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Durum wheat [Triticum durum (Desf).] is mostly used to produce pasta, couscous, 
and bulgur. The quality of the grain and end-use products determine its market value. 
However, quality tests are highly resource intensive and almost impossible to conduct in 
the early generations in the breeding program. Modern genomics-based tools provide 
an excellent opportunity to genetically dissect complex quality traits to expedite cultivar 
development using molecular breeding approaches. This study used a panel of 243 
cultivars and advanced breeding lines developed during the last 20 years to identify 
SNPs associated with 24 traits related to nutritional value and quality. Genome-wide 
association study (GWAS) identified a total of 179 marker–trait associations (MTAs), 
located in 95 genomic regions belonging to all 14 durum wheat chromosomes. Major 
and stable QTLs were identified for gluten strength on chromosomes 1A and 1B, and 
for PPO activity on chromosomes 1A, 2B, 3A, and 3B. As a large amount of unbalance 
phenotypic data are generated every year on advanced lines in all the breeding programs, 
the applicability of such a dataset for identification of MTAs remains unclear. We observed 
that ~84% of the MTAs identified using a historic unbalanced dataset (belonging to a 
total of 80 environments collected over a period of 16 years) were also identified in a 
balanced dataset. This suggests the suitability of historic unbalanced phenotypic data 
to identify beneficial MTAs to facilitate local-knowledge-based breeding. In addition to 
providing extensive knowledge about the genetics of quality traits, association mapping 
identified several candidate markers to assist durum wheat quality improvement through 
molecular breeding. The molecular markers associated with important traits could be 
extremely useful in the development of improved quality durum wheat cultivars using 
marker-assisted selection (MAS).

Keywords: durum wheat, genome wide association mapping, gluten strength, grain and pasta color, Infinium 
iSelect 90k, pasta, protein content, unbalanced data 
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INTRODUCTION

Durum wheat, the hardest of all wheats (Miller et al. 1982), is 
one of the most important crops in the world. Annual worldwide 
durum wheat production is estimated to be around 36 million 
tons, with approximately, 2.5 million tons produced in the 
United States (NASS, 2018). The market price of durum wheat is 
generally higher than other wheat classes, which makes durum 
wheat attractive for growers. Apart from grain yield and disease 
resistance, quality is a strong criterion of durum wheat variety 
selection. Grain quality parameters differ based on the end 
use but usually include visual appearance, vitreousness (VIT), 
weather damage (falling number), and protein quantity and 
quality. During milling, durum wheat endosperm is ground into 
coarse particles called semolina, which is then used for making 
pasta and couscous. The quality of semolina is determined by 
many factors including ash content, color, and particle-size 
distribution. Grain protein concentration is important for high-
quality pasta production due to its effect on the firmness of 
cooked pasta and tolerance to overcooking (Dexter and Matsuo, 
1977). Gluten strength can also affect pasta characteristics such 
as tolerance to overcooking, reduced stickiness, and minimal loss 
of solids during cooking. The degree of kernel translucency, and 
thus the apparent degree of vitreousness, is related to the degree 
of kernel compactness. Generally, more desirable coarse semolina 
is produced from highly vitreous wheats (Hoseney 1987). Milling 
yield is another important criterion for the milling industry, as 
higher semolina yield means higher profits for durum wheat 
millers. Pasta color is an important consideration by the 
consumers. Therefore, processors prefer clear, bright yellow 
semolina, which generally produces a superior end product. 
Polyphenol oxidases (PPOs) produce dark/brown polyphenols 
(Anderson and Morris, 2003). When PPO activity reaches 
substantial levels, an unappealing brown color can occur in 
end products (Sissons, 2008). Cooked quality for pasta, which 
is determined by its cooked firmness, cooking loss, and cooked 
weight, is important to producers. Durum wheat with high grain 
and end-product quality can receive premium prices in national 
and international markets.

The phenotypic evaluation of many important quality traits 
requires large amounts of grain per line, which is not feasible 
in early generations of breeding due to the large number 
of lines and limited resources in most breeding programs. 
Marker-assisted selection provides an opportunity for breeders 
to identify superior lines in early generations, thus saving 
significant resources and speeding up the process of cultivar 

development. However, most of the quality traits in wheat are 
quantitatively inherited and influenced by multiple QTL, QTL × 
QTL, the environment, and the interaction between QTL and 
environment (McCartney et al., 2005; Li et al., 2012; Kumar et al., 
2013; Tadesse et al., 2015; Kumar et al., 2018; Merida-Garcıa et al., 
2019). Therefore, a complete  knowledge about the genetics of 
target traits and identification of markers tightly linked to those 
target traits is essential for the successful integration of MAS in 
the breeding program. Traits like grain protein content (Blanco 
et al., 2006; Blanco et al., 2012; Kumar et al., 2018), gluten strength 
(Kumar et al., 2013; Kumar et al., 2018), and color (Pozniak et al., 
2007; Zhang and Dubcovsky, 2008b; Roncallo et al., 2012) have 
been investigated in some details in durum wheat. However, a 
limited number of studies have been conducted to genetically 
dissect other important quality traits related to milling, PPO 
(Si et al., 2012), and pasta cooking (Zhang et al., 2008a), which 
determine the end-use value of durum wheat (Fiedler et al., 
2017; N’Diaye et al., 2017). Also, most of those genetic dissection 
studies conducted in durum wheat were based on bi-parental 
mapping and low-resolution maps. Genome-wide association 
mapping studies based on advanced breeding lines may have 
more relevant results compared with those generated from 
bi-parental populations and diverse panels because of their direct 
application in the breeding program.

During the process of developing germplasm and cultivars 
in a breeding program, a large amount of phenotypic data are 
routinely collected on breeding lines in advanced generations. 
However, each year, only a small number of advanced breeding 
lines are evaluated. A few of those are replaced with new lines 
over the next few years, resulting in data from a large collection 
of advanced breeding lines composed of genotypes that are 
evaluated in different years and locations, generating unbalanced 
data. With genotyping cost decreasing day by day, the AM 
approach for identifying QTL could be even more cost-effective 
if a large amount of phenotypic data routinely collected by 
breeding programs could be used to gain insight of the genetics of 
quantitative traits and to identify MTAs for molecular breeding. 
However, information about the application of such unbalanced 
data for genetic studies is mostly missing. Therefore, in this 
study, a panel of advanced breeding lines and cultivars of durum 
wheat were used to identify 1) genomic regions associated with 
24 quality traits, 2) associated markers suitable for MAS, and 
3) whether historic unbalanced data are suitable for AM analysis 
and QTL identification. To our knowledge, this is the first such 
comprehensive study demonstrating the application of historic 
unbalanced phenotypic data for genome-wide association studies 
of complex, low, and moderate heritability traits in wheat.

MATERIALS AND METHODS

Plant Material and Field Evaluation
The AM panel consisted of 243 durum wheat cultivars and 
inbred lines (F5:9) entered into the Uniform Regional Durum 
Nursery (URDN) from 1997 to 2014 (except in 2010 and 2011 
due to severe weather conditions). These cultivars and inbred 
lines were chosen based on the phenotypic data available for the 

Abbreviations: AFLP, amplified fragment length polymorphism; AM, association 
mapping; CLOSS, cooking loss; CV, coefficient of variance; CWT, pasta cooked 
weight; FIRM, pasta firmness; FN, falling number; GI, gluten index; GWAS, 
genome-wide association study; LD, linkage disequilibrium; MAF, minor allele 
frequency; MAS, marker-assisted selection; MIXO, mixogram score; MSD, mean 
squared difference; PCA, principal component analysis; FDR, false discovery 
rate; RFLP, restriction fragment length polymorphism; SASH, semolina ash; SDS, 
sodium dodecyl sulfate micro-sedimentation; SEXT, semolina extraction; SNP, 
single-nucleotide polymorphism; SPROT, semolina protein; SSR, simple sequence 
repeat; TEXT, total extraction; TYP, total yellow pigment; WG, wet gluten; 
WPROT, whole-wheat protein; WTS, work to shear.
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agronomic and quality traits routinely collected over the years. 
The historic unbalanced data were collected on these lines from 
1997 until 2014. Each year, a subset of those lines was evaluated 
at five locations in North Dakota (Williston, Minot, Langdon, 
Carrington, and Prosper) in a randomized complete block 
design (RCBD) with four replications. Some of the lines were 
replaced each year with new inbred lines and evaluated in the 
same manner. So the unbalanced phenotypic data for the panel 
were obtained for the 80 environments belonging to 16 growing 
seasons. In 2015, a panel of 256 lines (13 additional lines were 
added to make a 16 × 16 lattice) was also evaluated together at 
two locations (Prosper and Langdon) to collect balanced data 
for the traits under study. Genotypes were planted in a 16 × 
16 simple lattice design with two replicates. For both datasets, 
individual plots consisted of four 2-m-long rows spaced 0.3 m 
apart. Plots were harvested with a plot combine (HEGE 140), 
and the grain was collected in individual sacks. The grain was 
dried to approximately 12% moisture content and stored at 
16°C until further processing. Quality tests were performed in 
the Durum Wheat and Pasta Processing Laboratory at North 
Dakota State University (NDSU).

Data Collection
Sample Preparation
Post-harvest cleaning was conducted using the Carter-Day 
Dockage Tester (Simon-Carter-Day Company, Minneapolis, 
Minnesota) configured with a number 25 riddle and a number 
2 top sieve and number 2 bottom sieve. The samples were 
cleaned again using the Carter-Day Dockage Tester configured 
with a number 25 riddle, a number 8 top sieve, and a number 
2 bottom sieve. For quality traits analyses, subsamples from 
the total amount of seed available were taken and ground into 
whole-wheat flour using a Udy Cyclone Mill (UDY Corporation, 
Boulder, Colorado) fitted with a 60-mesh sieve and stored in 
plastic bags at 4°C until tests were performed. Ash content, 
protein content, sedimentation volume, falling number, and total 
yellow pigment content tests were performed using the whole-
wheat samples.

Subsamples for milling were taken from the available grain. 
Prior to milling, all subsamples were tempered in two stages 
based on grain moisture. In the first stage, they were tempered 
to 12.5% moisture for at least 72 h; and in the second stage, 
they were tempered to 15% moisture for 24 h before milling. 
The samples were milled into semolina using a Quadramat Jr. 
Mill (C.W. Brabender Instruments, Inc., South Hackensack, 
New Jersey) according to the American Association of Cereal 
Chemists International (AACCI) method 26-50.01 (AACC 
International, 2008). Semolina samples were kept at 4°C until 
further analysis. Different approaches for semolina mixing and 
extrusion were used for the two datasets due to the amount of 
semolina available. For the historic unbalanced dataset, 1,000 g 
of semolina was hydrated and mixed in a Hobart C-100-T mixer 
equipped with a pastry knife agitator. The mixer was set on 
low speed for 10 s while distilled water was added and then on 
high speed for 50 s. The semolina was mixed for an additional 
2 min on high speed to ensure it reached a complete premix 

stage. Processing was done in a semicommercial-scale pasta 
extruder (DeMaco, Melbourne, Florida) and extruded through 
an 84-strand 0.043-inch Teflon spaghetti die. A jacketed extrusion 
tube (23-cm length × 4.4-cm inside diameter) was attached to 
the pasta extruder to allow a longer time for semolina hydration 
to minimize white specks in the spaghetti. Actual conditions for 
dough extrusion were a screw rotation speed at 28–29 rpm, a 
vacuum at 0.8–1.05 kg/cm2, and a jacket temperature at 46–48°C. 
Room temperature and relative humidity were maintained at 
25°C and 40–45%, respectively.

For the 2015 balanced dataset, 300 g of semolina was 
hydrated and mixed in a KitchenAid commercial mixer. The 
mixer was set on low speed for 10 s while distilled water was 
added and then on high speed for 50 s. The semolina was mixed 
for an additional 2 min on high to ensure it reached a complete 
premix stage. Processing was done using a commercial tabletop 
electric pasta machine (Arcobaleno, Lancaster, PA, model 
AEX18) and extruded through a 35-strand 1.09-mm Teflon 
spaghetti die.

Due to the large number of samples evaluated in 2015 and 
the amount of time needed for drying, the drying process was 
omitted for the 2015 balanced dataset. For the historic unbalanced 
dataset, the extruded spaghetti was dried in a laboratory pilot-
scale dryer (Standard Industries, Fargo, North Dakota) on the 
low-temperature cycle with a total drying time of 18 h. The low-
temperature cycle typically has an 18-h total drying time at 40°C 
(Yue et al., 1999).

Two different spaghetti cooking times were used for the two 
datasets. In the historic unbalanced dataset, dry spaghetti (10 
g) was broken into lengths of approximately 5 cm and placed 
in 300 ml of boiling water for 12 min. However, based on 
preliminary results, the cooking time for the fresh spaghetti in 
the 2015 balanced dataset was reduced to 4 min. Fresh spaghetti 
(10 g) was cut into lengths of approximately 5 cm and placed 
in 300 ml of boiling water for 4 min. The optimum cooking 
time was determined using AACC method 66-50 (AACC 
International, 2008).

Phenotypic data for following quality traits were recorded:
Protein

Grain protein content (WPROT): Protein content was 
determined using an Infratec 1226 Whole Grain Analyzer 
(FOSS Tecator, Höganäs, Sweden). The data on protein 
content were adjusted to 14% moisture content.

Semolina protein content (SPROT): Semolina protein 
content was determined using AACC method 39-25.01 
(AACC International, 2008) adapted for the FOSS 
Infratec 1241 Grain Analyzer (Foss North America, 
Eden Prairie, Minnesota).

Milling-Related Traits

To produce durum wheat semolina and flour, the 
samples were milled using a Quadramat Jr. Mill (C.W. 
Brabender Instruments, Inc., South Hackensack, New 
Jersey) according to AACC method 26-50.01 (AACC 
International, 2008). Total extraction refers to the portion 
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of the durum wheat kernel that can be milled into flour 
and semolina. Semolina extraction is only that portion 
of the wheat kernel that is milled into semolina. For 
uniformity, all extractions were adjusted to 14% moisture 
and expressed on constant moisture basis.

Total extraction (TEXT): Total extraction was expressed as a 
percentage weight per weight (w/w) of semolina and flour 
from tempered durum wheat samples.

Semolina extraction (SEXT): Semolina extraction was 
expressed as a percentage weight per weight (w/w) of 
semolina from tempered durum wheat samples.

Semolina ash content (SASH), moisture content: Approved 
methods (AACC International, 2008) were used to 
determine ash (method 08-01.01) and moisture content 
(method 44-15.02).

Vitreousness (VIT): The percentage of vitreous kernels was 
determined by cutting 100 kernels taken at random 
transversally with a farinator (grain splitter) and 
identifying the grains that were not fully vitreous according 
to the appearance of the sectional areas of the endosperm. 
Vitreous grains are translucent and transparent when 
cut, while starchy grains are white and opaque due to the 
existence of air pockets in the endosperm (Hoseney, 1986).

Gluten-Related Traits

Sedimentation volume (SDS): The sedimentation volume was 
measured using sodium dodecyl sulfate (SDS) micro-
sedimentation test as described by Dick and Quick (1983).

Mixogram score (MIXO): Ten grams of semolina, based on 
14% moisture, was weighed. Water was added based on the 
grain protein content using a formula (Y = 1.5X + 43.6) 
described in AACC method 54-40A (2008), where Y = 
amount of water (ml) added to the sample and X = protein 
content at 14% mb. The 10-g bowl mixograph (National 
Manufacturing, TMCO Division, Lincoln, Nebraska) was 
used to measure the dough mixing strength of semolina. 
Mixing tolerance was scored using a scale of 1 (weak) to 
8 (strong).

Wet gluten (WG) and gluten index (GI): Wet gluten and gluten 
index were determined with the glutomatic instrument 
(Perten Instruments, Springfield, Illinois) using AACC 
method 38-12.02 (AACC International, 2008).

Glutork (GLUT): Water binding capacity (water bound in 
wet gluten) was determined with Glutork 2020 (Perten 
Instruments, Springfield, Illinois) using AACC method 
38-12.02 (AACC International, 2008) and expressed as 
difference between wet and dry gluten content (%).

Color-Related Traits

Semolina color (color a, color b, and color L): Semolina color 
was determined using the Minolta colorimeter CIEL 
CR410 (Hunter lab L, a, b). Value “L” indicates lightness 
or brightness, value “b” indicates yellowness, and value “a” 
indicates “greenness.”

 Difference in color a (dif_a), difference in color b (dif_b), 
and difference in color L (dif_L):

 A semolina dough sheet was made using a modified 
method described by Fu et al. (2011). A total of 30 g of 
semolina was hydrated to 38% moisture at 45°C and 
mixed for 1 min in a KitchenAid mixer (4.3 L KitchenAid 
CLASSIC Stand Mixer 5K45SS) at speed 4. After being 
mixed, the dough was sheeted twice in a pair of sheeting 
rolls with a gap of 1 mm. The resulting dough sheet was 
folded twice and sheeted twice in a pair of sheeting rolls 
with a gap of 3 mm without folding. The smooth dough 
sheet was transferred to a plastic bag and stored in a closed 
drawer at room temperature. Color was measured on the 
dough sheet at intervals of 0.5 and 24 h using a Minolta 
colorimeter CIEL CR410 (Hunter lab L, a, b). Differences 
in color a, color b, and color L were measured between the 
time intervals.

Dry pasta color (color): Visual color was determined under the 
constant light source and assigned a numerical visual color 
score from 1 to 12, with 12 as the best score. The scores 
were generated according to the color map designed by 
Debbouz (1994).

Total yellow pigment (TYP): Total yellow pigment 
(TYP) content was determined using the water-
saturated n-butanol AACC method 14-50.01 (AACC 
International, 2008) as modified by using 2 g of ground 
whole meal. Water-saturated n-butanol (10 ml) was 
added to 2 g of whole meal and shaken for 2 min. After 
a 30-min rest, the extracts were centrifuged at 12,000 
rpm for 10 min, and the supernatant was carefully 
transferred to cuvettes. Absorbance was measured 
using a spectrophotometer (Beckman Coulter DU 
720 General Purpose UV/Vis Spectrophotometer) at a 
wavelength of 435.8 nm. Measurements per extracted 
sample were recorded, and values averaged and 
converted to yellow pigment concentration (μg/g) using 
the extinction coefficient (1.6632) for β-carotene (Sims 
and Lepage, 1968).

Polyphenol oxidase (PPO): Polyphenol oxidase activity 
was determined using intact kernels as described by 
Anderson and Morris (2001) using AACC method 
22-85.01 (AACC International, 2008). A 1.5 ml aliquot 
of 10 mM of l-DOPA (l-3,4-dihydroxyphenylalanine) 
containing 0.02% v/v Tween-20 as a substrate in a 
50  mM of MOPS [3-(N-morpholino)propane sulfonic 
acid] buffer with a pH of 6.5 was added to five 
undamaged seeds in a 2-ml microcentrifuge tube. The 
tubes were placed on an orbital shaker (Glas-Col, Terre 
Haute, Indiana) and rotated for 1 h at room temperature 
to allow the reaction to occur. Polyphenol oxidase 
activity was measured as the change in absorbance at 
475 nm using a Beckman Coulter spectrophotometer 
(Beckman Coulter DU 720 General Purpose UV/
Vis Spectrophotometer, Fullerton, California). The 
l-DOPA solution was made fresh daily. Each sample 
was measured in duplicate.
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Cooking-Related Traits

Cooked weight (CWT): After being cooked, samples were rinsed 
off with distilled water in a Buchner funnel and drained. 
Spaghetti strips were weighed and reported in grams.

Cooking loss (CLOSS): Cooking loss (% weight of solids) 
was measured by evaporating the cooking water to 
dryness in a forced-air oven at 110°C overnight. The 
residue was weighed and reported as percentage of the 
dry spaghetti.

Cooked spaghetti firmness (FIRM): Cooked firmness was 
measured using a plexiglass blade probe attached to a 
Texture Analyzer (Model TA-XT, Texture Technology 
Corporation, Scarsdale, New York) as described by Walsh 
(1971). Five strands of cooked spaghetti were placed on a 
plexiglass plate and sheared at a 90° angle with a plexiglass 
tooth probe. Firmness was measured as the maximum 
shear strength of curve (g).

Work to shear (WS): Five strands of cooked spaghetti were 
placed on a plexiglass plate and sheared at a 90° angle 
with a plexiglass tooth probe. A TA-XT2 texture analyzer 
was used to calculate the area under the curve (g·cm), 
indicating the amount of work required to shear the 
cooked spaghetti (the CF score). The average of three CF 
scores was used to report CF.

Statistical Analysis
The analysis of variance was conducted using the Statistical 
Analysis System (SAS) computer package version 9.3 (SAS, 
2004). The unbalanced historic dataset was analyzed using 
a mixed linear model (MLM) with Proc Mixed method III, 
where genotypes were the fixed effects, and environments and 
replicates within environments were the random effects. The 
balanced dataset was analyzed using Proc GLM method III. 
Least square (LS) means were used for the analyses (Steel and 
Torrie, 1980).

The entry means plot-based heritability for all the traits were 
estimated using the method described by Holland et al. (2003). 
The variance and covariance parameters were calculated using 
the COVTEST and ASYCOV options of the MIXED procedure 
(SAS, 2004), with environments and genotypes deemed random. 
Trait correlations were calculated and plotted in R 3.0 (Venables 
et al., 2017) using cor.matrix and corrplot from the corrplot 
package. Correlation values were considered significantly 
different from zero at P ≤ 0.05.

DNA Isolation and SNP-Marker 
Genotyping and Analysis
Four seeds from each genotype were planted into potting mix in 
the greenhouse in the fall of 2014. Three young leaf tissues from 
each genotype were harvested and sent to the USDA-ARS Cereal 
Crops Genotyping Laboratory in Fargo, ND, for DNA isolation. 
The extracted DNA samples were genotyped using the Illumina 
90k iSelect BeadChip platform, and the markers were called 
using the diploid version of GenomeStudio software (Wang et 

al., 2014). FastPHASE 1.3 software with the default settings 
(Scheet and Stephens, 2006) was used to impute missing loci 
data using a “likelihood”-based imputation. The heterozygotes 
were considered missing. Only markers having a minor allele 
frequency (MAF) > 0.05 were considered for further analysis.

Linkage disequilibrium for all pairwise comparisons between 
intra-chromosomal SNP was computed, and the genome-wide 
LD decay was estimated using JMP Genomics 8.1 software 
(SAS, 2004). The LD was computed as the squared correlation 
coefficient (R2) for each of the marker pairs. Genome-wide 
LD decay was estimated by plotting LD estimates (R2) from all 
14 chromosomes against the corresponding pairwise genetic 
distances (cM). Smoothing spline Fit (lambda = 338064.8) was 
applied to the estimate of LD decay.

Association Mapping (AM) Analysis
Association mapping analysis was done using JMP Genomics 
8.1 software (SAS, 2004; Zhao et al., 2007). Population structure 
(Q matrix), which can be defined as the differential relatedness 
among genotypes, was controlled with principal component 
analysis (PCA). The identity-by-state (IBS) matrix (K matrix) 
representing the proportion of shared alleles for all pairwise 
comparisons in each population was applied. Five regression 
models were generated to analyze marker–trait association: 
1) naive, 2) kinship, 3) kinship plus population structure (the first 
two principle components (PCs) collectively explained 11.3% of 
genotype variation), 4) kinship plus population structure (the first 
three PCs collectively explained 15.46% of genotype variation), 
and 5) the kinship plus population structure (the first four PCs 
collectively explained 19.2% of genotype variation). The best 
model was determined according to the Bayesian information 
criterion (BIC), where the lowest BIC value is preferred (Ghosh 
et al., 2006; Zhang et al., 2010). The P values of the selected 
models were later adjusted by calculating the corresponding false 
discovery rate (FDR) (Benjamini and Yekutieli, 2001). Marker–
trait associations were considered significant at an FDR ≤ 0.1.

RESULTS

Phenotypic Data Analysis
There were significant differences among genotypes for most of 
the traits in both balanced and unbalanced datasets (Table 1). 
Also, the environment had a significant effect on most of the 
traits as indicated by the significant genotype by environment 
interactions (Table 1). The correlation analysis showed significant 
correlation between related traits. Grain protein (WPROT) 
was consistently positively correlated with VIT, WG, FIRM, 
and GLUT and negatively correlated with CWT and CLOSS 
(Figure 1). Semolina ash (SASH) was positively correlated with 
WPROT. Total yellow pigment (TYP) was positively correlated 
with semolina color b and negatively correlated with semolina 
color L (Figure 1). Gluten strength, measured by GI, SDS, and 
MIXO, was significantly positively correlated with spaghetti 
firmness (FIRM), but SDS, MIXO, and GI had no significant 
correlation with WPROT, CWT, or CLOSS (Figure  1). These 
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TABLE 1 | Analysis of variance and heritability estimates for different quality traits in durum wheat association mapping panel.

Traits Mean squares H¶ SE#

Genotype (G) Location (L) Rep(L) G*L Error

Unbalanced data
Grain protein (WPROT) 1.92** 87.19* 88.74** 0.41** 0.35 0.209 0.020
Semolina protein (SPROT) 1.45** 82.62* 79.82** 0.36** 0.27 0.194 0.020
Total extraction (TEXT) 6.96** 546.61** 89.63** 1.24* 1.07 0.288 0.024
Semolina extraction (SEXT) 8.84** 405.46** 79.43** 1.28 1.20 0.338 0.024
Semolina ash (SASH) 0.008** 0.313** 0.233** 0.002** 0.002 0.224 0.022
Kernel vitreousness (VIT) 47,310** 32,988** 300,035** 16,500 152,094 0.223 0.021
Sedimentation volume (SDS) 643.98** 2,636.55** 1,953.89** 28.72** 21.77 0.574 0.023
Gluten index (GI) 3,531.53** 6,918.65** 3,226.44** 116.41** 91.77 0.655 0.021
Wet gluten (WG) 44.04** 766.45* 773.30** 7.69** 5.43 0.291 0.025
Mixogram score (MIXO) 12.09** 8.95 11.54** 0.54** 0.42** 0.551 0.023
Pasta color (Color) 0.62** 14.42** 9.59** 0.12** 0.10 0.272 0.025
Firmness (FIRM) 1.85** 136.52* 135.37** 0.28** 0.22 0.262 0.022
Cooking loss (CLOSS) 0.54** 13.48 18.44** 0.21** 0.16 0.116 0.017
Cooked weight (CWT) 1.87** 37.84** 24.67** 0.72** 0.60 0.088 0.011
Balanced data
Grain protein (WPROT) 0.69** 382.30** 7.05** 0.26** 0.10 0.385 0.043
Semolina protein (SPROT) 0.86** 570.61** 5.66** 0.27** 0.10 0.447 0.042
Kernel vitreousness (VIT) 205.03** 43,076.09** 14,301.21** 72.65** 45.93 0.358 0.040
Sedimentation volume (SDS) 210.49** 9,123.01** 5,242.92** 28.01** 16.62 0.670 0.027
Gluten index (GI) 1,000.44** 405,220.08** 6,920.06** 176.54** 78.81 0.619 0.032
Wet gluten (WG) 18.30** 14,402.79** 235.27** 6.49** 2.16 0.411 0.043
Glutork (GLUT) 0.07** 47.78** 0.61** 0.03** 0.01 0.297 0.056
Color a (Color_a) 0.66** 77.01** 6.09** 0.22** 0.11 0.403 0.041
Color b (Color_b) 11.63** 645.64** 18.65** 1.19** 0.75 0.730 0.023
Color L (Color_L) 2.29** 1,030.62** 13.72** 1.30** 0.75 0.195 0.042
Difference in color a (Dif_a) 0.13** 97.65** 0.38** 0.08* 0.06 0.169 0.038
Difference in color b (Dif_b) 1.90** 219.48** 0.38 0.95** 0.64 0.232 0.041
Difference in color L (Dif_L) 7.45 585.54** 47.02** 7.29 6.60 0.005 0.033
Total yellow pigment (TYP) 3.33** 128.28** 7.16** 0.24** 0.14 0.803 0.018
Polyphenol oxidase activity (PPO) 0.0568** 0.0486** 0.0026 0.0018** 0.0011 0.905 0.009
Firmness (FIRM) 1.98** 135.67* 136.76** 0.28** 0.22 0.456 0.023
Cooking loss (CLOSS) 0.16 52.68** 38.04** 0.18** 0.14 0.103 0.045
Cooked weight (CWT) 0.85 2.79 8.81** 0.85 0.80 0.156 0.044

*,** Significance at P < 0.05 and 0.01, respectively; ns not significant at P < 0.05; G*L, genotype by location interaction; Rep(L), replicates within location; Error, plots residuals; 
¶broad sense heritability on plot basis calculated for the RILs.
#standard error for heritability.

FIGURE 1 | Correlation between traits and locations based on adjusted means. Data showing the relationship between quality traits in (A) Prosper, (B) Langdon, 
and (C) unbalanced combined data. WPROT, whole-wheat protein; SPROT, semolina protein; SDS, sedimentation test; GI, gluten index; WG, wet gluten; GLUT, 
glutork; VIT, vitreousness; CLOSS, cooking loss; FIRM, firmness; CWT, cooked weight; PPO, polyphenol oxidase; TYP, total yellow pigment; Color_L, semolina 
color (Hunter lab value); Color_a, semolina color (Hunter lab value a); Color_b, semolina color (Hunter lab value b); Dif_L, difference in semolina dough sheet color L 
after 24 h; dif_a, difference in semolina dough sheet color a after 24 h; dif_b, difference in in semolina dough sheet color b after 24 h; Color, spaghetti color; TEXT, 
total extraction; SEXT, semolina extraction; SASH, semolina ash; MIXO, mixogram score. Cells with correlation values not significant at P value < 0.01 have a white 
background. ## GLUT, WTS, Color_L, Color_a, color_b, Dif_L, Dif_a, Dif_b, PPO, and TYP were only measured in balanced dataset, while TEXT, SEXT, SASH, 
MIXO, and Color were only measured in historic unbalanced dataset.
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findings suggest that both protein quantity and quality/
composition play an independent role in the end-use product as 
has been observed in the past (Ciaffi et al., 1991; Samaan et al., 
2006). Overall, the correlation analysis showed that the protein 
quantity and quality characteristics were associated with the 
cooking properties.

Marker Properties and Linkage 
Disequilibrium (LD) Analysis
A total of 6,492 SNP markers showed polymorphism among 
durum lines (Supplementary Table 1). Out of those, 4,196 SNP 
markers were selected for LD/association mapping (AM) after 
excluding the markers with MAF <5%, missing data points >10%, 
and markers with no genetic position on the consensus durum 
wheat map (Maccaferri et al., 2015). Markers were ordered 
according to the scaled map positions of the tetraploid wheat 
SNP consensus map (Maccaferri et al., 2015). The LD decayed to 
0.2 within 5 cM, on average (Figure 2). Significantly associated 
SNPs that were ≤5 cM apart and/or located between the pairwise 
LD (R2) ≥ 0.7 were considered a single QTL.

Population Structure, Kinship Analysis, 
and Regression Model Selection for AM
Population structure was inferred using principal component 
analysis (PCA). Principal component analysis showed that 
two, three, and 10 PCs explain a cumulative 11.3%, 15.4%, and 
26.8% of the genotype variation, respectively. The first three PCs 
clustered the collection into three sub-populations (Figure 3). 
The familial relatedness was estimated using an identity-by-state 
matrix (K matrix), and kinship between accessions was calculated 
(Figure 4). Some hotspots with related lines were observed on the 
heat map, suggesting intermediate familial relationships among 
genotypes. Accounting for the population structure and familial 
relationship between individuals in the AM analysis reduces the 
number of false-positive associations. Based on the BIC values 
of the five regression models (as explained in the Materials and 
Methods) tested, no single model fits best for all traits in different 
environments (Supplementary Table 2). For most of the traits, 
mixed models (KQ) incorporating information about familial 
relatedness (K matrix) and population structure (Q matrix) were 
found more suitable (meaning that they have lower BIC values). 

FIGURE 2 | Scatter plot showing the linkage disequilibrium (LD) decay across the chromosomes (Chr) for 243 durum wheat genotypes. The genetic distance in 
centimorgan (cM) is plotted against the LD estimate (R2) for pairs of SNPs. Smoothing spline fit, lambda = 338,064.8, R2 = 0.56902, and sum of squares error = 
6,804.7.
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In some cases of QK model fitting, three PCAs and in some 
cases four PCAs were found more appropriate. If BIC values for 
a particular traits were the same using three and four PCAs, we 
preferred to use three PCAs in the final GWAS model. For few 
other traits, adding information about population structure in 
the model did not help. So to avoid any false negatives because 
of model overfitting, we analyzed those traits with regression 
models incorporating only familial relatedness (or K matrix).

Identification of Marker–Trait Associations 
(MTAs) in Breeding Program Germplasm
Most quality traits were interrelated (Figure 1), which was 
reflected in their significant correlations and co-localization 
of the associated loci (Table 2; Supplementary Table 3). The 
detailed results of marker–trait association are presented in 
Supplementary Table 3, but significant QTLs identified in two 
or three datasets (except for traits which were analyzed in single 
environment) are presented in Table 2].

Protein content: Both whole grain protein and semolina protein 
were genetically dissected in this study. Association mapping 
identified three loci for grain protein and five loci for semolina 
protein, including two common loci, located one each on 5B and 
7A (Supplementary Table 3). The QTLs for protein were located in 
six genomic regions belonging to five different chromosomes (1B, 

5B, 6A, 7A, and 7B). All these loci were identified in both balanced 
and unbalanced datasets. All these loci were associated with minor 
effects (R2 = 3.2–5.2%) on protein content.

Milling-related traits: Milling-related traits are represented 
by total extraction (TEXT), semolina extraction (SEXT), 
semolina ash (SASH), and kernel vitreousness (VIT). All these 
traits except VIT were evaluated in the unbalanced dataset only. 
A total of four, six, eight, and 11 loci were associated with TEXT, 
SEXT, SASH, and VIT, respectively. These 29 QTL were located in 
24 genomic regions belonging to all durum wheat chromosomes 
except 7B. All the four loci associated with TEXT (located on 
chromosomes 2A, 2B, 4A, and 5A) were also associated with 
SEXT (Supplementary Table 3) as well, suggesting that those 
two traits are closely associated. On the other hand, SASH and 
VIT showed some independent genetic control, as only a single 
QTL for each of those traits was also found associated with 
another milling-related trait. However, five out of 11 QTL for 
VIT were also found associated with one or more color-related 
traits. Two major QTL (R2 > 10%) for kernel vitreousness were 
identified, one each on chromosomes 4B (17.7–22.2 cM) and 
5B (146.14–149 cM). This genomic region on 4B was also found 
associated with Dif_b, CLOSS, Color, Color_a, and WG. Another 
QTL on 7A was also associated with WPROT, SPROT, and WG. 
The phenotypic variation contributed by loci associated with 
milling-related traits varied from 3% to 16.3%.

FIGURE 3 | Principal component (PC) analysis obtained from 4,196 polymorphic SNPs, indicating the population structure in 243 durum wheat accessions. PC1, 
PC2, and PC3 explain 6.8%, 4.5%, and 4.1% of the variation, respectively. The colors represent three different clusters.
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Gluten-related traits: Five gluten-related traits were 
genetically dissected in this study. These were sedimentation 
volume (SDS), gluten index (GI), wet gluten (WG), mixogram 
score (MIXO), and glutork (GLUT). The number of loci identified 
for these traits ranged from five (MIXO) to 11 (SDS). The 39 
QTLs identified for these five gluten-related traits were located in 
25 genomic regions, belonging to 12 different chromosomes (all 
except 5A and 5B) (Supplementary Table 3). Two consistently 
detected loci (explaining 7% to 11% of the phenotypic variation) 
associated with multiple gluten-related traits were identified in 
close proximity on the short arm of chromosome 1B. These loci 
were associated with SDS, GI, and MIXO and were identified 
in both balanced and unbalanced datasets. These loci were also 
associated with other quality traits like cooking weight and pasta 
firmness. The SNP marker IWB70674 associated with the locus 
on 1B at 15.2 cM was significant and stable across all locations 
and datasets. The FDR value was low in both balanced and 
unbalanced datasets. Another important QTL for gluten strength 
was identified on chromosome 1A and explained about 7.7% of 
the phenotypic variation. This locus associated with GI, FIRM, 
and CWT and was found in both balanced and unbalanced 
datasets. The SNP marker IWB6234 associated with this locus 
on chromosome 1A could also be useful for MAS. Based on the 

information for these two markers, two haplotypes were identified 
for gluten strength measured by SDS, GI, and MIXO (Table 3). 
Few other consistent QTLs associated independently with one of 
the gluten traits were also identified on other chromosomes as 
well (Supplementary Table 3).

Color-related traits: Nine color-related traits were measured 
in the present study, including dough color a, color b, color L 
before and after 24 h, indicated pigment loss (dif_a, dif_b, and 
dif_L), dried pasta color (“color”), total yellow pigment (TYP) 
in whole-wheat flour, and polyphenol oxidase (PPO) in whole 
wheat flour. “Color” represents spaghetti color and was only 
measured in the unbalanced dataset. A total of 58 QTLs, located 
on 41 different genomic regions, belonging to all 14 chromosomes 
were identified for nine color-related traits measured in both 
datasets. Ten genomic regions harbored QTL for two to four 
different color-related traits. For individual color-related traits, 
the number of loci ranged from four (color_L) to 13 (PPO). Five 
regions, located one each on chromosomes 3B, 4A, 4B, 6A, and 
7A, could be considered important as they were associated with 
three to four colored-related traits. The QTL on 3B (86.4–89.4 cM) 
was associated with  color_a,  dif_b, and TYP. The QTL on 4AL 
was  associated with pasta color, color_a, color_b, dif_b, and 
TYP. The locus on 4B was associated with pasta color, color_a, 

FIGURE 4 | Heat map displaying the relationship matrix among durum wheat genotypes. The red diagonal represents a perfect relationship of each accession 
with itself. The symmetric off-diagonal elements represent the relationship measures (identity-by-state) for pairs of genotypes. The blocks of warmer colors on the 
diagonal show clusters of closely related genotypes.
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TABLE 2 | Genetic location of some important (stable) marker–trait associations (MTAs)* for quality traits in durum wheat. Detailed results of marker–trait association for 
24 traits are presented in Supplementary Table 3.

Trait/Chr. ## Position (cM)a Genomic region Trialsb −log10 (P value) R2¶

a. Protein-related traits
Grain protein (WPROT)
5B 204.7–206.1 61 II††, III†† 2.86 4.4
7A 59.5–62.5 79 II†, III† 3.02 4.7
7B 62.2–67.3 90 I††, III†† 2.31 3.4
Semolina protein (SPROT)
5B 204.7–206.1 61 I††, III† 3.14 4.9
6A 111.9–113.5 68 I††, II† 3.33 5.1
7A 59.5–59.8 79 I††, III 3.31 5.2
b. Milling-related traits
Total extraction (TEXT)
2A 145.9 11 III†† 2.23 3.3
2B 158.3–161.5 24 III 5.14 8.5
4A 25.8 41 III† 3.18 5
Semolina extraction (SEXT)
2A 145.8–145.9 11 III†† 2.99 3.6
2B 161.5 24 III†† 2.66 4.1
4A 25.2–25.8 41 III† 3.1 4.8
Kernel vitreousness (VIT)
2B 181.6–183.1 26 I††, III†† 2.45 3.6
4B 17.7–22.5 46 I, II 5.63 11.6
7A 59.5–62.5 79 I††, II†† 2.84 4.2
c. Gluten-related traits
Sedimentation volume (SDS)
1A 1.3–4.6 1 I†, II†, III† 4.73 7.7
1B 0.3–6.1 4 I†, II†, III 5.2 8.7
1B 15.2–15.7 5 I†, II, III 6.11 10.2
3A 79.5 31 I††, II††, III†† 2.86 4.3
3B 75.5–79.1 36 II††, III†† 2.91 4.4
4A 0 40 I††, II† 3.31 5.1
7B 65.5 90 I†, II†† 3.18 4.9
Gluten index (GI)
1B 0.3–6.1 4 I†, II††, III† 4.3 7.3
1B 15.2–15.7 5 I†, II†, III 6.59 11
3A 170.1–176.9 32 I†, II†† 3.49 5.1
3B 75.5–86.9 36 I††,II†, III†† 3.15 4.8
6A 67.9–72.4 64 I†, II††, III†† 3.47 5.4
7B 169.8–175.9 94 I††, II††, III†† 2.67 3.3
Wet gluten (WG)
2A 186.2–189.8 14 I††, III†† 2.86 4.3
2B 146.8 22 II†, III† 3.24 5.3
4B 22.5–28.8 46 II†, III†† 3.48 5.4
7A 59.5 79 I††, III†† 2.69 4.3
Glutork (GLUT)
6A 67.9–72.4 64 I††, II†† 2.65 3.9
d. Color-related traits
Color_a
4A 139.2–143.7 44 I†, II† 4.73 7.6
7A 180.3–181.8 88 I†, II†† 3.31 5.1
7B 195.9–196.5 95 I†, II†† 4.37 6.9
Color_L
2A 189.8 14 I††, II†† 2.91 4.4
6A 0.1–3.1 62 I††, II†† 2.28 3.3
Difference in color b (dif_b)
4A 159.5 45 I†, II†† 3.53 5.5
4B 22.5–26.4 46 I†, II†† 3.81 5.1
7B 120.4–123.2 91 I†, II† 3.16 4.8
7B 138.3–140.4 93 I†, II†† 3.54 5.5
Difference in color L (dif_L)
2B 17.7–19 17 I†, II† 4.22 6.7
2B 181.6–183.1 26 I††, II†† 2.48 3.7

(Continued)
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pigment loss defined by dif_b, and VIT (Supplementary Table 3). 
Chromosome 6A harbored a genomic region (124–129.4 cM), 
which was associated with four color-related traits (color_a, 
color_b, color_L, and dif_b). Another consistent QTL associated 
with three color-related traits (TYP, col_b, and dif_b) was detected 
on chromosome 7A at 180–181.8 cM. Co-localized QTLs for 
TYP and dough color b were identified on chromosomes 2B and 
7A. Dough color a, dough color b, pigment loss (measured as 
difference in dough color b after 24 h), and overall spaghetti color 
had overlapping QTL on chromosomes 4A, 4B, and 7A.

Markers strongly associated with PPO were identified on 
chromosomes 1A (IWA5150), 2B (IWA1488), 3A (IWB69399), 
and 3B (IWB23604) (Supplementary Table 3). All SNP markers 
had low FDR values. The phenotypic variation explained by these 
color related QTL ranged from 3.1% to 15%.

Pasta cooking-related traits: Pasta cooking parameters, such 
as cooked firmness (FIRM), cooking loss (CLOSS), work to shear 
(WTS), and cooked weight (CWT), were scored on fresh pasta in 
the balanced dataset from both Langdon and Prosper locations. 

In the unbalanced dataset, the same cooking parameters were 
taken on dry pasta. A total of 45 QTLs located in 32 genomic 
regions belonging to 13 different chromosomes (except 5B) were 
identified for four cooking-related traits (Supplementary Table 3). 
The PVE explained by these QTL ranged from 3% to 14%. Four 
QTLs, located one each on 1B, 2B, 3A, and 3B, explained >10% 
PV. An important genomic region for cooking-related traits was 
identified on the short arm of 3B (4.2–7.4 cM). This region was 
associated with all four cooking-related traits (CWT, CLOSS, 
WTS, and FIRM) and was identified in both balanced and 
unbalanced datasets. The PVE for this 3BS locus ranged from 
5.9% to 7.0%. Other important regions that were associated with 
multiple cooking-related traits and detected in more than one 
dataset were located on 1B (CWT, FIRM, GI, MIXO, and SDS), 
2B (CWT and WTS), 3A (CWT and FIRM), 7A (CWT, WTS, and 
FIRM), and 7B (CWT, FIRM, SDS, and WPROT). The telomeric 
region on 1BS, which was also found associated with cooking 
traits FIRM and CWT, also harbors loci for gluten-related traits 
(GI, MIXO, and SDS). Ten out of 45 QTL were identified in both 

TABLE 2 | Continued

Trait/Chr. ## Position (cM)a Genomic region Trialsb −log10 (P value) R2¶

Total yellow pigment (TYP)
4A 139.2–143.7 44 I††, II†† 2.72 4.1
7A 180.3–181.8 88 I†, II†† 3.22 5
Polyphenol oxidase activity (PPO)
1A 6.6 1 I, II† 5.14 8.3
2B 120.2–124.9 21 I†, II 6.67 11
3A 170.1–176.9 32 I, II 9.03 15
3A 183.8–184 33 I, II 7.49 12.3
3B 190.4 38 I, II 9.03 15
3B 198.5–205.1 39 I, II 9.03 15
5A 167.1–167.4 57 I††, II† 3.39 5.2
5B 63.4 59 I†, II 5.95 9.7
6A 105.7 67 I†, II† 3.84 6
6B 27.1 72 I†, II† 5.15 8.3
e. Cooking-related traits
Firmness (FIRM)
1B 3–8.5 4 II††, III† 4.93 8.1
3A 7.3–9 27 I††, II†† 2.71 4.1
3B 4.2–7.4 34 I†, II† 3.75 5.9
7A 180.3–184.1 88 I††, II†† 2.82 4.2
7B 62.2–67.3 90 I††, III†† 2.9 4.5
Cooking loss (CLOSS)
3B 4.2–7.4 34 I††, II† 3.75 5.9
4A 129.3 43 I††, III†† 2.45 3.6
6A 127.1–130.0 71 II††, III†† 2.56 3.8
Work to shear (WTS)
2B 153.4 23 I††, II†† 2.32 3.4
Cooked weight (CWT)
1B 3–8.5 4 I†, III† 3.8 6.2
2B 80.6–84 20 I†, III† 4.77 7.8
3A 7.3–9 27 I†, III†† 3.85 6
3B 4.2–7.4 34 II, III†† 4.3 7
7B 62.2-67.3 90 I††, III†† 2.47 3.6

acM, marker position on the consensus durum map of Maccaferri et al. (2015).
bI = Prosper balanced trial; II = Langdon balanced trial; III = unbalanced combined dataset where an SNP marker was detected above the pFDR value.
*The specific model to used identify significant MTAs for individual traits are reported in Supplementary Table 2.
†SNP marker that was detected above –log10 (P value) of 3 but below the pFDR value in that trial (environment).
††SNP marker that was detected above –log10 (P value) of 2 but below the pFDR value in that trial (environment).
¶R2, proportion of phenotypic variation explained by the individual marker.
##GLUT, WTS, Color_L, Color_a, color_b, Dif_L, Dif_a, Dif_b, PPO, and TYP were only measured in the balanced dataset, while TEXT, SEXT, SASH, MIXO, and Color were only 
measured in the historic dataset. 

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


 Association Mapping using Balanced and Unbalanced dataJohnson et al.

12 August 2019 | Volume 10 | Article 717Frontiers in Genetics | www.frontiersin.org

TABLE 3 | Phenotypic means and t-test P values for lines in the association mapping panel with various combinations of tightly associated markers for gluten 
strength and PPO activity.

Marker for MAS Phenotype Number of genotypes Phenotypic mean Range of the 
phenotypic trait

Actual nucleotide

IWB70626
Unbalanced High GI haplotype 179 60.2 22.8–92.5 G

Low GI haplotype 42 43.9 9.2–69.5 T
t-test 6.66236E−06
Mean PL*

High GI haplotype 191 47.6 12.9–82.8 G
Low GI haplotype 49 36.7 1.04–64.7 T

t-test 5.44463E−05
IWB6234 and IWB70626
Unbalanced High GI haplotype 14 69.0 50.9–87.6 GC

Low GI haplotype 35 44.8 9.2–69.5 TT
7.45444E−07

IWB70626
Unbalanced High SDS haplotype 187 52.3 39.0–67.4 C

Low SDS haplotype 47 45.6 25.2–54.6 T
t-test 1.15538E−12
Mean PL High SDS haplotype 190 55.3 38.8–74.8 C

Low SDS haplotype 49 50.1 23.5–65.5 T
t-test 2.50915E−05

IWB6234 and IWB70626
Unbalanced High SDS haplotype 15 58.4 49.4–65.3 GC

Low SDS haplotype 39 45.0 25.2–50.9 TT
t-test 7.08108E−11
Mean PL High SDS haplotype 15 66.3 57.3–74.8 GC

Low SDS haplotype 39 49.0 23.5–61.8 TT
5.93077E−10

IWB70626
Unbalanced High Mixo score 187 6.5 4.9–8.3 C

Low Mixo score 47 5.5 2.5–6.6 T
t-test 3.29702E−12
IWB6234 and IWB70626

High Mixo score 15 6.7 5.8–7.5 GC
Low Mixo score 39 5.4 2.5–6.6 TT

t-test 2.758E−07

IWA5150
Mean PL Low PPO 237 0.11 0.04–0.54 T

All other lines 2 0.41 0.34–0.48 G
t-test 0.140956287
IWA1488
PL

Low PPO 235 0.10 0.04–0.54 A
All other lines 4 0.43 0.038–0.048 G

t-test 0.000149301
IWB69399
Mean PL Low PPO 229 0.10 0.038–0.048 A

All other lines 10 0.38 0.06–0.54 G
2.20191E−05

IWB23604 Low PPO 231 0.10 0.038–0.490 T
Mean PL All other lines 8 0.422 0.10–0.54 G

0.000360083
IWA1488 + IWB69399 + IWB23604
Mean PL Low PPO 228 0.95 0.038–0.480 AAT

All other lines 11 0.43 0.10–0.54 GGG
7.32631E−07

IWA5150 + IWA1488 + IWB69399 + IWB23604
Mean PL Low PPO 225 0.09 0.04–0.50 TAAT

All other lines 14 0.40 0.06–0.54 GGGG
t-test 2.56311E−06

*PL, mean of data from Prosper and Langdon locations.
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the balanced and unbalanced datasets. Differences in spaghetti 
type (dry vs. fresh) during cooking might account for the low 
number of shared QTLs between the two datasets.

Distribution and co-localization of marker–trait associations 
(MTAs or QTLs): Co-localized or closely linked QTLs may 
help in improving several traits simultaneously when desirable 
alleles for each trait are contributed by the same parent. In 
this study, a total of 179 MTAs were identified for 24 different 
quality traits. The number of MTAs per chromosome ranged 
from 3 to 19. The highest number of MTAs were observed 
for chromosomes 2B and 6A (19 each), followed by 7A (18) 
and 1B (17). The lowest number of MTAs was observed for 
chromosomes 1A and 4B (three each). MTAs for different 
traits were considered in the same genomic region if they 
were identified at the same position or very close to each other 
(<1 cM apart) on the durum consensus map from Maccaferri 
et al. (2015). Based on this classification, these 179 marker–trait 
associations were located on 95 genomic regions belonging 
to all 14 durum wheat chromosomes. Durum A-genome 
chromosomes harbored 90 MTAs located in 50 genomic 
regions, whereas B-genome chromosomes showed 89 MTAs 
that represented 45 genomic regions. Among those 95 genomic 
regions, 53 regions were associated with only a single MTA or 
QTL each, while the remaining 42 genomic regions harbored 
multiple co-localized MTAs (Supplementary Table 3). The 
total MTAs associated with those 42 genomic regions were 126, 
with an average of three MTAs mapped in a particular genomic 
region. Individually, those regions harbor two to eight MTAs 
(genomic regions 36 and 88). This means that a major portion 
of the MTAs or QTLs for different quality traits was co-localized 
due to either tight linkage or pleiotropy.

Comparison of GWAS results from balanced and 
unbalanced datasets: To the best of our knowledge, there is 
no study on durum wheat that compares results from GWAS 
based on unbalanced and balanced phenotypic data. In this 
study, a total of nine traits, including grain protein (WPROT), 
semolina protein (SPROT), sedimentation volume (SDS), wet 
gluten (WG), gluten index (GI), kernel vitreousness (VIT), pasta 
firmness (FIRM), cooking loss (CLOSS), and cooked weight 
(CWT), were evaluated in both balanced and unbalanced trials. 
However, because FIRM, CLOSS, and CWT were measured on 
dry pasta in the historic unbalanced data and on fresh pasta in 
the balanced dataset, we decided not to include their comparison 
here. For the remaining six traits that were measured in both 
balanced and unbalanced datasets, we observed 40 and 31 
marker–trait associations (MTAs), respectively (Table  4). A 
total of 26 (84%) of the MTAs identified in unbalanced dataset 
were also identified using balanced datasets. Interestingly, 
for the five traits (except VIT), all the MTAs identified using 
the unbalanced dataset were also identified in the balanced 
dataset. For kernel vitreousness, among the six and eight MTAs 
identified in balanced and unbalanced dataset, only three were 
common (Table 4).

Important primary candidates for MAS in durum 
wheat: Stable and highly significant QTLs are listed in 
Table 2. However, there were some major QTLs identified 
in this study, which could be the primary target for MAS. 

For example, markers associated with major QTL for gluten 
strength on chromosomes 1A and 1B and for PPO activity 
on chromosomes 1A, 2B, 3A, and 3B could also be excellent 
primary candidates for MAS in durum wheat breeding 
programs (Table 3). We conducted a t-test for markers and 
alleles significantly associated with increased phenotypic 
values to determine their possible usefulness for MAS. The 
lower the P value, the more useful the markers (or alleles) and 
their combination are for MAS. Two haplotypes for gluten 
strength and five for polyphenol oxidase activity (PPO) were 
identified (Table 3). In the unbalanced and balanced datasets, 
the two alleles of the marker IWB70626 explained 16.3% and 
10.9%, gluten index mean difference. The combination of two 
markers (IWB70626 and IWB6234) was able to explain the 
mean difference of 24.8% for the unbalanced dataset. Similarly, 
for gluten strength measured with SDS, the two haplotypes 
(IWB6234 and IWB70626) explained 13.4- and 17.3-ml mean 
difference in SDS. The two alleles for PPO explained 0.35-ppm 
mean difference for the phenotype.

Discussion
The majority of the earlier studies that aimed to genetically 
dissect protein content, gluten strength, and other quality 
traits in durum wheat were based on bi-parental mapping 
populations and low-density linkage maps (Jernigan et al., 
2017; Kumar et al., 2018). Genetic dissection using association 
mapping populations provides a more detailed understanding 
of QTL responsible for the particular phenotype (Gupta et al., 
2014; Gupta et al., 2019). Further, genome-wide association 
mapping studies based on advanced breeding lines offer the 
additional advantage that gained information about important 
alleles and associated markers can be directly applied into 
the breeding program. Also, the deployment of high-density 
marker systems like Illumina’s iSelect 90k SNP array in 
genome-wide studies has the tremendous potential to identify 
tightly linked markers associated with target traits and map 
QTL/genes more precisely. This study based on advanced 
breeding lines and 90k SNP Infinium array was used to dissect 
a large number of quality traits in durum wheat. Therefore, 
this study, probably provides the most comprehensive 
knowledge about the genetic architecture of important durum 
wheat quality traits. The information gained from this study 
has direct implications for durum wheat breeding using 
genomics-based tools.

TABLE 4 | Number of marker–trait associations (MTAs) identified for different 
traits using balanced and unbalanced datasets.

Trait Balanced 
data

Unbalanced 
data

Common

Whole grain protein (WPROT) 3 3 3
Semolina protein (SPROT) 4 3 3
Kernel vitreousness (VIT) 6 8 3
Sedimentation volume (SDS) 11 6 6
Gluten index (GI) 8 6 6
Wet gluten (WG) 8 5 5

Total 40 31 26
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Genetics of Traits Related to Nutritional 
Value Enhancement and Grain Quality in 
Durum Wheat and Identification of some 
Major Loci
Protein- and dough-related traits: The protein- and dough-related 
characteristics like grain protein (WPROT), semolina protein 
(SPROT), gluten index (GI), wet gluten (WG), sedimentation 
volume (SDS), mixogram score (MIXO), and glutograph (GLUT) 
are considered the most important parameters of pasta quality 
and thus represent major breeding targets in the durum cultivar 
development program. QTLs for grain protein were previously 
identified on all wheat chromosomes (Kulwal et al., 2005; Bogard 
et al., 2013; Echeverry-Solarte et al., 2015; Kumar et al., 2018). The 
limited number of QTL for protein content in this study may be 
due to the low genetic diversity within the genotypes because of the 
fixation of high-protein-content QTL alleles. The QTL identified 
on chromosome 7A was located in the same region, which has 
been reported in earlier studies (Groos et al., 2003; Prasad et al., 
2003; Sun et al., 2009). However, QTLs on chromosomes 5B and 
7B were not previously reported in durum wheat and may be 
novel for high grain protein. Our durum germplasm also lacks 
the major protein content-associated gene Gpc-B1 (Uauy et al., 
2006), thus offering an opportunity to introgress the functional 
allele of this major gene to enhance grain protein content. Several 
examples now exist for the successful introgression of this high 
GPC gene (Gpc-B1) into the adapted germplasm, through MAS 
(Kumar et al., 2011; for review see, Kumar et al., 2018).

Kernel vitreousness (VIT) is also an important characteristic 
associated with many grain, flour, semolina, and pasta quality 
traits, including milling and pasta firmness. A high percentage of 
vitreous kernels maximizes semolina yield (Dexter et al., 1994). 
Vitreous areas of the endosperm are known to be higher in 
protein than mealy ones (Matsuo and Dexter, 1980; Dexter et al., 
1994). Protein content showed a positive correlation with kernel 
vitreousness in this study, as has been reported earlier (Sissons 
2004; Bilgin et al., 2010; Sieber et al., 2015). The QTL for grain 
protein that was identified on chromosome 7A (59.5–62.5 cM) 
was also associated with vitreousness. This locus could help 
simultaneous improvement in both the traits.

Previous studies have also shown that the high-molecular-
weight glutenin subunits (HMW-GS) are particularly important 
for determining dough elasticity and correlated positively 
with dough baking quality (Anjum et al., 2007). Group 1 
chromosomes harbor genes for glutenin subunits: HMW-GS 
loci (Glu-A1, Glu-B1, and Glu-D1) on their long arms (Payne 
and Lawrence, 1983) and LMW-GS loci (Glu-A3, Glu-B3, and 
Glu-D3) on their short arms (D’Ovidio and Masci, 2004). Also, 
the QTLs for gluten strength have been identified on most 
durum and hexaploid wheat chromosomes; the major and most 
consistent effect across environments is associated with group 1 
chromosomes, particularly 1B (Elouafi et al., 2000; Patil et al., 
2009; Conti et al., 2011; Kumar et al., 2013). In this study also, 
two closely located loci on 1BS (0.3–6.1 and 15.2–15.7 cM) have 
the most significant effects associated with three gluten-related 
traits (SDS, GI, and MIXO) across environments. Similarly, the 
homeologous region on 1AS (1.3–4.6 cM) was also associated 

with multiple traits across different datasets. The association 
of these two regions with multiple gluten-related traits was 
expected because of the high correlations between GI, SDS, and 
MIXO. The regions on 1AS and 1BS were also associated with 
cooked weight (CWT) and pasta firmness (FIRM), suggesting 
the importance of these regions not only for gluten strength 
but for pasta cooking related quality traits as well. Although 
QTLs for gluten strength parameters on chromosomes 3B and 
7B explained minor phenotypic variation (3–6%), they were 
consistent across environments and datasets. Conti et al. (2011) 
also reported QTLs for gluten strength on chromosome 3B. The 
QTLs on chromosomes 6A and 7B were also earlier reported 
(Patil et al., 2009; Kumar et al., 2013). In the present study, QTLs 
for wet gluten and glutograph were identified on chromosomes 
1B, 2A, 2B, 6A, and 7A. They shared more common QTLs with 
semolina protein content than does gluten strength (GI, SDS, 
and MIXO), suggesting the importance of protein quantity and 
quality for dough strength and pasta production (D’Egidio et al., 
1990; Sissons, 2008).

Milling quality: The aim of the durum grain milling process 
is to maximize semolina and minimize flour production through 
successive steps of grinding and sieving (Posner, 2009). The 
process is complex as it depends on different factors, such as 
the moisture content of the grain, impurities and broken durum 
wheat kernels, the size and texture of the grain, and grain protein 
content (González, 1995). The identification of a large number of 
QTLs for milling quality parameters in this study confirms their 
polygenic nature (Sun et al., 2009; Wu et al., 2015). All QTLs 
associated with TEXT were also associated with SEXT, suggesting 
that these two traits measure the same process, which is most 
likely under the same genetic control. It is also possible that these 
loci have a pleiotropic effect on both traits. Similar results were 
reported in other studies (Hessler et al., 2002; Russo et al., 2014) 
and were also expected based on phenotypic correlation analysis 
(Figure 1). The QTL on chromosome 1B could be the same as the 
QTL reported by Zhang et al. (2008a). The QTLs on chromosomes 
2B and 6B were not previously reported and could be novel.

Semolina ash (SASH), another important milling trait, has 
complex genetics. A decrease in grain weight always results 
in higher ash content or lower extraction rates (Breseghello 
and Sorrells, 2007; Brevis et al., 2010). The QTLs for SASH on 
chromosomes 1B and 6A could be the same QTL reported in a 
previous study (Zhang et al., 2008a).

Color-related traits: Essentially, all the QTLs for dough color 
b, a, and total yellow pigment (TYP) had been reported earlier 
(Parker et al., 1998; Mares and Campbell, 2001; Hessler et al., 2002; 
Carrera et al., 2007; Pozniak et al., 2007; Zhang and Dubcovsky, 
2008b; Garbus et al., 2009; Verlotta et al., 2010; N’Diaye et al., 
2017). Major QTLs for yellowness on chromosomes 7A and 
7B have been identified earlier in durum wheat (Zhang et al., 
2008b). In durum wheat, chromosome 4B is known to harbor 
Lpx-B1.1 and Lpx-B1.2 genes. Previous studies show that deletion 
of Lpx-B1.1 is associated with carotenoid pigment degradation 
during pasta processing (Hessler et al., 2002; Carrera et al., 2007; 
Garbus et al., 2009; Verlotta et al., 2010). Earlier studies in durum 
wheat have also reported a linkage between semi-dwarfing gene 
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Rht-B1b and Lpx-B1.1 (Peng et al., 1999; N’Diaye et al., 2017). 
Similar results were observed in our study where we found a QTL 
associated with pigment loss on the short arm of chromosome 
4B (18.4 to 28.8 cM), a region that harbors a reduced height 
gene. Markers for pigment loss on chromosome 4B did not show 
an association with dough color b† and total yellow pigment, 
confirming that Lpx-B1.1 deletion has an effect on LOX activity 
during processing, but not on initial semolina or pasta color 
(Borrelli et al., 1999; Carrera et al., 2007). Like our study, the 
distal region on chromosomes 7A and 7B has been found to be 
associated with total yellow pigment in other tetraploid wheat 
studies as well (Pozniak et al., 2007; Zhang and Dubcovsky, 
2008b). QTLs for color b† and TYP on chromosome 7B were in 
the same vicinity as the previously reported Phytoene synthase 1 
locus (PSY-B1) (Pozniak et al., 2007).

For pasta color a† (green-red chromaticity), detection of four 
loci suggests complex genetic control of this trait. Considering 
the association of chromosome 3B, 4A, and 4B regions with 
color, col_b, and dif_b, as well as the negative correlation between 
dough colors a† and b† (r = −0.26) and pigment loss as measured 
by colors a† and b† (r = −0.63), a genetic linkage between these 
two traits could be suggested. This study’s findings and those of 
N’Diaye et al. (2017) support the undesirable association between 
pasta redness and pasta yellowness. Therefore, much effort should 
focus on breaking the LD to facilitate selecting against redness in 
dough color. The positive correlation between dif_b and dif_L 
(r = 0.31), as well as the negative correlations between dif_L and 
dif_a (r = −0.41) and dif_b and Dif_a (r = −0.63), and a single 
QTL on chromosome 6A associated with col_b and dif_b, may 
suggest an indirect masking effect of col_a on col_L by directly 
influencing col_b, especially in semolina dough over time.

Previously reported QTLs for polyphenol oxidase (PPO) activity 
were independent from other color-related traits, suggesting that 
their effect on pasta quality is mostly due to a browning reaction 
rather than the influence of semolina color components (Zhai et 
al., 2016). The phenotypic and genetic analyses suggested similar 
findings in our study. Polyphenol oxidase activity did not show 
any significant correlations with any other color-related trait, and 
only two (one each on 1A and 7B) out of 13 genomic regions for 
PPO showed association with other color-related traits. The major 
QTL for PPO on chromosome 2B was located in a proximate 
region compared with that in earlier-reported studies (Beecher 
et al., 2012; Si et al., 2012). Previously reported major QTLs for 
PPO on chromosome 2A in tetraploid (Watanabe et al., 2006) and 
hexaploid wheats (Zhang et al., 2005; He et al., 2007; Wang et al., 
2009) could not be identified in the present study. The major QTLs 
for PPO on 3A and 3B seem to be novel and could be attributed to 
the different sources of germplasm used in this study.

Cooking-related traits: Many QTLs for four cooking-related 
traits (firmness, cooking loss, work to shear, and cooked weight) 
shared common regions, suggesting a close association between 
those traits. Two major regions associated with cooking-related 
traits were also associated with gluten strength on chromosome 1B 
and whole grain protein on chromosome 7B. Zhang and Dubcovsky 
(2008b) also reported QTL for mixograph peak height and width 
near the QTL for firmness and cooking loss on chromosome 1B. 
Independent QTLs for firmness on chromosomes 6A and 7A 

suggest that parameters other than protein quantity and quality 
also affect pasta firmness and cooking loss. For instance, genes 
responsible for amylose synthesis are reported on chromosome 7A 
(Miura et al., 1999).

Application of Unbalanced Historic 
Phenotypic Data for Genetic Studies 
and Molecular Breeding
The collection of phenotypic data requires extensive efforts 
and resources. Breeding programs collect large amounts of 
phenotypic data from advanced breeding lines every year for 
selection purposes. In the yield trial stages, the number of such 
advanced breeding lines tested each year is relatively small, 
and some of these lines are replaced by other breeding lines, 
resulting in an unbalanced dataset of advanced breeding lines 
developed over time. If these historic unbalanced data could 
be effectively used for genetic studies in crops, they could save 
significant amounts of resources and provide useful information 
for molecular breeding of crops. However, not many studies have 
been conducted to show the utility of such unbalanced historical 
data for genetic studies in plants. This could be addressed by 
comparing the results of genetic analysis using structured 
balanced data and unbalanced datasets. In barley, Wang et al. 
(2012) evaluated a set of 384 breeding lines to identify QTL for 
heading date, a highly heritable trait. The study showed that 
the unbalanced data could be used to identify the three QTLs 
that were discovered using balanced dataset. However, a careful 
consideration of population size and experimental design is 
needed to reduce false-discovery rate, which was higher in case 
of unbalanced data. While Wang et al., (2012) studied only 
a single trait with high heritability, most of the target traits in 
a breeding program show low-to-moderate heritability and 
complex genetics. In this study, we included more complex 
traits, having low (grain protein, semolina protein, and kernel 
vitreousness) to moderate heritability (sedimentation volume, 
gluten index, and wet gluten) (Table 1). Association mapping 
identified more MTAs using the balanced data (40 for six traits) 
compared with the unbalanced data (31 for the same six traits). 
We observed that about 65% of the MTAs identified by balanced 
data were also detected by historic unbalanced data, suggesting 
that either balanced data have slightly higher power in QTL 
detection or that unbalanced historic data might be associated 
with false-negative MTAs (Type II error). On the other hand, the 
majority of the MTAs (84%) identified using historic unbalanced 
data were also detected using balanced dataset, which indicates 
that historic unbalanced data did not detect false positives as 
observed by Wang et al. (2012). Our results clearly demonstrate 
that historic unbalanced data are suitable for genetic studies of 
both high and low heritable traits. The fact that no false-positive 
QTLs were detected using unbalanced data for complex and low 
heritability traits like protein content offers greater prospects 
of using historic unbalanced data from the breeding program 
to generate information for molecular breeding of both simple 
and complex traits. A couple of recent studies have also shown 
that historical data could be useful for genomic selection as well 
(Dawson et al., 2013; Rutkoski et al., 2015).
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In the last few years, genotyping has become inexpensive, 
and a large amount of genotypic data can now be generated 
quickly. Also, an annotated reference sequence of whole 
wheat genome is now available. In this scenario, our ability 
to genetically dissect complex traits using routinely collected 
phenotypic data by the breeders will be extremely promising. 
This could help us save resources spent on genetic studies and 
may enable us to speed up genetic gain through molecular 
breeding tools.

HIGHLIGHTS

Multi-environment phenotypic data and high-density SNP platform 
were used to identify markers associated with 24 nutritional value 
enhancement and quality traits for genomics-assisted durum 
wheat breeding. The study also showed the application of historic 
unbalanced phenotypic data for genetic studies.

CONCLUSION

The study aimed to dissect the genetics of durum wheat quality 
and identify useful marker–trait association for 24 different traits 
using high-density 90k Infinium SNP marker data. Genome-wide 
association studies revealed that MTAs for durum quality traits 
are distributed across the whole genome. Markers associated 
with some major QTL for gluten strength on chromosomes 1A 
and 1B and PPO activity on chromosomes 1A, 2B, 3A, and 3B 
could also be excellent easy candidates for MAS in durum wheat 
breeding programs. The information gained on extensive genetic 
dissection of durum wheat quality traits and the resources 
developed in this study may prove extremely useful to assess 
quality in early generations by incorporating molecular breeding 
tools in the breeding program. Another main objective of this 
study was to explore the possibilities of using a large amount of 
multi-year, multi-location unbalanced historical data generated 
by the breeding programs for genetic studies. A large number 

of common SNPs detected in both the unbalanced historic and 
balanced datasets suggest that the unbalanced data collected by 
the plant breeding programs over space and time could be used 
to gain knowledge about the genetics of important traits and 
identify MTAs for molecular breeding. This would save huge 
amounts of resources invested on conducting genetic studies 
using specifically designed populations. Also, as this study was 
based on advanced breeding lines, the MTAs identified in this 
study are easily accessible and should provide more directly 
useful information for local-knowledge-based breeding.
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