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Gene expression in individual cells can now be measured for thousands of cells in a 
single experiment thanks to innovative sample-preparation and sequencing technologies. 
State-of-the-art computational pipelines for single-cell RNA-sequencing data, however, 
still employ computational methods that were developed for traditional bulk RNA-
sequencing data, thus not accounting for the peculiarities of single-cell data, such as 
sparseness and zero-inflated counts. Here, we present a ready-to-use pipeline named 
gf-icf (gene frequency–inverse cell frequency) for normalization of raw counts, feature 
selection, and dimensionality reduction of scRNA-seq data for their visualization and 
subsequent analyses. Our work is based on a data transformation model named term 
frequency–inverse document frequency (TF-IDF), which has been extensively used in the 
field of text mining where extremely sparse and zero-inflated data are common. Using 
benchmark scRNA-seq datasets, we show that the gf-icf pipeline outperforms existing 
state-of-the-art methods in terms of improved visualization and ability to separate and 
distinguish different cell types.

Keywords: single-cell transcriptomics, term frequency–inverse document frequency, feature extraction, cell type, 
enrichment analysis

INTRODUCTION

Until very recently, the cost, time, and equipment needed to perform single-cell transcriptomics have 
limited their application to a few selected studies. Thanks to the new and cheap technologies (Klein 
et al., 2015; Macosko et al., 2015; Zheng et al., 2017), sequencing libraries for thousands of cells 
in a single experiment can now be prepared on a lab bench. Advanced computational approaches 
have been implemented to analyze these datasets and enabled discovery of new cell types (Butler 
et al., 2018; Aran et al., 2019) and the study of cellular dynamic processes at high temporal and 
spatial resolution (Trapnell et al., 2014; Achim et al., 2015; Satija et al., 2015; Liu and Trapnell, 
2016). Moreover, single-cell RNA-sequencing (scRNA-seq) is reshaping our understanding of 
developmental biology, gene regulation, and cancer heterogeneity (Gawad et al., 2016). However, 
substantial computational obstacles remain because of the large amount of data and high levels of 
noise. Finding an effective low-dimensional representation of scRNA-seq data is the most important 
step for the data visualization and downstream analysis, such as cell type identification. At present, 
state-of-the-art computational pipelines for scRNA-seq data visualization consist in four main steps 
(Trapnell et al., 2014; Klein et al., 2015; Macosko et al., 2015; Shekhar et al., 2016; Zheng et al., 
2017; Butler et al., 2018): i) normalizations of raw counts scaled by a sample-specific size factors; 
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ii)  feature selection by identifying most variable genes across 
cells; iii) dimensionality reduction with principal component 
analysis (PCA); and iv) projection of scRNA-seq data in an 
embedded space [such as t-SNE or UMAP tools (van der Maaten 
and Hinton, 2008; McInnes and Healy, 2018)]. Most steps in 
these pipelines, however, still employ computational methods 
that were developed for traditional bulk RNA-seq data, thus not 
accounting for the high level of noise caused by dropouts, leading 
to an excess of zeros and near-zero counts in the dataset.

Here, we present a ready-to-use pipeline named gf-icf (gene 
frequency–inverse cell frequency) for normalization of raw 
counts, feature selection, and dimensionality reduction (steps i to 
iii) whose results can be fed to t-SNE or UMAP for visualization 
of scRNA-seq data. gf-icf is based on a data transformation model 
called term frequency–inverse document frequency (TF-IDF), 
which has been extensively used in the field of text mining, 
where sparse and zero-inflated data are common (Robertson 
and Jones, 1976; Leskovec et al., 2014). Here, we show that the 
gf-icf pipeline outperforms the existing state-of-the-art methods 
exploiting a benchmark dataset of real cell mixture of FACS 
sorted cells (Zheng et al., 2017). We also show how features (i.e., 
genes) extracted from gf-icf can be used to automatically predict 
cell types outperforming methods based on top expressed genes.

METHODS

Term Frequency–Inverse Document 
Frequency
In information retrieval or text mining, the term frequency–
inverse document frequency (TF-IDF) is a data transformation 
and scoring scheme used for measuring the occurrences of a 
given word in a large collection of text documents (Robertson 
and Jones, 1976; Leskovec et al., 2014). Given a corpus of N 
documents, let fij be the number of occurrence of the word i in 
the document j, and the term frequency TFij of word i in the 

document j can be defined as: TF f
W
k

fij ij kj=
=∑/

1
, where W is 

the number of words in document j. Hence, the term frequency 
of word i in document j represents its number of occurrences 
divided by the total number of occurrences of all the words in the 
same document. Thus, the sum of TF values of all the words in a 
document is always equal to 1. The inverse document frequency 
of word i can be instead defined as IDFi = log(N/ni+1), where ni 
denotes the number documents that contain word i out of the N 
documents in the corpus. Intuitively, the IDF value is high for 
a rare word and low for a common word. The TF-IDF score for 
word i in document j is simply TF IDFij i× . TF-IDF values of each 
document are then rescaled to have Euclidean norm equal to one 
(L2 normalization) to account for document length biases.

Gene Frequency–Inverse Cell Frequency
Thanks to 3′-end scRNA-seq approaches, we can now have an 
accurate estimation of gene expression without having to account 
for gene length; thus, the number of transcripts (i.e., UMI) 
associated with each gene strictly reflects the frequency of a gene 
in a cell, exactly like a word in a document. Hence, we applied 

TF-IDF scores as defined above to scRNA-seq data considering 
a cell to be analogous to a document, genes analogous to words, 
and gene counts to be analogous of the word’s occurrence in a 
document. For the sake of clarity, we renamed in the manuscript 
TF-IDF to GF-ICF (gene frequency–inverse cell frequency). 
Moreover, since words with the highest TF-IDF score in a 
document are often the terms that best characterize the topic of 
that document, genes with the highest GF-ICF scores in a cell 
are expected to provide most information about the cell identity.

t-SNE Visualization
After data normalization (GF-ICF or Seurat tool), the first 
50 principal component were used as meta-genes to perform 
t-distributed stochastic neighbor embedding (t-SNE). t-SNE 
was run using Rtsne package in the R environment version 3.5.2. 
For t-SNE, we always used the same seed (equal to 0), the same 
value of perplexity equal to 30, and the same number of PCA 
components for all the analysis in order to improve replicability 
and comparison of tested methods. t-SNE coordinates were 
rescaled at [−1, 1] before plotting and computation of Euclidian 
distances among cells of the same type.

Public Single-Cell Transcriptional Dataset
The single-cell transcriptional profiles of human peripheral blood 
mononuclear cells (PBMCs) of 10 distinct cell types identified by 
FACS analysis (Zheng et al., 2017) used in this study were directly 
downloaded from the 10X website (https://support.10xgenomics.
com). Data were preprocessed to remove low-quality cells. 
Specifically, cells for which less than 500 genes and less than 
1,500 UMI (unique molecular identifiers) were measured and 
for which the fraction of mapped mitochondria reads was higher 
than 10% were filtered out. After cell filtering, a total of 39,200 
cells were retained and used for all downstream analyses. The 
27,499 single-cell transcriptional profile from mouse retinal 
bipolar neurons (Shekhar et al., 2016) were obtained from GEO 
database (GSE81904). The single-cell transcriptional profiles of 
Tabula Muris project (Schaum et al., 2018) were obtained from 
TabulaMuris package of R statistical environment. Only the 
55,656 cells that passed a quality control cutoff of 500 genes and 
1,000 UMIs were used.

Single-Cell Data Visualization With Seurat 
Tool
Seurat tool (v2) was used following the tutorial present on 
the Seurat website (https://satijalab.org/seurat). Briefly, raw 
counts were first normalized with NormalizeData function; 
then the most variable genes across the cells were identified 
using FindVariableGenes function. After UMI counts were 
rescaled with ScaleData function, principal component analysis 
(PCA) was performed using RunPCA function, and the top 50 
PCA component were used for t-SNE visualization (runTSNE 
function) with value of perplexity equal to 30. t-SNE visualization 
and coordinate rescaling were performed as described above. 
All analyses were performed using R statistical environment 
version 3.5.2.
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Single-Cell Clustering and Relevant Gene 
Identification
Single-cell transcriptional profiles were normalized using the gf-icf 
method and projected with t-SNE in an embedded bi-dimensional 
space as described above. Cells were then clustered using a 
PhenoGraph like approach (Levine et al., 2015). From t-SNE 
coordinates, we first created a network of similar cells by calculating 
the Jaccard coefficient between the 50 nearest neighbors of each cell 
(using Manhattan distance), and then we identified communities in 
this network of cells using the Louvain method (Blondel et al., 2008).

Cell Type Prediction
To predict cell type in each of the clusters, we extracted from 
each cluster its gene signature by summing their gf-icf scores 
across cells of the same cluster and selecting the top 100 genes 
with highest scores. We then performed gene set enrichment 
analysis (GSEA) (Subramanian et al., 2005) against a set of bulk 
transcriptomic data of “pure” cell types from a published study 
(Aran et al., 2019). Specifically, we used as a reference dataset the 
Blueprint Epigenomics dataset composed of 144 RNA-seq across 
28 cell types (Stunnenberg et al., 2016) and the Encode dataset 
composed of 115 RNA-seq of pure stroma and immune samples 
across 17 cell types (Consortium et al., 2012) for a total of 45 
distinct cell types. Finally, the top enriched cell type from GSEA 
was used to assign a cell type to each cluster.

Adjusted Rand Index
The adjusted Rand index (ARI) proposed by Hubert and Arabie 
on Journal of Classification in 1985 (Hubert and Arabie, 1985) 
is the corrected-for-chance version of the Rand index (Rand, 
1971) ARI is the most used index to evaluate the performance 
of a cluster algorithm when cluster’s labels are known a priori. 
It has the maximum value of 1, while its expected value is 0 in 
the case of random clusters. In this work, the ARI was computed 
using the function adjustedRandIndex of package mclust in the R 
statistical environments.

Cluster Purity
Purity is an evaluation criterion of cluster quality that can be 
interpreted as the pureness of the final clusters compared with 
the classes of the ground truth (Hassani and Seidl, 2017). Purity 
was computed as follows: For each cluster of cells, we counted 
the number of cells from the most common cell type and divided 
it by the total number of cells across all the clusters. Formally, 
Purity

N m M
m d

d D
=

∈
∩∑ ∈

1 max | | , where M is the number of 

clusters, D a set of classes (i.e., cell types), and N the total number 
of cells.

RESULTS

Identify-Relevant Genes Across Cell 
Populations
We aimed at developing a computational tool that could integrate 
single-cell transcriptional profiles across multiple conditions 

by extracting relevant genes to improve data visualization and 
cell type identification. The term frequency–inverse document 
frequency (i.e., TF-IDF) approach is a well-known statistical 
method to extract and select document-specific words (i.e., 
genes) across a large collection of documents (i.e., cells). The 
intuition behind the use of the TF-IDF approach to scRNA-seq 
data is that if a gene is highly expressed in a cell, it should be 
scored highly than less expressed genes in the same cell, but at 
the same time, highly expressed genes common to many cells of 
different types should be scored lower than genes expressed in 
a specific subpopulation of cells. As the TF-IDF approach has 
been extensively used in the context of text mining for feature 
selection and extraction (Robertson and Jones, 1976; Leskovec 
et al., 2014), we reasoned that this approach could be extremely 
useful to improve single-cell data analysis. Here, we developed 
the gf-icf (gene frequency–inverse cell frequency) pipeline, 
which is based on the TF-IDF approach, as schematized in 
Figure 1A (Methods). Briefly, given the transcriptional profiles 
of a set of cells C1,...Cn

, the pipeline consists of the following 
steps: i) normalization of gene expression profiles of each cell to 
sum one (GF step), thus removing bias related to cell coverage 
depth; ii) cross-cell normalization, to score rarely expressed 
genes higher than commonly expressed genes (ICF step) across 
subpopulations of cells (Methods); iii) L2 normalization on 
each cell to obtain normalized gf-icf weights; and iv) principal 
component analysis (PCA) to reduce the number of features 
(genes) dimensions before (v) applying t-SNE and project cells in 
a two-dimensional space.

The gf-icf Pipeline Improves Cell 
Population Visualization and Clustering
We applied our gf-icf pipeline to analyze a published study of 
39,200  human peripheral blood mononuclear cells (PBMCs) 
sequenced using the 10x Chromium platform and belonging to 
10 distinct immune cell populations identified by cytofluorimetry 
(Zheng et al., 2017). After rescaling of t-SNE coordinates, we 
compared the visualization obtained from gf-icf to the state-of-
the art method Seurat tool. As shown in Figure 1B, our strategy 
was able to improve single-cell data visualization by better 
separation of distinct cell types when compared with Seurat. 
Indeed, the only overlapping cell types were the CD4+ regulatory, 
CD4+ naïve, and CD4+ helper T-cells, which are cells derived 
from the same lineage (Glimcher and Murphy, 2000). To quantify 
and compare cell type separation between the two methods, we 
computed the average Euclidean distance of rescaled t-SNE 
coordinate among cells of the same cell type (Figures 1C, D). The 
same analysis was repeated using also rescaled UMAP (McInnes 
and Healy, 2018) coordinates (Supplementary Figure 1). We 
also applied our gf-icf pipeline to analyze an additional dataset 
consisting of 27,499 single-cell transcriptional profile from 
mouse  retinal bipolar neurons (Shekhar et al., 2016) profiled 
using the Drop-seq platform. As shown in Supplementary 
Figure 2, our strategy was again able to improve single-cell data 
visualization when compared with Seurat. These results show 
that the gf-icf strategy can be successfully used to better visualize 
and separate distinct cell types. To further demonstrate how 
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our approach can also enhance clustering of scRNA-seq data, 
we applied the gf-icf pipeline to the tabulaMuris data (Schaum 
et al., 2018) consisting of 55,656 single-cell transcriptional profile 
from 13 distinct mouse organs profiled using the Drop-seq 
platform. After the application of gf-icf normalization pipeline 
for normalization, visualization, and clustering of single-cell data 
(Supplementary Figure 3), we evaluated the purity of identified 
cluster by comparing it with cell types reported in the original 
publication. Specifically, we obtained a cluster purity of 83% 
and an adjusted Rand index of 0.51 in agreement with original 
publication analysis that was performed using Seurat tool 
(Supplementary Figure 4).

gf-icf Normalization Selects and Extracts 
Relevant Genes for Cell Type Identification
We next asked whether relevant genes identified by gf-icf 
normalization are better biomarkers than the ones selected 
simply using normalized counts, as currently done in standard 
scRNA-seq pipelines. We first validated our approach on the 
39,200 PBMCs cells for which cell type of origin had been 
identified by cytofluorimetric analysis (Zheng et al., 2017). For 
simplicity, we grouped immunological cell types into six main 
types: 1) CD4+ cells, 2) CD8+ cells, 3) B-cells, 4) natural killer 
(NK) cells, 5) homeopathic stem cells (HSCs, CD34+), and 6) 
monocyte. We applied the pipeline described in Figure 2A: 
starting from scRNA-seq data processed with the gf-icf method, 
cells are projected with t-SNE in an embedded bi-dimensional 
space, and then i) cells are clustered into transcriptional 
homogenous clusters; ii) the top 100 genes with the largest gf-icf 
scores represent the gene signature of each cluster (Methods); 

iii) gene set enrichment analysis (GSEA) is performed using 
as a set the gene signature of a cluster and as a reference the 
bulk transcriptional profiles of cytofluorimetry-sorted cell 
types derived from the Encode and Blueprint Epigenomics 
databases (Consortium et al., 2012; Stunnenberg et al., 2016); 
and iv) in the last step, the inferred cell types for each cluster 
are visualized using a color code. As shown in Figure 2B, we 
correctly assigned the majority of cells to their cell type of 
origin, achieving an average accuracy of cell type classification 
of 96% (Figures 2C, D) and an adjusted Rand index (Hubert 
and Arabie, 1985) of 0.94 (Figure 2E). We then repeated the 
above analysis but this time using as gene signatures the 100 
genes most expressed in each cluster, rather than the 100 genes 
with the largest gf-icf scores. In this case, we achieved a lower 
average cell classification accuracy of 79% (Figures 2C, D and 
Supplementary Figure 5) and a lower adjusted Rand index of 
0.52 (Figure 2E). These results show that the gf-icf strategy can 
be successfully used to improve feature selection and to identify-
relevant genes in distinct cell populations. Interestingly, as 
shown in Figure 2B (dashed circle), a small group of cells, which 
according to cytofluorimetry were classified as hemopoietic 
stem cells, was predicted by our analysis to consist of monocytes 
and macrophages. Expression of the canonical monocyte and 
macrophage markers (i.e., CD14 and CD16) and lack of CD34 
expression seem to confirm our predictions (Figure 2F).

DISCUSSION

Single-cell RNA-seq is now the technology of choice to identify 
the different cell types composing the human body and to 

FIGURE 1 | GF-ICF improves visualization of single-cell RNA-sequencing data. (A) The gf-icf pipeline. Starting from transcriptional profiles of a set of cells C1…CN, 
the pipeline consists of the following steps: (i) normalization of gene expression profiles of each cell to sum one (GF step); (ii) cross-cell normalization, to score 
rarely expressed genes higher than commonly expressed genes (ICF step); (iii) L2 normalization on each cell to obtain normalized gf-icf weights; and (iv) principal 
component analysis (PCA) to reduce the number of features (genes) dimensions before (v) projecting cell in an embedded space. (B) Comparison between t-SNE 
projection following gf-icf pipeline (left) and the Seurat tool (right) on 40k human PBMCs single-cell transcriptional profiles. Cells are colored according to their cell 
type of origin identified by FACS analysis by Grace et al. (C) Average Euclidean distance among PBMCs of the same type using either gf-icf pipeline or the Seurat 
tool. (D) Distribution of the average Euclidean distance among PBMCs of the same type using either gf-icf pipeline or the Seurat tool. Legend: TCY, cytotoxic T-cells; 
TH, helper T-cells; TREG, regulatory T-cells; TMEM, memory T-cells; TNCY, naïve cytotoxic T-cells; TN, naïve T-cells; NK cells, natural killer cells.
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elucidate embryo development. However, computational 
methods for dimensional reduction, visualization, and clustering 
of scRNA-seq data still remain challenging. Finding an effective 
low-dimensional representation of single-cell data is a key step 
for visualization and subsequent analyses. For example, such 
representations can be used to detect “good” clusters across the 
profiled set of cells, thus greatly improving the identification of 
biomarker genes, which are often identified from differentially 
expressed genes across the clusters (Trapnell et al., 2014; Zheng 
et al., 2017). Moreover, co-expression analysis can be performed 
across clusters (Gambardella et al., 2017) in order to identify 
differentially co-expressed set of genes (Gambardella et al., 2013, 
Gambardella et al., 2015) and thus predict active gene regulatory 
networks.

Here, we developed an accurate and efficient ready-to-use 
pipeline named gf-icf (https://github.com/dibbelab/gficf), which 
provides an effective and simple workflow for the normalization 
of raw counts, feature selection, and dimensionality reduction 
whose results can be fed to t-SNA or UMAP for visualization and 
analysis of single-cell data. gf-icf is based on a well-established 
data transformation called TF-IDF. Recently, this technique 
has indeed been shown to improve scRNA-seq data clustering 
(Moussa and Mandoiu, 2018). Here, we improve previous results 
by taking into account differences in the number of reads by 
using Euclidian normalization and extend the use of TF-IDF to 
improve data visualization. Moreover, we implemented a ready-
to-use pipeline in R to make this technique available to anyone. 
Empirical evaluation of the gf-icf pipeline on a real cell mixture 

of FACS sorted cells consistently outperformed existing state-of-
the-art pipelines.
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FIGURE 2 | Relevant genes extracted from the gf-icf pipeline enable cell type prediction. (A) Pipeline for the identification of cell type using gf-icf pipeline. Single-cell 
transcriptional profiles are normalized by gf-icf in order to score genes in each single-cell, and then (i) cells are projected with t-SNE in a bi-dimensional space; 
(ii) cells are divided in small groups using Louvain–Jaccard clustering; and (iii) the gene signature of each cluster is identified and (iv) used to predict cell type of 
origin by gene set enrichment analysis (GSEA) against a set bulk transcriptomic data of pure cell types. (B) Comparison between FACS-sorted cell type (left) and 
predicted cell type (right) of about 40k PBMCs. (C) Cell type prediction accuracy as a percentage of correctly predicted cells using either gf-icf or normalized counts. 
(D) Distribution of cell type prediction accuracy using either gf-icf or normalized counts. (E) Adjusted Rand index of cell type prediction using either gf-icf or normalized 
counts. (F) Expression of CD14, CD16, and CD34 marker genes for a small subpopulation of HSCs predicted instead to be monocyte and macrophages.
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