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Advances in sequencing and computational biology have drastically increased our 
capability to explore the taxonomic and functional compositions of microbial communities 
that play crucial roles in industrial processes. Correspondingly, commercial interest has 
risen for applications where microbial communities make important contributions. These 
include food production, probiotics, cosmetics, and enzyme discovery. Other commercial 
applications include software that takes the user’s gut microbiome data as one of its 
inputs and outputs evidence-based, automated, and personalized diet recommendations 
for balanced blood sugar levels. These applications pose several bioinformatic and 
data science challenges that range from requiring strain-level resolution in community 
profiles to the integration of large datasets for predictive machine learning purposes. In 
this perspective, we provide our insights on such challenges by touching upon several 
industrial areas, and briefly discuss advances and future directions of bioinformatics and 
data science in microbiome research.

Keywords: DNA sequencing, microbiome, industrial biotechnology, probiotics, 16S rRNA gene profiling, 
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INTRODUCTION

Microbial communities play important roles in industrial processes such as the production of 
food, beverages, probiotics, paper, and cleaning products (for a review, see Singh et al., 2016). It 
has become an industrial standard to study the taxonomic composition and functional capabilities 
of these microorganisms using marker gene (e.g. 16S rRNA) and shotgun metagenome sequencing 
for product development, optimization, and quality control (Costessi et al., 2018). In addition, data 
from other omics sources such as metatranscriptomics and metabolomics can be used in integrative 
studies to generate leads, for instance in enzyme discovery. Some of the questions asked in these 
microbiome studies are related to determining the efficacy of probiotics and require strain-level 
characterization of the community composition (McFarland et al., 2018). Other studies focus on 
assessing the capability of microbial communities to produce certain compounds and necessitate 
recovering bacterial genomes from complex (e.g. soil) microbiomes (Howe et al., 2014). Extending 
microbiome applications to the public for actionable results, for example, to control blood sugar 
levels, requires a combination of advanced computational methods from bioinformatics, data 
mining, and machine learning (Zeevi et al., 2015).

In this perspective, we give an overview of several industrial microbiome applications with 
their bioinformatic and data science challenges. In addition, we highlight some of the advances 
that have the potential to provide valuable insights into the challenges facing these applications. 
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We conclude with sharing our view on the future directions and 
requirements of industrial microbiome applications in terms of 
their computational components.

CURRENT APPLICATIONS AND 
PRODUCTS

Dairy Starter Cultures
Microbial populations (e.g. of lactic acid bacteria) are used in a 
variety of food and beverage production processes including the 
manufacture of cheese, yoghurt, meat, and wine. Specifically, their 
role in taste and structure formation is essential, for instance during 
cheese ripening. These processes are governed by the presence or 
absence of strain-specific enzymes (Escobar-Zepeda et al., 2016). 
Studying such enzymes through strain isolation is often costly and 
time-consuming since culturing strain representatives is difficult 
due to laborious or unknown growth conditions (Lagier et al., 
2016). Alternatively, these enzymes can be studied by metagenome 
sequencing, assembly, and annotation, for instance, in product 
optimization (De Filippis et al., 2017). In addition, metagenome 
assembly plays an important role in analyzing bacteriophage 
populations in cultures in terms of their abundance, diversity, and 
development (Muhammed et al., 2017), which is important not 
only in the prevention of phage infections that cause fermentation 
failures, but also for unlocking the potential of phages against 
food-borne pathogens (Fernández et al., 2017).

Probiotics
Probiotics are microbes that are intended to benefit the host health 
when consumed in adequate amounts. Identification of novel 
probiotics is a laborious process that starts with constructing a 
strain library using a culturomics approach (Lagier et al., 2016). 
This is followed by in vitro and computational research on the 
obtained strains to functionally characterize them, for instance 
for their bile resistance and potential to survive the passage of 
the stomach. Each of these steps reduces the list of high-potential 
candidates that as a final step must pass regulatory offices such as 
the European Food Safety Authority (EFSA, FEEDAP et al., 2018). 
We believe that the findings from comparative studies of the gut 
microbiome that highlight associations between phenotypic 
traits such as inflammation (Andoh et al., 2012) and obesity 
(Kasai et al., 2015) and specific bacterial populations, when 
integrated with other sources like metabolomic, demographic, 
dietary, and lifestyle datasets, may allow automated (e.g. machine 
learning-based) identification of candidate probiotic strains and 
reduce the time and financial cost of probiotics screening.

Small differences in the gene content of otherwise genetically 
identical bacterial strains can lead to different phenotypes (Zeevi 
et al., 2019), which in return may result in different outcomes 
in vivo. Therefore, well-conducted clinical trials are necessary 
to prove that the probiotic candidate itself confers the health 
effect. To make sure that the observed effects are not elicited 
by other (closely related) organisms and can be ascribed solely 
to the consumed probiotic, metagenomic, and bioinformatic 
methods that enable strain-level identification and tracking of the 

studied probiotic strain are required. For instance, in the genus 
Bifidobacterium, genetic differences between different strains of 
the same species underlie differences in carbohydrate utilization 
profiles (Arboleya et al., 2018). As these phenotypic traits are 
important in the development of probiotics for infant nutrition, 
applying shotgun metagenomics instead of amplicon sequencing 
for strain-level characterization may have substantial advantages.

Quality Control
Products like probiotics and dairy starter cultures contain live 
organisms that are either sold directly to consumers or used to 
manufacture consumer products. Next to the checks performed 
for raw materials, quality control of the end product is necessary to 
ensure the presence of correct strains and the absence of pathogens 
(Fenster et al., 2019). As mentioned above, microbial strains of 
the same species can have vastly different phenotypes, making 
strain-level identification in the quality control process crucial for 
recognizing possible contaminants (Huys et al., 2013). Traditional 
typing approaches such Random Amplification of Polymorphic 
DNA-PCR (RAPD-PCR) can be used for identifying single-strain 
probiotics contaminants, but require cultivation (Mohkam et al., 
2016), making them unsuitable for high-throughput screening 
of products with complex communities (e.g. probiotics and dairy 
products). Whole-metagenome sequencing and analysis has 
the potential not only to circumvent these lengthy processes in 
providing strain-level information, but also to enable screening 
of undesired traits such as (spore) heat-resistance based on the 
presence of associated genes (Berendsen et al., 2016).

Cosmetics
The cosmetics industry has a growing interest in studies that aim 
to explore the skin microbiome as a potential therapeutic target 
for disorders including acne, eczema, and Malassezia folliculitis 
(Wallen-Russell, 2019). Unfortunately, these studies are typically 
hampered by the low biomass of skin samples, where small 
contaminations (e.g. from adjacent skin or reagents) can easily 
lead to incorrect outcomes (Kong et al., 2017). Furthermore, the 
human skin microbiome is strongly subject-specific (Zeeuwen 
et al., 2012), making it difficult to determine the effect of skin 
products on the general population. While this opens a potential 
market for personalized skin products, it also raises the need 
for personal longitudinal studies, where statistical methods 
such as redundancy analysis and principle response curve (Van 
den Brink and Braak, 1999) help assess correlations between 
taxonomic or functional composition and sample characteristics 
(environmental variables). Furthermore, the data can be corrected 
for one of the variables, such as ‘subject’ so that the variance from 
that covariate is removed before the actual analysis is performed, 
which facilitates determining the effect of the treatment.

Enzyme Discovery
A wide range of industrial enzymes, such as those used in the 
production of cleaning agents, laundry detergents, paper, and textile, 
have the continuous demand to become cheaper, greener, and 
more efficient. Among others, marine, soil, and lake microbiomes, 
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with their extremely high and mainly uncharacterized biodiversity, 
constitute exciting functional mines not only in the search for new 
enzymes with such desired properties, but also for the discovery 
of novel enzymes that can catalyze challenging reactions (Popovic 
et al., 2015). A notable example of the latter is the recent discovery 
of two enzymes that enable the production of a renewable 
alternative to toluene, a petrochemical with a market of 29 million 
tons per year, from complex microbial communities that live in 
sewages and lakes (Beller et al., 2018).

Two main bioinformatic challenges in metagenomic enzyme 
discovery arise from the same fact that makes the chosen 
environment (e.g. soil) attractive in the first place: its high and 
uncharacterized biodiversity. The large number of different 
genomes in the environment and their highly skewed abundance 
distribution make it difficult to obtain contiguous and complete 
assemblies (Ayling et al., 2019), an outcome that negatively 
impacts gene prediction. The next challenge lies in functionally 
annotating the predicted genes, where commonly a high 
percentage of sequences are labeled as “hypothetical” or with 
unknown function.

Microbiome-Based Health and 
Personalized Nutrition
Companies and citizen science projects such as MyMicroZoo1, 
Biovis2, and American Gut3 offer affordable microbiome analysis 
services to general consumers. While operationally their analyses  
are the same as those used for research, they must pay far 
more attention to the clarity of the results to ensure correct 
interpretations by the end-users even if the results are stated not 
to be interpreted as diagnosis. In practice, this means that the 
end-user should be guided through the (actionable) results with 
the help of trained healthcare professionals [e.g. dieticians and 
general practitioners (GPs)], who should take the limitations of a 
given analysis into account to prevent overinterpretation.

While basing health-related advice on published research 
findings is a good practice, the fact that most studies focus on a 
defined cohort and report “averaged” population trends makes it 
questionable whether results can be translated back to individuals. 
Such translations to the individual may be less complicated 
with function-based approaches through metagenomics as the 
‘personalized’ effects are less pronounced in these datasets (Lloyd-
Price et al., 2017). Nonetheless, the predictive value of a person’s 
gut microbiome for health was demonstrated by an inspirational 
study by Zeevi and colleagues (2015), which integrated blood 
parameters, dietary habits, anthropometrics, physical activity, 
and the gut microbiome data into a machine learning algorithm 
that predicted the post meal glycemic responses of the subjects. 
Ultimately, 72 taxonomic or functional features of the microbiome 
were included in the predictive model. This approach, validated 
further with another independent cohort, is now offered to the 
public by DayTwo4, which is a good example of how extensive 
datasets from scientific studies and data science can be combined 

1mymicrozoo.com
2biovis-diagnostik.eu
3humanfoodproject.com/americangut/
4daytwo.com

in an industrial setting for providing customers with evidence-
based health-related recommendations.

CURRENT ADVANCES

Metagenome Assembly, Binning, and 
Annotation
Metagenome assembly enables gene prediction, annotation, and 
abundance profiling, and therefore is an important computational 
step when studying the functional composition and capacity 
of microbiomes. Many (de Bruijn graph-based) metagenome 
assembly methods that differ in terms of their ease of use, 
scalability, running time, and memory requirement exist, making 
it important to carefully choose the one that serves the research 
question at hand the best (Van der Walt et al., 2017). For instance, 
in comparative studies with large cohorts where the impact of 
probiotics on the abundances of gene groups and pathways is 
analyzed, tools that are computationally less intensive, such as 
MEGAHIT (Li et al., 2015), are preferred. In contrast, studies 
with a low number of samples, such as those in enzyme discovery 
applications, can make use of assembly tools like metaSPAdes 
(Nurk et al., 2017) that include optimizations such as error 
correction but with a subsequent runtime trade-off. When higher 
read depth for assembling low abundance members or recovering 
full genomes is needed, data from (not too) different samples 
(e.g. dairy starter cultures) can be combined using co-assembly 
methods like crass (Dutilh et al., 2012) which also facilitates 
metagenomic comparison between samples. Finally, binning 
methods such as MetaBAT (Kang et al., 2015), MaxBin (Wu et al., 
2014), and COCACOLA (Lu et al., 2017) facilitate extracting 
individual (draft) genomes from metagenome assemblies, which 
helps look at a specific organism in more detail e.g. in enzyme 
discovery applications where identifying the genome that encodes 
the target enzyme is important.

In a recent study of cow rumen microbiome, a valuable 
environment for biomass-degrading enzyme discovery, Stewart 
et al. (2018) showed that 90% of the proteins predicted to be 
involved in the studied mechanism (carbohydrate metabolism) 
did not have a good match in public databases. Such findings 
highlight the relatively large room for improvement in 
microbiome annotation.

Hypothesis-Driven Functional Analyses
Exhaustively analyzing all functional aspects and querying 
all potential longitudinal and cross-sectional aspects of a 
microbiome dataset is generally considered a hopeless task. Even 
when computationally feasible, multiple testing issues lead to 
a severe reduction of the analysis power. Although approaches 
like the removal of collinear variables and validation of potential 
correlations in independent datasets can in part address these 
issues (Falony et al., 2016), delineating the relevant functional 
aspects is a big step in overcoming these limitations. Using a 
specific database to answer a particular hypothesis, such as 
in the case with certain enzyme classes or a set of enzymatic 
pathways, is such an approach. Examples of such databases 
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and tools are Resfams (Gibson et al., 2015), dbCAN (Yin et al., 
2012), and antiSMASH (Blin et al., 2017), focusing on antibiotic 
resistance, carbohydrate utilization, and secondary metabolite 
synthesis, respectively. Methods developed for the elucidation 
of gene function, such as the guilt by association approaches 
implemented in STRING (Szklarczyk et al., 2014), can be used 
to identify genes that are not directly flagged by comparison to 
specific functional datasets such as the ones described above, 
but have distribution patterns similar enough to genes that 
are represented in the reference set. A drawback of functional 
analyses that require protein sequences is the need for assembly 
and gene prediction, which can be computationally intensive as 
described above. Tools like HUMAnN2 (Franzosa et al., 2018) 
work directly with short-read data without requiring an assembly 
for profiling protein family abundance.

Assembly-Independent Strain-Level 
Characterization
Probiotic members such as Bifidobacterium longum subsp. 
longum and Bifidobacterium longum subsp. infantis, which have 
two distinct phenotypes with relevant functional implications 
in infant nutrition (Underwood et al., 2015), differ only slightly 
in their16S rRNA gene sequences (Lawley et al., 2017). Such 
differences are lost in classical operational taxonomic unit 
(OTU) clustering-based taxonomic analyses. Novel methods 
like UNOISE2 (Edgar, 2016) and DADA2 (Callahan et al., 2016) 
circumvent clustering and apply sequence filtering steps, enabling 
distinguishing between sequences on a single-nucleotide level 
by grouping reads in amplicon sequence variants (ASVs). This 
has a great potential to improve the phylogenetic depth at which 

microbiome studies can be interpreted. Notable applications of 
these new algorithms provided new, sub-species level insights 
into oral (Mukherjee et al., 2018) and vaginal microbiomes 
(Callahan et al., 2017).

In cases where multiple strains of a species of interest have 
identical 16S rRNA sequences, algorithms such as StrainPhlAn 
(Truong et al., 2017) and PanPhlAn (Scholz et al., 2016) enable 
strain-level analyses from shotgun metagenome datasets without 
the need for metagenome assembly (Figure 1). These methods 
open the possibility for routine compositional analyses to verify 
the presence of desired strains or identify potential pathogens in 
end products.

Long-Read Sequencing and Other 
Advances
Although their use in microbiome studies is currently not 
common, long-read sequencing platforms Pacific Biosciences 
(PacBio) and Oxford Nanopore Technologies (ONT) offer 
exciting opportunities for several industrial applications 
mentioned above. For instance, circular consensus sequencing 
application by PacBio, which allows multiple reads generated 
from a circularized amplicon molecule to be bioinformatically 
combined into a high-quality, full-length (16S) sequence 
(Callahan et al., 2018), provides the necessary phylogenetic 
resolution for applications such as fermentation studies, 
which is unfeasible with short-read amplicon sequencing. The 
on-demand sequencing nature of ONT, on the other hand, 
seems suitable for quality control applications for detecting 
distinct pathogens, although the high error rate is limiting for 
accurate, strain-level detection.

FIGURE 1 | An overview of approaches to achieve taxonomic resolution at different levels.
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Even with high dataset coverage and advanced methods, 
assemblies from short-read datasets commonly remain very 
fragmented, especially in samples from complex communities 
like soil. Soon, we expect the integration of long-read sequencing 
to be more common in assembly-oriented studies for obtaining 
full, chromosome-level microbial genomes. Correspondingly, 
we see potential in adapting hybrid assembly methods such as 
hybridSPAdes (Antipov et al., 2015) to enable their use with 
long- and short-read metagenome datasets. Other promising 
developments revolve around using barcoded short reads that 
have long-range information, such as those provided by 10x 
Genomics (http://10xgenomics.com), in microbiome research. 
We see the emergence of tailored bioinformatic methods such as 
the Athena assembler (Bishara et al., 2018), which uses barcode 
information in short-reads and improves the contiguity of 
metagenome assemblies.

Machine Learning and Data Science
With decreasing sequencing costs, the size of datasets in 
microbiome studies and the depth of sequencing per sample 
have increased. This led to studies with higher statistical 
power, and consequently to the transition of OTU tables and 
functional profiles from end-goal deliverables into starting 
material for downstream analyses such as machine learning 
(ML) applications (Pasolli et al., 2016). Methods like random 
forests (RF) have been successfully used by many within 
a disease context, for instance, for accurately predicting 
irritable bowel syndrome (Saulnier et al., 2011) and bacterial 
vaginosis (Beck and Foster, 2014) based on taxonomic profiles 
(for a review, see LaPierre et al., 2019 and Qu et al., 2019). 
On the other hand, Sze and Schloss (2016) used 10 previously 
published obesity datasets and showed that RF ML models 
trained on one of the datasets and tested on the remaining 
nine had a median accuracy of only 56.68%, suggesting that 
i) the method may not be applicable for some diseases, or 
ii) the disease signal may be more apparent at the level of 
differentially expressed functions (gene transcripts) of the 
microbiome.

Industrial microbiome applications of ML include building 
classification models based on soil microbiome data for detecting 
oil sites (Miranda et al., 2019) and above-mentioned personalized 
health-related lifestyle (diet) recommendation services that are 
partly based on gut microbiome data. As mentioned in Probiotics, 
we expect dataset integration and ML to have an impact also on 
areas such as screening of novel probiotics. To meet the overall 
demand for user-friendly ML in microbiome research, software 
suites like QIIME 2 (Bokulich et al., 2018), MicrobiomeAnalyst 
(Dhariwal et al., 2017), and USEARCH (Edgar, 2010) started 
incorporating ML methods that can be used by researchers who 
aren’t necessarily trained as bioinformaticians.

CONCLUSIONS AND OUTLOOK

The vast number of experimental and computational methods 
available for microbiome research have led to a broad collection 

of choices. While creation of guidelines and standardization 
for increased comparability and reproducibility is essential, 
achieving a global consensus in methods used remains a 
challenge. What constrains researchers to their current 
practices is mainly the laborious nature of adopting other 
(new) protocols, which may have an ironically detrimental 
effect on comparability between different studies, or even 
within studies that run over prolonged periods. Like Knight 
et al. (2018), we think that a primary objective of microbiome 
studies should be to standardize the documentation of used 
methods, tools, data formats, and data processing parameters, 
and to publish these “logs” next to the final results and 
interpretations. While complete disclosure is scientifically 
ideal, it raises commercial concerns for microbiome analysis 
providers like BaseClear5, NIZO food research6, Clinical 
Microbiomics7, Vedanta Biosciences8, and COSMOSID9, as it 
would mean releasing a substantial part of their, sometimes 
unique, intellectual property.

With reducing costs, we soon expect long-read sequencing 
technologies to be commonly used in microbiome studies, which 
will benefit from enhanced taxonomic resolution with full-
length marker gene sequencing, as well as improved functional 
analyses thanks to more contiguous metagenome assemblies. 
Here, the focus in developments is likely to be on the translation 
of bioinformatic protocols already established for short reads 
to long-read versions, for instance in denoising and read 
classification approaches.

Other challenges relate to shotgun metagenome analyses 
in large studies, where expensive calculations used in de 
novo assembly and annotation may result in capacity issues. 
For companies that cannot afford large on-premise compute 
infrastructures, the cloud provides a flexible alternative, where 
know-how of cloud-computing becomes essential.

Finally, the rapid translation of microbiome research into 
important industrial applications in healthcare, energy, and food 
production will continue to stimulate collaborations between 
academic and industrial communities. We expect the role of 
bioinformatics and data science to become only more significant 
in this relationship.
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