that were not cleavable in the 
same proteins were taken as the negative dataset. In total, we 
obtained 442 positive sites and 160,698 negative sites in 169 
proteins for training.

Feature Extraction
Amino Acid Composition
AAC (Radivojac et al., 2010; Lee et al., 2011) is an elementary 
feature and describes the occurrence frequency of the 20 native 
amino acids (ACDEFGHIKLMNPQRSTVWY) in a protein 
sequence. To ensure the calpain cleavage peptides with the same 
length (30 amino acids), we added one or more “-” characters to 
them, so the AAC dimension is 21 in our work.

Binary Encoding Profiles
Binary encoding (Song et al., 2010) is an encoding scheme that was 
developed from the binary language of computer. We transformed 
the substrate sequences into n-dimensional vectors. As mentioned 
above, the “-” character was added to represent the pseudo amino 
acid at the N- or C-terminus of proteins. Therefore, 21 types of 
amino acids are composed of ACDEFGHIKLMNPQRSTVWY-. 
Then, each amino acid is represented by a 21-dimensional 
binary vector, such as the amino acid A corresponding to 
(100000000000000000000), the amino acid C corresponding to 
(010000000000000000000), and the ”–” character corresponding 

to (000000000000000000001). In this regards, the dimension of 
BE coding for each calpain cleavage peptide is 630.

Position-Specific Scoring Matrix
In biological analysis, evolutionary conservation as an essential 
factor should be considered. Through adopting all training data 
as the background, we obtained the occurrence frequency of the 
amino acid at each position to generate a calpain cleavage-specific 
matrix rather than employing the scoring matrix of blosum62 or 
others. For a new peptide, we use the formula below:
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In this formula, the calpain cleavage peptides extracted from 
their protein sequences are composed of 31 amino acids, while 
the P(R1) element represents the occurrence frequency of amino 
acid residue AA1 in position 1 of the positive group, the P(R2) 
element represents the occurrence frequency of AA2 in position 2 
of the positive group, the N(R1) element indicates the occurrence 
frequency of AA1 in position 1 of the negative group, the N(R2) 
element denotes the occurrence frequency of AA2 in position 2 
of the negative group, and so on. The dimension of this PSSM 
profile is 60.

Composition of K-Spaced Amino Acid Pairs
Since the relative position of the amino acids in a protein may 
affect the function of this protein, the features of correlation 
and dependence for amino acids surrounding calpain cleavage 
sites are helpful for the prediction. In this work, the CKSAAP 
(Zhao et al., 2012) was employed to extract the amino 
acids order information of protein sequences. The detailed 
processes of CKSAAP are described as follows. Given that the 
extracted peptides from protein sequences are composed of 21 
types of amino acids in this work, there are 441 possible types 
(AA, AC, AD, …, –) of amino acid pairs with 0-, 1-, 2-… or 
k-space (i.e., the pairs are separated by 0-, 1-, 2-,…, or k amino 
acids) for a peptide including 2n+1 amino acids. Then, a 
feature vector is adopted to describe the composition of these 
amino acid pairs, which is generated by CKSAAP defined as 
(NAA, NAC, NAD, …, N−−)441. The value of each feature in this 
vector indicates the occurrence frequency of a corresponding 
amino acid pair in the extracted peptide. For example, if the 
amino acid pair of AC occurs m times in a peptide, the value 
of NAC in the vector is equal to m and so forth. As the k value 
increased, although there would be a growing tendency of 
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the accuracy and sensitivity for the prediction model, the 
computational time and cost of the DNN model training 
would also drastically increase. In this regard, the CKSAAP 
encoding with the k value equal to 0, 1, 2, and 3 was merely 
considered in this work; so, the total dimension of the feature 
vector with 3-space is 441 × (3 + 1) = 1764.

Deep Neural Network Models for Prediction
For the detection of potential calpain substrates and cleavage sites, 
a deep neural network model was introduced into our prediction 
algorithm. The model architecture was presented in Figure 1. For 
a given protein sequence, the cleavage sites are extracted with a 
peptide length of 30 comprising a central calpain cleavage amino 
acid pair and 15-residue flanking at each side. Based on the 
sequences, the protein fragments are coded through four feature 
extraction methods. The sequences are transferred into the input 
format of this model; then, the DeepCalpain software predicts 
whether the residue can be cleaved by calpain. The DeepCalpain 
model consists of three main components, including the input layer, 
the hidden layers, and the output layer. The input layer contains four 
submodules to store the features extracted through the methods of 
AAC, BE, PSSM, and CKSAAP. In each submodule, the input data 
are trained in the hidden layer. Then, after sufficiently learning the 
features, the four submodules are merged and flattened into a fully 
connected layer. In the end, it can be simply formulated as a binary 
classification problem for the prediction in the output layer, while 
the two-dimensional result represents the probability of calpain 
cleavage. The sum of the two probabilities equal one, so only the 
probability of calpain cleavage is considered as the score for the 
input peptide. Moreover, to generate the optimal performance, the 

PSO algorithm was integrated and the python package pyswarm 
(https://github.com/tisimst/pyswarm) was adopted to optimize 
the hyperparameters. To avoid overfitting, we applied dropout to 
make sure the positive data not be over-represented as previous 
study described (Xia et al., 2018; Umarov et al., 2019), the dropout 
rate is determined by PSO. The detailed parameters of the model 
adjusted by PSO were displayed in Table S3.

Performance Evaluation
As previously described (Liu et al., 2012), three measurements, 
including sensitivity (Sn), specificity (Sp), and accuracy (Ac), were 
adopted to estimate the prediction performance of DeepCalpain. 
The detailed description of these three measurements was 
defined as below:

Sn TP
TP FN

=
+

Sp TN
TN FP

=
+

Pr =
+

TP
TP FP

We performed 4-, 6-, 8-, and 10-fold cross-validations to 
evaluate the robustness of this prediction system, while the 
receiver operating characteristic (ROC) curves and AUCs 
(area under ROCs) were drawn and calculated. In addition, 

FIGURE 1 | Overall methodology. Highlighted are experimentally identified calpain cleavage sites extracted from PubMed by text mining; multi-network deep-
learning and PSO algorithm; and the integrative analysis of the connections between calpain-mediated cleavage and cancers.
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5-fold cross-validation was also performed to demonstrate the 
superiority of DeepCalpain in comparison with several other 
existing tools.

Calpain Cleavage–Related Mutation Analysis
TCGA somatic mutation data of 11 cancer types (BLCA, BRCA, 
CESC, COAD, HNSC, LIHC, LUAD, LUSC, SKCM, STAD, 
and UCEC) were downloaded from Xena Browser (https://
xenabrowser.net/datapages/). The redundant mutations in the 
same patients were removed, and only missense variants were 
retained for further analysis. Based on the prediction results of 
DeepCalpain, we further classified the mutations into two types 
based on whether calpain-mediated cleavage was affected.

Differentially Analysis of Calpain Expression
Pan-cancer mRNA expression level 3 normalized data were 
downloaded from Firehose (http://gdac.broadinstitute.org). 
After calculating the fold change and adjusted p-value by the R 
package DESeq2, we defined the genes with an adjusted p-value 
less than 0.05 as differentially expressed genes.

KEGG Enrichment Analysis
To better understand the potential function of calpain cleavage–
related mutation sites and proteins, the enrichment analysis of 
these proteins in KEGG pathways was performed using KOBAS 
(Xie et al., 2011). The visible network was constructed using 
Cytoscape (Ono et al., 2014).

Evolutionary Conservation Analysis
The sequence evolutionary conservation score of each missense 
mutation stored in the phastCons score profile was calculated in 
ANNOVAR (Siepel et al., 2005). It adopts phylogenetic hidden 
Markov model (phylo-HMM) to quantitatively measure the 
nucleotide substitution probability for each site in the genome, 
and we could extract the evolutionary conservation level for each 
mutation site with the phastCons score profile. In this study, we used 
the phastCons score to represent the evolutionary conservation 
scores of all mutations, and then plotted the cumulative distribution 
fraction (CDF) curve to evaluate the difference between calpain 
cleavage–related mutations and other mutations.

Survival Analysis
The clinical data of 11 cancer types were downloaded from Xena 
Browser (https://xenabrowser.net/datapages/) for further analysis, 
while the R package “survival” (https://cran.r-project.org/web/
packages/survival/) was adopted to acquire the overall survival 
through Kaplan-Meier estimation. To clarify the relations between 
calpain cleavage–related mutations (CCRM) and survival, we 
classified the patients into two groups, including patients with less 
than six CCRMs and patients with six or more CCRMs. Then, 
we employed the log-rank test to compare the survival of the two 
patient groups. The number 6 was determined to balance the patient 
size of the two groups and choose as few CCRMs as possible.

Implementation of the Webserver
The online service of DeepCalpain was implemented in Python + 
PHP and is freely available at http://deepcalpain.cancerbio.info. 

Moreover, IUPred (Dosztanyi et al., 2005) and NetSurfP 
(Petersen et al., 2009) softwares were also integrated to predict the 
protein structural features, including disorder regions, surface 
accessibilities, and secondary structures. The experimentally 
identified protein-protein interaction (PPI) dataset were 
downloaded and integrated from BioGRID (Chatr-Aryamontri 
et al., 2015), BioPlex (Huttlin et al., 2015), IID (Kotlyar et al., 
2016), I2D (Brown and Jurisica, 2007), and IntAct (Orchard 
et al., 2014). In total, there were 309,321 PPIs in 20,379 proteins 
that were obtained, and the visible network was constructed by 
Cytoscape (Ono et al., 2014). To provide a robust service, we 
tested the website of DeepCalpain on a variety of web browsers, 
such as Internet Explorer, Google Chrome, and Mozilla Firefox. 
It will take 40 s for the default protein in average. When user 
submits more than one protein, DeepCalpain will predict and 
show the first protein as default. Users can select which protein 
to display in the result page, and this will take 20 s in average.

RESULTS

Development of DeepCalpain for the 
Prediction of Calpain Cleavage Sites
The experimentally confirmed calpain cleavage sites were 
retrieved through keywords “calpain” from the scientific 
literature (Figure 1). After redundancy removal, we finally 
obtained 442 experimentally identified calpain cleavage sites in 
169 proteins, which contained 176 μ-calpain cleavage sites and 
256 m-calpain cleavage sites (Table S1). For the preparation of 
training dataset, the known calpain cleavage sites were taken 
as the positive dataset, while all other non-cleavable sites in the 
same proteins were regarded as the negative dataset. In total, the 
non-redundant training dataset of calpain cleavage contained 
442 positive sites and 160,698 negative sites in 169 proteins. 
Then, we developed DeepCalpain software for the prediction 
of calpain cleavage sites based on multi-network deep learning 
and PSO algorithm. Four protein sequence features, including 
AAC, PSSM, BE, and CKSAAP, were used to extract the 
sequence features (Figure 1). The online service of DeepCalpain 
was implemented in Python and PHP, while two in silico tools 
IUPred (Dosztanyi et al., 2005) and NetSurfP (Petersen et al., 
2009) were also integrated to predict the structural features of 
proteins, including disorder regions, surface accessibilities, and 
secondary structures. Furthermore, the mutations downloaded 
from TCGA database were analyzed by DeepCalpain and then 
classified into two types, including CCRMs and calpain cleavage 
non-related mutations (nCCRMs). A series of analyses were 
further performed, including gene mutation, mRNA expression, 
protein interaction, pathway enrichment, domain association, 
conservation, and survival analyses (Figure 1).

The Sequence and Structure Preferences 
of Calpain Cleavage Sites
Using the collected calpain cleavage sites, the sequence features 
were analyzed through the software Two Sample Logo (Vacic 
et al., 2006). The difference between calpain cleavage sites and 
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non-calpain cleavage sites were shown in Figure 2A. Leucine was 
enriched at the -2 position in calpain cleavage sites and enriched 
at the -9, -7, -6, -3, +3, +4, +5, + 6, + 9, +10, and +15 positions 
in non-calpain cleavage sites. Another hydrophobic amino acid 
alanine was enriched at the -8, +1, +7, +10, +11, +12, +13, +14, 
and +15 positions in calpain cleavage sites and enriched at -2 
position in non-calpain cleavage sites, while proline was also 
enriched at the -3, +3, and +4 positions in calpain cleavage sites 
and enriched at -2 and +1 positions in non-calpain cleavage sites 
(Figure 2A). Collectively, it was suggested that the hydrophobic 
residues around the cleavage site were preferred by calpains. To 
further explore the recognition preferences of calpain cleavage, 
comparative analysis on structural features of the calpain cleavage 

sites and the non-calpain cleavage sites were performed. The 
calpain cleavage sites were enriched in surface exposed residues 
(p-value = 1.51*10-5, two proportions z-test) (Figure 2B) and 
dramatically occurred in disordered regions (p-value = 3.09*10-7, 
two proportions z-test) (Figure 2C).

Performance Evaluation and Comparison
Based on the features extracted by AAC, BE, PSSM, and CKSAAP, 
we constructed DeepCalpain for calpain cleavage sites prediction. To 
evaluate the prediction performance and robustness of DeepCalpain, 
the 4-, 6-, 8-, and 10-fold cross-validations of the training dataset 
were performed. For each validation, the measurements of Sn, Sp, 

FIGURE 2 | (A) The preferences for the amino acids around the calpain cleavage sites and non-calpain cleavage sites. (B–C) Comparison of the surface 
accessibility (B) and disorder information between calpain cleavage sites and non-calpain cleavage sites. (D) The 4-, 6-, 8-, and 10-fold cross-validations results for 
calpain. (E–G) Comparison of the models of calpain (E), μ-calpain (F), and m-calpain (G) with the existing tools, and the dots were the Sn and Sp values adopted 
from the related literatures.
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and Ac were calculated. The ROC curves were drawn, while the 
values of the AUC were 0.9026 (4-fold), 0.9195 (6-fold), 0.9200 
(8-fold), and 0.9370 (10-fold), respectively (Figure 2D). Due to the 
results of different validations were very similar with each other, 
DeepCalpain is a stable and robust predictor.

To demonstrate the superiority of DeepCalpain, we compared 
its prediction performance with several existing tools, including 
GPS-CCD (Liu et al., 2011), LabCaS (Fan et al., 2013), and PoPS 
(Boyd et al., 2005) (Figure 2E). We evaluated the prediction 
performance using 5-fold cross-validations, and the dots outside of 
the lines were adopted from previous publications of GPS-CCD and 
LabCaS to perform comparison. The AUC values for DeepCalpain 
and PoPS were 0.9044 and 0.8211, respectively. In addition, the 
AUC values were 0.8380 for GPS-CCD and 0.8360 for LabCaS, 
which indicated that DeepCalpain significantly outperformed the 
existing tools. And besides, we exhaustively tested the flanking 
residues around the cleavage sites and found that the AUC did 
not change significantly when the cleavage sites were surrounded 
by more than 10 residues upstream and downstream (Figure S1, 
Table S2), which suggested 15 amino acids flanking size is enough 
for DeepCalpain to gain an excellent performance.

The concept of transfer learning was adopted to build the 
calpain-specific models from the pretrained calpain cleavage 
model to solve the small-sample problem in calpain-specific 
cleavage site prediction, and the submodels of μ-calpain and 
m-calpain were constructed, respectively. The parameters of 
each model were displayed in Table S3. To further illustrate 
the performance superiority of DeepCalpain, the submodels 
of μ-calpain and m-calpain were compared with SitePrediction 
(Verspurten et al., 2009). For the μ-calpain, the 5-fold cross-
validation AUC value of DeepCalpain was 0.9136, revealing 
a better performance than SitePrediction (AUC = 0.7837) 
(Figure  2F). Using a similar situation, the AUC value of 
DeepCalpain for m-calpain (0.9068) was significantly higher 
than that of SitePrediction (0.7355) (Figure 2G). Taken together, 
these results demonstrated that the performance of DeepCalpain 
was superior to the previously reported predictors.

Connections Between Cancer Mutations 
and Calpain Cleavage Sites
Since calpain-mediated cleavage is significantly associated with 
a variety of pathological phenomena from neurodegeneration 
to cancers (Branca, 2004; Bertipaglia and Carafoli, 2007; Storr 
et al., 2011), the somatic mutations in different cancer types 
might alter calpain-mediated regulatory signaling pathways. To 
investigate specific associations between calpain cleavage sites 
and cancer mutations, the 951,850 somatic mutations from 6,035 
samples across 11 cancer types (BLCA, BRCA, CESC, COAD, 
HNSC, LIHC, LUAD, LUSC, SKCM, STAD, and UCEC) were 
collected from TCGA and mapped to the experimentally verified 
calpain-related proteins. Then, the functional impact of somatic 
mutations on calpain cleavage sites was researched through 
the bootstrap test (Chen et al., 2018). Obviously, the somatic 
mutations more preferably occurred at the experimentally 
verified calpain cleavage sites (flanked by 15 amino acids) than 
other regions among the 11 cancer types (Figure 3A). The mRNA 

expression data indicated that μ-calpain and m-calpain were 
differentially expressed across cancers, while the majority was 
upregulated (Figure 3B). This phenomenon is consistent with 
previous studies, which reported that increased μ-calpain and 
m-calpain expression were observed in numerous cancers, such 
as schwannomas, meningiomas, colorectal adenocarcinomas, 
and breast cancer (Kimura et al., 1998; Lakshmikuttyamma et al., 
2004; Storr et al., 2011; Storr et al., 2012). Generally, the above 
analysis suggested that calpain-mediated cleavage was highly 
associated with cancers, and the genetic variation in cancers 
might alter the calpain-mediated regulatory network.

Previous research indicated the substrates of calpain cleavage 
were enriched in the proteins that interact with calpains (Duverle 
et al., 2010). We integrated several protein interaction databases 
and found that not only direct interactions (Ratio = 22.22, 
p-value = 1.26*10-18) but also sharing interacting proteins (ratio = 
2.15, p-value = 3.16*10-16) could significantly enrich calpain-
mediated cleavage regulatory relationships. Thus, we presented 
the protein interaction network for calpains and the substrates in 
the predictor to provide helpful information.

To further characterize the relationships between calpain-
mediated cleavage and cancer mutations, we analyzed the aberrant 
calpain-mediated cleavage affected by missense variations across 
11 cancer types. Among all selected cancers, UCEC has the largest 
number of missense variations (403,188), whereas LIHC carries 
the fewest number of missense variations (27,361) (Figure 3C). 
Furthermore, we generated peptide windows composed of 30 
amino acids with a cleavage site in the middle flanked with 15 
amino acids upstream and downstream. Each site in a protein 
would generate two peptides: one was extracted from the origin 
sequence, and the other was from the new sequence after mutation. 
Finally, we predicted the cleavage probability for these sequence 
windows before and after mutation based on DeepCalpain. All 
missense variations were classified into four types by comparing 
the change of calpain cleavage status for the original and mutated 
proteins. i) Gain indicates that a missense variation event creates 
one or multiple calpain cleavage sites; ii) loss indicates that the 
presence of a missense variation disrupts all calpain cleavage 
sites; iii) change indicates that a missense variation changes the 
position of calpain cleavage site; and iv) no change indicates that 
the missense variation event has no effect on the status of the 
calpain cleavage. Then, the distribution of proteins across cancer 
types influenced by these four types of missense variations were 
counted and shown in Figure 3D. From the results, it is evident 
that the positions of calpain cleavage sites in a large number of 
proteins were changed, and greater than 43.9% of the cleaved 
substrates were influenced on average. Additionally, the numbers 
of proteins influenced by each type of missense variations varied 
remarkably among the 11 cancers, especially in UCEC, which 
amounted to 10,811 proteins with altered calpain cleavage sites 
(Figure 3D). Since the PPI information could enrich calpain-
mediated cleavage regulatory network, we filtered the potential 
substrates with PPI information. The numbers of target proteins 
affected by each type of missense variation in each selected 
cancer type were reduced to approximately one-third, whereas 
the proportions were generally similar (Figure 3D). Moreover, 
the numbers of calpain cleavage sites influenced by these types 
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FIGURE 3 | Connections between calpain cleavage sites and genetic variants. (A) Mutations preferentially occur at the regions around calpain cleavage sites. (B) 
Calpains were differential expressed across cancers. (C) Summary of the distribution of missense variations across cancers. (D) Summary of proteins cleavage 
aberrant triggered by mutations. (E) Summary of mutation site types across cancers.
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of missense variations across 11 cancers with or without PPI 
information were also tallied (Figure 3E). Taken together, the 
above results suggested that abnormal modification of calpain 
cleavage is heavily implicated in the regulation of cancer cells.

Functional Analysis of Calpain Cleavage–
Related Mutations
We further classified the mutations into two categories based on 
whether calpain-mediated cleavage was affected by the mutation. 
Mutations lead to gain or loss of calpain cleavage were classified 
into calpain cleavage–related mutation (CCRM) category, while the 
others were in the nCCRM category. And the proteins with CCRM 
sites were regarded as CCRM proteins. To better understand the 
potential function of CCRM sites and proteins, enrichment 
analysis of these proteins in KEGG pathways was performed 
using KOBAS (Xie et al., 2011). Compared with all mutated 
proteins, the CCRM proteins were significantly enriched in several 
pathways related to metabolism, degradation, and biosynthesis, 
such as butanoate metabolism, glycosaminoglycan degradation, 
and steroid hormone biosynthesis (Figure 4A). According to 
the previously published reports, these enriched pathways were 
involved in cancer cell proliferation and apoptosis (Afratis et al., 
2012; Donohoe et al., 2012; Mostaghel, 2013), suggesting our 
identified CCRM proteins play critical roles during tumorigenesis.

In addition to KEGG pathway analysis, the evolutionary 
conservation of CCRM sites was also performed. Through the 100-
way scheme of phastCons score calculated in ANNOVAR (Siepel et 
al., 2005), we extracted the conservation score for each mutation, 
including both calpain cleavage–related mutations and the other 
missense variations. Compared with nCCRMs, CCRMs were more 
conserved (P value < 10-133, Kolmogorov-Smirnov test) (Figure 4B), 
indicating that these mutations may be driven by stronger positive 
selection during cancer progression. To gain further insights into 
the impacts of CCRM on protein functions, the bootstrap test was 
performed and it was found that CCRMs preferentially located 
at the functional domains than disordered regions among the 11 
cancer types, which suggested that these mutations may affect 
protein functions in different types of cancer (Figure 4C). And 
besides, we found that the C > T mutation pattern was enriched in 
CCRMs (Figure S2A). Furthemore, it was observed that CCRMs 
had higher VAF values than nCCRMs (Figure S2B), which meant 
that these mutations might be more functional in cancer. Taking 
the above analyses into consideration, we concluded that calpain 
cleavage–related mutations may under stronger positive selection 
during tumorigenesis and may play important roles in regulating 
cancer-related hallmarks and pathways.

Moreover, the clinical application of calpain-mediated cleavage 
regulatory relationship was largely unknown. To explore the 
clinical significance of CCRM sites, we classified the patients into 
two groups based on the presence of at least six CCRMs across 11 
cancers (to balance the number of patients in both groups and select 
as few CCRMs as possible, the number of CCRMs was chosen to 
be six). Among the 11 cancer types, the patients with greater than 
or equal to six CCRMs had significantly poorer overall survival 
in head-neck squamous cell carcinoma (HNSC) (Figure 4D) and 
liver hepatocellular carcinoma (LIHC) (Figure 4E). The significant 

relationships between CCRMs and clinical prognosis found in these 
tested cancer types demonstrated that calpain-mediated cleavage 
crucially impacts the survival of patients with cancers.

DISCUSSION

As a widespread post-translational modification of proteins, 
calpain-mediated cleavage regulates a broad range of cellular 
events, such as proliferation, differentiation, cytoskeletal 
reorganization, and apoptosis (Schoenwaelder et al., 1997; Squier 
et al., 1999; Glading et al., 2002; Franco and Huttenlocher, 2005; 
Tan et al., 2006; Croall and Ersfeld, 2007). The identification of 
new substrates that undergo calpain cleavage in a site-specific 
manner is the necessary foundation for understanding the exact 
molecular mechanisms and regulatory roles of calpain-mediated 
cleavage. At present, although many studies have experimentally 
identified numerous calpain substrates with cleavage sites, there 
are also large-scale substrates and cleavage sites that have still 
not been detected. In contrast to time-consuming and labor-
intensive experimental methods, the computational approaches 
for detecting calpain cleavage sites have attracted wide attention 
due to their efficiency and convenience. To the best of our 
knowledge, there are multiple tools that have been developed 
to predict the calpain cleavage sites, such as PoPS (Boyd et al., 
2005), SitePrediction (Verspurten et al., 2009), GPS-CCD (Liu 
et al., 2011), and LabCaS (Fan et al., 2013). Nevertheless, many 
problems remained in these algorithms. Recently, the application 
of deep learning in machine learning algorithm has appeared as 
an important topic. In this work, a novel predictor DeepCalpain 
based on deep neural network in combination with PSO algorithm 
was presented. The 4-, 6-, 8-, and 10-fold cross-validations of the 
training dataset demonstrated that DeepCalpain is a stable and 
robust predictor system. Compared with other existing tools, 
DeepCalpain exhibited superior performance for the prediction 
of calpain cleavage sites. In addition, based on the transfer 
learning method, the submodels for the prediction of μ-calpain 
and m-calpain specific cleavage sites were also constructed, 
which outperformed existing approaches. Generally speaking, 
the deep learning-based predicting tool DeepCalpain is a useful 
program for detecting potential calpain cleavage sites, and the 
computational predictions followed by experimental validations 
would provide important hints for the further understanding of 
calpain-mediated cleavage mechanisms.

Previous studies have shown that calpain-mediated cleavage is 
highly correlated with cancer development and progression. For 
example, calpain-mediated cleavage of β-Catenin is important in 
prostate and mammary tumor cells (Rios-Doria et al., 2004), while 
calpain-mediated Myc cleavage promotes the survival of cancer 
cells (Conacci-Sorrell et al., 2014). To understand the regulatory 
mechanism of calpain-mediated cleavage in different cancer 
types at the systemic level, a series of analysis  were  performed 
in this study. By statistical analysis, we found the somatic mutations 
were significantly enriched in the regions around the calpain 
cleavage sites compared with other regions, while the μ-calpain and 
m-calpain mRNA expression levels were differentially expressed 
across 11 cancer types, which was consistent with previous analyses 
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(Kimura et al., 1998; Lakshmikuttyamma et al., 2004; Storr et al., 
2011; Storr et al., 2012). Moreover, to explore the potential functions 
of CCRM sites and proteins in different cancer types, we used the 
newly developed tool DeepCalpain to predict the cleavage potential 
for all variations and then classified them into four types, including 

Gain, Loss, Change, and Not changed according to their impact on 
calpain cleavage. From the results, we found that approximately 
43.9% proteins undergoing calpain cleavage were influenced by 
missense variations on average across all selected cancers, which 
demonstrated that the abnormal modification of calpain cleavage 

FIGURE 4 | Systematic analysis of the impact of calpain cleavage–related mutation sites and proteins. (A) CCRM proteins were significantly enriched in cancer-
related pathways. (B) CCRM sites were more conserved than other mutations. (C) CCRM sites showed a preference to be enriched in known functional domain 
regions. (D–E) Patients with at least six CCRM sites had significantly worse clinical prognostic in HNSC (D) and LIHC (E).
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plays an essential role in the development and progression of 
cancer cells. In addition, the KEGG enrichment analysis of CCRM 
proteins indicated that the pathways related to the processes of 
metabolism, degradation, and biosynthesis exhibited statistically 
significant enrichment in CCRM proteins. In addition, analyses 
of CCRMs demonstrated that CCRM sites were more conserved 
and had higher variant allele fraction (VAF) values than nCCRMs 
and significantly enriched in the domain regions, suggesting a 
potential positive selection and important function during cancer 
progression. Finally, we also observed that the CCRM sites were 
highly associated with worse overall survival in HNSC and LIHC. 
In conclusion, the above results provided a systematic analysis of 
aberrant calpain-mediate cleavage affected by missense variations 
and showed that calpain cleavage–related mutations were 
significantly involved in different cancers.

Although DeepCalpain has achieved promising performance, 
there is still room for improvement. First of all, the negative dataset 
is significantly larger than the positive dataset, which leads to a data 
unbalanced issue. Although we have tested a balanced dataset and 
it comes to a comparable performance compared with the existing 
model, more approaches need to be tried to overcome the issue 
(Umarov et al., 2019). It is well known that a larger training dataset 
will produce more accurate predictive performance. In the future, 
experimentally identified proteins with calpain cleavage sites 
will be continuously collected from the literature and integrated 
into the predictive model when available. Furthermore, with 
the development of high-throughput techniques, more calpain-
specific cleavage sites will be identified, while the prediction 
systems could be generalized to other calpain isoforms besides 
μ-calpain and m-calpain. Thus, a powerful tool for the prediction 
of calpain cleavage sites in a calpain-specific fashion would be 
desirable. Furthermore, we will introduce some other features, such 
as secondary and three-dimensional structures, protein-protein 
interactions, and evolutionary information, into the prediction 
system in future developments. And more deep learning methods 
should be taken into consideration, such as CNN, recurrent neural 
network (RNN), graph convolutional neural network (GCN), 
and attention models (Li et al., 2019), which may help improve 
the current performance. Overall, we developed a powerful tool 
DeepCalpain for the identification of potential calpain cleavage sites 
with satisfying performance in this study. The systematic analysis of 
the connection between calpain cleavage and cancer mutations may 
help speed up our understanding of the regulatory mechanism of 
calpain-mediated cleavage in different cancer types and may open 
new avenues for the diagnosis and treatment of cancers.
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