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Function annotation efforts provide a foundation to our understanding of cellular processes 
and the functioning of the living cell. This motivates high-throughput computational 
methods to characterize new protein members of a particular function. Research work 
has focused on discriminative machine-learning methods, which promise to make efficient, 
de novo predictions of protein function. Furthermore, available function annotation exists 
predominantly for individual proteins rather than residues of which only a subset is necessary 
for the conveyance of a particular function. This limits discriminative approaches to predicting 
functions for which there is sufficient residue-level annotation, e.g., identification of DNA-
binding proteins or where an excellent global representation can be divined. Complete 
understanding of the various functions of proteins requires discovery and functional 
annotation at the residue level. Herein, we cast this problem into the setting of multiple-
instance learning, which only requires knowledge of the protein’s function yet identifies 
functionally relevant residues and need not rely on homology. We developed a new multiple-
instance leaning algorithm derived from AdaBoost and benchmarked this algorithm against 
two well-studied protein function prediction tasks: annotating proteins that bind DNA and 
RNA. This algorithm outperforms certain previous approaches in annotating protein function 
while identifying functionally relevant residues involved in binding both DNA and RNA, and 
on one protein-DNA benchmark, it achieves near perfect classification.

Keywords: machine learning, protein sequence and structural analysis, multiple-instance learning, decision trees, 
semi supervised learning, protein function annotation, DNA binding proteins, RNA binding proteins

INTRODUCTION

Computational tools have become indispensable in guiding, analyzing, and simulating the 
mechanistic details underlying experimental studies. Recent innovations in high-throughput 
experiments for function discovery have provided sufficient data to model and understand the 
characteristics that govern specific function using machine-learning methods. Such methods have 
been used to address biological problems ranging from microarray analysis and its application 
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in diagnosis, therapy decisions, and clinical testing (Juneau 
et  al., 2014; Peterson et al., 2015; Shen et al., 2018); inter-
disease relationships and similarities (Carson et al., 2017; Qin 
and Lu, 2018) image-based diagnostics (Mehta et al., 2017); 
predicting protein structural characteristics (Langlois and Lu, 
2010a; Abbass and Nebel, 2015; Andreeva, 2016; Kashani-Amin 
et al., 2018) or clinically relevant discovery enabled by next-
generation sequencing data of genomes and transcriptomes of 
diseased and normal cells (Gunaratne et al., 2012; Hayes and 
Kim, 2015; Gu et al., 2017; Liu et al., 2017; Gong et al., 2018; 
Liu et al., 2018).

High-throughput sequence and structural genomics projects 
have continued to outpace corresponding functional discovery 
projects producing a deluge of protein data, with only a fraction 
having some functional annotation. This annotation typically 
provides an indication of the general function but rarely, and 
when available—less reliably—provides mechanistic detail for 
a particular function. Systems biology research has focused on 
analyzing and predicting known interactions between proteins 
whereas pharmaceutical research requires greater knowledge in 
the mechanistic details of molecular function. Both efforts would 
benefit from machine-learning methods that can accurately 
classify protein function using the limited amount of training 
data available.

There are two approaches to the classification problem motivated 
by different statistical views: generative and discriminative 
learning. On one hand, the generative approach attempts to solve 
a more general problem i.e., modeling [p(x,y)] providing greater 
flexibility at the cost of computational complexity. In order to 
design an efficient generative algorithm, strong assumptions must 
be made; e.g., in sequence alignment, one makes the assumption 
that sequence similarity equals function similarity. On the other 
hand, discriminative classifiers attempt to find a direct mapping 
between the class label (y) and the input vectors (x). Since this 
approach solves the specific problem at hand, rather than a more 
general problem, discriminative approaches should be preferred 
to generative ones (Libbrecht and Noble, 2015). However, the fact 
remains that generative, sequence alignment techniques remain 
predominant in the face of recently developed discriminative 
approaches. So, why have these discriminative techniques not 
been more successful? The fundamental problem seems to be that 
research has focused on a single type of discriminate method, 
classification, which requires labeled training examples. Since 
protein function annotation data is limited, only a few functional 
groups such as nucleic acid–binding proteins provide sufficient 
labeled training data.

A number of discriminative techniques have been developed 
to deal with incomplete knowledge of the training data such as: 
semi-supervised learning (Chapelle et al., 2010), active learning 
(Reker and Schneider, 2015), positive and unlabeled learning 
(Bhardwaj et al., 2010), and multiple-instance learning (MIL) 
(Carbonneau et al., 2018). While the first three approaches have 
demonstrated that unlabeled training data can be used to improve 
learning, the last approach leverages additional information, i.e., 
labeled groupings of unlabeled data. In MIL, examples (also 
referred to as instances) are organized into groups called bags. 
The class label is associated with the bag rather than the instance; 

the bag is labeled positive if at least one instance in the bag is 
labeled positive; otherwise, the bag is labeled negative. Consider 
the functional site discovery problem: functional data usually 
pertains to the protein rather than to specific functional sites. 
Hence, in the MIL formulation, the protein is a labeled bag and 
the residues (or motifs or pockets) are the instances belonging to 
that protein/bag.

MIL was originally developed for handwritten digit recognition 
by Keeler et al. (1990) and was later popularized by Dietterich 
et al. (1997) to predict drug activity. It has subsequently been 
applied to a number of problem domains including context-based 
image retrieval (Maron and Lozano-Perez, 1998; Andrews et al., 
2003a), protein super-family annotation (TrX proteins) (Scott 
et al.), and text categorization (Ray and Craven, 2005). A number 
of algorithms have been developed to solve MIL including 
convolutional neural networks (Keeler et al., 1990), axis parallel 
(Dietterich et al., 1997), support-vector machines (Doran and 
Ray, 2014), diverse density (Maron and Lozano-Perez, 1998), and 
standard binary classifiers (Ray and Craven, 2005). 

MIL algorithm–based approaches have recently found 
increased use in the diagnosis of cancer (Li et al., 2015; Mercan 
et al., 2018; Yousefi et al., 2018), application in neurology for 
classification of brain abnormalities (Tong et al., 2014), and the 
prediction of phenotype from metagenomics data (Rahman 
et al., 2017) to name a few. Recent work has utilized MIL-based 
methods to predict major histocompatibility complex class II 
(MHC-II)–binding peptides (Xu et al., 2014) and transcription 
factor-DNA interaction (Gao et al., 2015; Gao and Ruan, 2017).

The boosting framework has also been conscripted to 
solve MIL problems. These approaches fall into two groups: 
modify the weak learner or modify the boosting cost function. 
That is,  Auer and Ortner (2004) took the first approach by 
boosting a weak MIL-algorithm based on hyper-balls. Other 
algorithms have been developed using the second approach. For 
example, Andrews and Hofmann (2003b) used disjunctive logic 
programming (Lee and Grossmann, 2000) to create a boosting 
algorithm that achieves a large margin for at least one instance 
in each bag. Likewise, other groups (Xu and Frank, 2004; Viola 
et al., 2006) have used a derivation of the AnyBoost framework 
(Mason et al., 1999) to design an MIL cost function, which can be 
solved by numerical optimization.

Our work herein formulates the function prediction 
problem in the setting of MIL. In our approach, the function 
of a protein is identified through the discovery of key residue 
microenvironments that strongly signal the existence of a 
particular functional site. This method requires only two sets 
of example sequences or structures: one that has the function of 
interest and another that does not. We do not require knowledge 
of the functional sites yet this method automatically discovers 
such sites in order to predict the function of the protein. In the 
formulation of this approach, we predict function rather than 
superfamily assignment of a protein; moreover, we represent the 
protein by each residue’s microenvironment rather than by pre-
calculated conserved motifs.

To solve this problem, we developed a novel boosting algorithm 
(Langlois, 2008) derived from the AdaBoost framework (Schapire 
and Singer, 1999) that efficiently and accurately identifies residue 
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microenvironments that correspond to functional sites. We then 
benchmark this approach on two protein function assignment 
problems: the identification of DNA- and RNA-binding proteins. 
These proteins play an essential role in nearly every cellular 
process. A number of experimental (Cajone et al., 1989; Freeman 
et al., 1995; Chou et al., 2003; Buck and Lieb, 2004; Nutiu et al., 
2011; Gordan et al., 2013) and computational (Bhardwaj et al., 
2005; Szilagyi and Skolnick, 2006; Bhardwaj and Lu, 2007; 
Langlois et al., 2007; Tjong and Zhou, 2007; Gao and Skolnick, 
2009; Langlois and Lu, 2010b; Weirauch et al., 2013; Xu et al., 
2015) approaches have been developed to identify these proteins 
and their functional sites. Since DNA- and RNA-binding proteins 
provide a substantial number of labeled examples, e.g., residues 
known to bind DNA or RNA, these problems have been studied 
extensively thus presenting an excellent proof of concept for our 
approach. 

RESULTS

We demonstrate the ability of an MIL algorithm to accurately 
predict the function of a protein using its constituent residues 
with two benchmark nucleic-acid binding datasets: DNA- and 
RNA-binding proteins. The characteristics of each dataset are 
summarized in Table 1. Both datasets have been used in previous 
studies to identify residues that bind DNA (Szilagyi and Skolnick, 
2006; Langlois et al., 2007) and RNA (Terribilini et al., 2006; 
Langlois et al., 2007; Kumar et al., 2008). During training, each 
residue in a DNA-binding protein is considered DNA-binding 
and in a non-DNA-binding protein non-binding during training 
and cross-validation. Nevertheless, these residue-level labels are 
used for later evaluation of the algorithm on the residue level.

Protein Function Annotation
We compare two learning algorithms to solve the MIL problem: 
AdaBoost and AdaBoost.C2MIL on decision trees. The first 
algorithm, AdaBoost on decision trees is a classification algorithm, 
which views MIL as a classification problem with positive class 
noise (Blum, 1998). While other classifiers have been extensively 

tested on MIL problems (Ray and Craven, 2005), AdaBoost on 
decision trees has not; this is due to its past poor performance 
on problems with mislabeled data (Schapire, 1999). The second 
algorithm AdaBoost.C2MIL is a modification of the original 
AdaBoost algorithm we developed specifically to handle MIL, 
which gives special treatment to instances (residues) in a positive 
bag (DNA-binding protein).

Table 2 summarizes the performance of each algorithm in 
terms of area under the receiver operating characteristic (ROC) 
curve on the protein-level (first column), residue-level over the 
entire dataset (second column), and over just the DNA-binding 
proteins (third column). The protein-level results demonstrate 
the effectiveness of the proposed C2MIL variant over the standard 
AdaBoost algorithm where C2MIL outperforms AdaBoost by 5% 
on the DNA-binding task and by 6% on the RNA-binding task. 
The residue-level performance over the entire dataset is worse in 
both cases. However, this is due to the inclusion of residues from 
non-binding proteins, which skew the results. When considering 
the more pertinent case of only nucleic acid–binding proteins, 
the C2MIL algorithm outperforms AdaBoost in both cases: 
by almost 9% for the DNA-binding task and 3% for the RNA-
binding task.

The performance over the DNA-binding set on the protein-
level exceeds several previously published works. First, the 
performance of the C2MIL algorithm achieves 95.8% area 
under the ROC whereas the best previous result was 93% 
(Szilagyi and Skolnick, 2006) and 91.0% (Langlois and Lu, 
2010b). At 85.0% specificity, C2MIL achieves 94.4% sensitivity 
compared to 89.0% (Szilagyi and Skolnick, 2006). At 95.0% 
specificity, Stawiski et al. (Stawiski et al., 2003) achieved 81.0% 
sensitivity while C2MIL 86.1% sensitivity. Finally, at 98% 
specificity, Langlois and Lu (Langlois and Lu, 2010b) achieved 
48.1% sensitivity and C2MIL 70.8% sensitivity. Overall, C2MIL 
shows marked improvement in accurately predicting whether 
a protein binds DNA.

Functional Site Prediction
Since no residue-level labels were given during training, i.e., the 
algorithm does not know which residues bind DNA or RNA, 

TABLE 1 | Tabulates the number of proteins in both the DNA and RNA datasets.

Total Protein
Positive

Negative Total Residue
Positive

Negative

DNA 310 60 250 109,826 2,505 107,321
RNA 304 80 224 91,538 3,235 88,303

TABLE 2 | Performance of algorithms in the multiple-instance learning (MIL) function prediction task—area under the receiver operating characteristic (ROC) curve.

Protein Residue (All) Residue (-NA)

DNA binding AdaBoost 90.3 84.4 63.2
AdaBoost.C2MIL 95.8 82.7 72.1

RNA binding AdaBoost 84.1 79.4 65.6
AdaBoost.C2MIL 90.2 74.5 68.7
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the performance of C2MIL is significantly less than the current 
best: 72% (Table 1) versus 83% (Langlois et al., 2007) in terms 
of area under the ROC. At the same time, the performance over 
the full dataset (both DNA-binding and non-binding proteins) 
is significantly better than over just the DNA-binding proteins: 
82.7% area under the ROC (Table 1). This seems to indicate that 
non-binding residue environments or substructures on non-NA-
binding proteins are easier to predict than corresponding ones 
on NA-binding proteins.

The ROC plots in Figure 1 and Figure 2 compare the 
performance of C2MIL with the standard AdaBoost algorithm 
over the DNA-binding dataset. In Figure 1A, both algorithms cross 
several times with no clear winner. However, at low false-positive 
rates (Figure 1B), C2MIL dominates the standard AdaBoost 
providing an explanation for C2MIL’s better performance on the 
protein level. Since only a single residue predicted positive means 
the entire bag is positive, this is the important region on the 
residue-level ROC curve.

The ROC plots in Figure 2 compare the performance of 
C2MIL with the standard AdaBoost algorithm over the residues 
from only DNA-binding proteins. This evaluation follows that of 
other DNA-binding papers (Langlois et al., 2007). On this task, 
C2MIL dominates the standard AdaBoost algorithm over the 
entire range of the ROC plot. As the protein-level results indicate, 
C2MIL finds at least one residue microenvironment that strongly 
indicates a given protein is DNA binding. Moreover, these 
instance-level results demonstrate that not many residues fit the 
bill given the rather low sensitivity at low false-positive rates.

Trends in Residue-Level Prediction
To better understand the residue microenvironments that 
characterize NA-binding proteins, we plot each type of residue 
which has been correctly predicted DNA binding in terms of 
recall and precision (Figure 3). Precision measures the fraction 
of residues predicted NA binding that are actually DNA binding 

FIGURE 1 | Comparison of learning tasks and algorithms on the residue-level over the entire dataset using a receiver operating characteristic curve: (A) entire curve 
and (B) zoomed on the 99% specificity.

FIGURE 2 | Comparison of learning tasks and algorithms on the residue-level over only DNA-binding proteins using a receiver operating characteristic curve: (A) 
entire curve and (B) zoomed on the 99% specificity.
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(in blue) and RNA binding (in red). Recall measures the fraction 
of NA-binding residues correctly predicted NA binding.

The first trend evident in Figure 3 is that far more residues 
can be used to predict a protein RNA binding (red) as opposed 
to DNA binding (blue). This suggests that more residues are 
involved in protein-RNA interactions than protein-DNA. 
Second, arginine is unsurprising the dominant residue predicted 
for both NA-binding proteins. 

Third, DNA-binding proteins can unexpectedly be well 
characterized by microenvironments centered on either serine 
(S) or glycine (G) with a precision of 1.0; e.g., every serine 
predicted as DNA binding actually was DNA binding. While 
previous works have suggested glycine (specifically its content) 
as more correlated with the non-binding set (Bhardwaj et al., 
2005; Szilagyi and Skolnick, 2006; Langlois et al., 2007), it has 
been observed that glycine can make non-specific interactions 
with DNA (Luscombe and Thornton, 2002) and that glycine-
rich linkers are critical to regulatory protein function (Singh 
et al., 2014). 

Fourth, a set of RNA-binding proteins can be accurately 
characterized by microenvironment centered on either valine (V) 
or methionine (M) with a precision of 1.0. These residues as well as 
histidine and threonine have been found important experimentally. 
Threonine has been shown to make specific interactions with 
both splice sites (Colwill et al., 1996; Zhang and Fuller, 2003) and 
rRNA (Clemens et al., 1993). Likewise, histidine has been found 
important for specificity (Hake et al., 1998) and valine makes 
unique interactions with viral RNA (Pinck et al., 1970).

Note that, in proteins predicted DNA/RNA binding, these 
four residues (V, M, S, and G) provide a rough location the 
NA-binding site each protein. This demonstrates that the 

MIL-algorithm identifies DNA-/RNA-binding proteins based on 
residue important to their function.

DISCUSSION

Conventional approaches that apply machine learning to function 
prediction have relied on a global representation of the sequence 
or structure, or a local representation of a residue’s environment 
on a target protein. In the first case, only examples of known 
proteins with a particular function are required whereas the 
second case requires knowing the location of the active sites. Our 
proposed approach is similar to sequence alignment techniques 
in that we require only knowing the function of a particular 
protein and not the functional residues. Moreover, similar to 
sequence analysis techniques, it identifies a subset of probable 
functional residues. Nevertheless, our proposed algorithm does 
not require sequence similarity or homology to be effective 
(unlike sequence analysis techniques).

In this work, we demonstrate the ability of our MIL algorithm–
based approach to identify potential binding sites and, through 
the presence of such a site, the function of the protein. This is 
done without knowledge of the binding sites during the training 
process. Essentially, one can both identify the function of and 
locate a binding site on a test protein without knowing, during 
the training process, the location of such sites. One can view MIL 
over structure-based features as sub-structure analysis where 
were consider a sliding window along the amino acid chain 
throughout the structure. Thus, a user only requires knowledge 
of the protein function, not the particular site, yet the resulting 
learning algorithm can predict both. 

FIGURE 3 | Precision and recall for each nucleic acid (NA)-binding protein residue type.
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The proposed approach also has several advantages over 
traditional homology-based methods:

• Does not rely on finding a similar structure/sequence
• Discovers functional sites with little prior knowledge

Our method does not require homologous sequences or 
structures; instead, it relies on physio-chemical characteristics in 
combination with (when available) structural features. It can also 
be applied to problems where knowledge of the functional site 
is limited. We also provide an analysis of MIL algorithms on the 
instance level. In some previously published MIL works, the authors 
evaluate their algorithms on the bag-level since instance-level labels 
are either unavailable or unreasonably expensive to obtain.

This works establishes the ability of our MIL algorithm–
based method to outperform classification in discriminating 
RNA- or DNA-binding proteins from non-binding proteins. The 
success of this approach relies on the better representation of 
function permitted by the MIL problem formulation. Instead of 
representing the protein sequence or structure by some global 
representation, the MIL approach allows the entire protein to 
be decomposed into potential functional units and discovers 
which unit actually performs the function. Developing a feature 
encoding for a single functional unit is far easier than for the 
entire protein sequence or structure.

While multiple-instance (MI) learning has several advantages 
over classification, it remains a harder learning problem in that the 
learning algorithm does not have access to instance-level labels. 

FIGURE 4 | Overall framework the proposed AdaBoost.C2MIL method and feature extraction.
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Nevertheless, the experiments clearly show that the proposed MI 
learner does not perform substantially worse when identifying 
residues that bind DNA or RNA. Indeed, these results compare 
favorably with the current state-of-the-art in residue classification.

There are several limitations to the present work. First, we do 
not limit the algorithm to only sequence information; yet, this will 
provide the primary source of data for this application. Second, 
this work does not consider open conformations, e.g., proteins 
not in complex with DNA. Since the current set of features 
does not require the exact residue orientation, this may not be 
a significant limitation. Third, it does not incorporate known 
binding residues; such residues can provide more information 
regarding these residues. This problem can be remedied through 
the application of active MIL (Zhang et al., 2008). Fourth, 
this algorithm would utilize and would benefit from far larger 
datasets such as sequences in the UniProt (Leinonen et al., 2004) 
database. Finally, the analysis of the important residues was just a 
first-order approximation to the potential wealth of information 
this technique can glean from both sequence and structural data.

MATERIALS AND METHODS

Dataset
There are two stringent benchmark datasets used for DNA- and 
RNA-binding protein prediction tasks. The first set is 60 DNA-
binding proteins and 250 non-DNA-binding proteins derived 
by Liu et al. (2014) and later used by Shen et al. (2017) and Wei 
et al. (2017) (Supplementary Table 1). The second set is 80 RNA-
binding proteins and 224 non-RNA-binding proteins used by 
Miao and Westhof (Miao and Westhof, 2015) and Paz et al. (2016) 
(Supplementary Table 2). The two datasets are both acquired 
from the Protein Data Bank, and short sequences (less than 50 
amino acids) and sequences containing the consecutive character 
“X” have been removed. To eliminate the redundancy and 
homology bias that likely leads to overestimated performance, it 
removes sequences with ≥25% pairwise sequence identity to any 
other sequences in the dataset using the program CD-HIT.

Each residue in the protein is represented using the following 
features (feature count within parenthesis) (Figure 4):

• Residue identity (Bhardwaj et al., 2010)
• Secondary structure (Shen et al., 2018)
• Structure neighbors (Bhardwaj et al., 2010)
• PSSM for residue at that position (Bhardwaj et al., 2010)
• BLOSUM for positions $-3…3$ (140)
• Properties: Charge, Surface Area (Juneau et al., 2014)

The residue identifier is a 20-dimensional vector where the residue 
type is indicated by a non-zero value in the corresponding column. 
Likewise, there is a corresponding secondary structure identifier 
feature vector. The structure neighbors count the frequency of each 
residue type within 3 Å (measured heavy atom to heavy atom). The 
PSSM feature scores the conservation of this residue position. The 
BLOSUM window also estimates the residue conservation within a 
window around the specific residue. Finally, the properties of charge 
and surface area are estimated for each residue. For more details 
concerning the feature representation, see Langlois et al. (2007).

Algorithm
The Adaptive Boosting (AdaBoost) algorithm transforms a weak 
classifier L(·) into a strong ensemble classifier H(·)(44). AdaBoost 
proves most effective with decision trees as the weak classifier 
(often referred to as “the best off-the-shelf classifier”) and has one 
tunable parameter: the number of boosting iterations (T). Rather 
than the general boosting framework as in prior work (Mason 
et al., 1999), we propose to modify the AdaBoost algorithm itself 
to reduce MIL to importance-weighted classification.

EQUATION 1 | Proposed AdaBoost.C2MIL Algorithm
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The proposed algorithm, AdaBoost.C2MIL, is outlined in 
Equation 1. The first step in the algorithm is to set up the dataset. It 
starts by reorganizing the dataset such that each negative instance 
becomes its own bag while the positive instances remain grouped 
in their original bags. Note that, since we know each instance in a 
negative bag must be negative, this step does not disregard useful 
information. It then sets up a uniform weighted distribution on 
the bag level. Since each negative instance is a bag, it has its own 
weight whereas instances in a positive bag share a single weight. 

The second step, within the for loop, starts by mapping the 
MIL dataset to a classification dataset where every instance in a 
positive bag is labeled positive, and the weight is split uniformly 
among the instances. Next, the algorithm trains a weak classifier 
(L) over the current distribution of the dataset, which gives 
confidence-rated hypothesis ĥt. The confidence-rated prediction 
follows (Schapire and Singer, 1999) and can be converted to a 
probability using the sigmoid function. Finally, for positive bags 
(and negative bags during evaluation), the bag-level prediction is 
a summation of the instance-level predictions (step 5). 
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The rest of the algorithm follows AdaBoost on the bag level. 
First, the algorithm estimates the bag-level error and then calculates 
the step size α. This step size is then used to increase the weight on 
incorrectly predicted bags and decrease on correctly predicted. 

The output of the ensemble multiple-instance learner acts on 
both the bag and instance level. Each classifier contributes to 
the prediction of an instance whereas the bag-level prediction is 
made by the equation in step 5.

Experiments
The overall framework of our experiment is represented in 
Figure 4. The AdaBoost algorithm requires a weak learner and, 
as a weak learner, the decision tree works well across the board; 
we use a custom implementation with a top-down (Kearns and 
Mansour, 1996) impurity function for confidence-rated boosting. 
The algorithms, metrics, and graphs used in this work were 
generated using python. The performance is measured using 
5-fold stratified cross-validation. And code is available at https://
github.com/WintrumWang/AdaBoost.C2MIL.
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