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As reliable, efficient genome sequencing becomes ubiquitous, the need for similarly 
reliable and efficient variant calling becomes increasingly important. The Genome Analysis 
Toolkit (GATK), maintained by the Broad Institute, is currently the widely accepted 
standard for variant calling software. However, alternative solutions may provide faster 
variant calling without sacrificing accuracy. One such alternative is Sentieon DNASeq, 
a toolkit analogous to GATK but built on a highly optimized backend. We conducted 
an independent evaluation of the DNASeq single-sample variant calling pipeline in 
comparison to that of GATK. Our results support the near-identical accuracy of the two 
software packages, showcase optimal scalability and great speed from Sentieon, and 
describe computational performance considerations for the deployment of DNASeq.
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INTRODUCTION

Advancements in sequencing technology (Metzker, 2010; Goodwin et al., 2016) have resulted in an 
explosion of Whole Genome Sequencing (WGS) and Whole Exome Sequencing (WES) (Stephens 
et al., 2015). As sequencing machines become faster and cheaper (Illumina, 2018b), analysis must 
speed up as well. It is becoming less and less acceptable for genomic variant calling to take many 
hours, let alone days, on a single WGS sample. This is important for both medical applications where 
rapid genomic analysis could mean accurate diagnosis in time to save a patient’s life, as well as in 
agriculture where massive genotyping efforts are used to refine breeding programs via genomic 
prediction. Yet the standard software package for variant calling, GATK (Genome Analysis Toolkit; 
Van der Auwera et al., 2013), still requires many hours to analyze a single WGS sample, even on 
multiple nodes and after optimization (Heldenbrand et al., 2018).
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Since 2014, Sentieon’s DNASeq pipeline (Sentieon, 2018) has 
been promoted as an ultrafast alternative to GATK (Weber et al., 
2016; Freed et al., 2017). Other ultrafast options, such as Genalice 
(Plüss et al., 2017) and Isaac (Raczy et al., 2013), do not adhere 
to the original and trusted algorithms of GATK. Additionally, 
Genalice replaces the commonly used file formats BAM and 
VCF with the proprietary GAR, which takes hours to convert 
back to BAM when needed. However, Sentieon claims to follow 
the GATK Best Practices (DePristo et al., 2011; Van der Auwera 
et al., 2013) through reimplementation of GATK’s algorithms 
in C, C++, Python, and ASSEMBLY. It thus constitutes a highly 
optimized rewrite of the Java-based GATK, and also includes an 
optimized version of the popular BWA-MEM aligner (Li, 2013) 
prompting us to choose it for evaluation. Unlike the open-source 
GATK, however, DNASeq requires a license for use.

Here we present the results of unbiased benchmarking of 
DNASeq by an independent academic group. Our investigations 
focused on the broadly applicable and clinically useful case of 
single-sample variant calling. Speed, accuracy, scalability, and 
resource utilization were measured. Evaluations of DNASeq’s 
speed and accuracy are presented in comparison to GATK3.8 
and GATK4 (single-threaded), the two most recent versions of 
GATK at the time of writing. The results suggest that Sentieon 
offers superior compute speed to GATK without loss of accuracy.

MATERIALS AND METHODS

Experimental Setup
Software Versions
All DNASeq tests were run using Sentieon version 201711.02, 
except for one BWA MEM performance benchmark run on 
version 201711.03. A trial license was provided by Sentieon. 
GATK3.8 was downloaded from the Broad Institute’s software 
download page (Broad Institute, 2018), build GATK-3.8-0-
ge9d806836. Picard version 2.17.4 and GATK 4.0.1.2 were 
downloaded from GitHub as pre-compiled jar files. For 
alignment comparisons, we used BWA-MEM v0.7.16, samtools 
view from Samtools v1.5, and Novosort from Novocraft v3.04.06.

Tools Benchmarked
We benchmarked “best practices” single-sample germline variant 
calling pipelines built with GATK3.8, GATK4.0, and Sentieon 
DNASeq (Table 1; see Tool Comparison Overview: Sentieon vs 
GATK for exceptions). Both GATK and DNASeq haplotyping 
steps offer a ploidy option, making them equally applicable to 
non-human sequencing data. Alignment was performed by 
BWA-MEM or its optimized alternative from Sentieon (marked 
with †). A sample benchmarking script can be found at https://
github.com/ncsa/Sentieon_DNASeq_Benchmarking.

Data
Three datasets were used in testing: 1) A dataset corresponding to 
whole genome sequencing (WGS) of NA12878 (Zook et al., 2014; 
Zook et al., 2018) to ~20X depth was downloaded from Illumina 
BaseSpace on Dec 16, 2016. The NA12878 Illumina Platinum 
variant calls were used as the truth set to assess variant calling 

accuracy on these reads. 2) A dataset corresponding to WGS of 
NA24694 (Church, 2005) was downloaded on January 19, 2018 
from Genome in a Bottle (JIMB, 2018). The NA24694 data arrived 
in multiple files, which we combined into several subsets to mimic 
sequencing depths of 25X, 50X, 75X, and 100X, as recommended 
in the ftp data download README for the NA24694 dataset. 
3) A small synthetic dataset simulating WGS on chromosomes 
20-22 was created using NEAT-genReads (Stephens et al., 
2016; Stephens, 2018), a synthetic reads generator. The software 
introduced random mutations into the hg38 reference, and the 
simulated reads were produced from that mutated reference. The 
mutations were recorded in a “Golden VCF,” which was used as 
the truth set when assessing variant calling accuracy on these 
synthetic data. The command used to generate synthetic reads 
and the Golden VCF can be found on the github repository 
mentioned in the Data Availability section. The October 2017 
GATK bundle was used for the human reference (hg38), dbSNP 
(build 138), and the Mills and 1000G gold standard indels.

Hardware
All tests were conducted on Skylake Xeon Gold 6148 processors with 
40 cores, 2.40 GHz. Each node had 192 GB and 2,666 MHz RAM. 
The nodes were stateless, connected to a network-attached IBM 
GPFS ver. 4.2.1 with custom metadata acceleration. The cluster used 
EDR InfiniBand with 100 Gb/sec bandwidth, 100 ns latency. Nodes 
ran Red Hat Enterprise Linux 6.9. Each test was run on a single 
node. We ran two to three replicates of most tests; the differences 
across the replicates were negligible, and we are confident that the 
walltime was not affected by other activity on the cluster.

Tool Comparison Overview: Sentieon vs 
GATK
Sentieon DNASeq tools largely mirror those of GATK (Table 1), 
and in both pipelines the steps can be individually skipped or 
replaced by other tools. Although GATK no longer recommends 
realignment, we included Sentieon’s Realigner tool in all runs 
except for those intended to compare directly to GATK because 
realigning can convey benefits in a Sentieon pipeline. While GATK 
creates a separate recalibrated BAM by default using PrintReads 
(GATK3.8) or ApplyBQSR (GATK4.0), Sentieon’s default is to 
apply BQSR calculations “on the fly” during the Haplotyper step. 
Although users do have the option to generate a recalibrated BAM 

TABLE 1 | Sentieon DNASeq vs. GATK pipelines.

Pipeline Step Sentieon GATK 3.8/4.0

Alignment BWA MEM† BWA MEM
Sorting Sort utility NovoSort
Deduplication LocusCollector and 

Dedup
MarkDuplicates

Realignment Realigner Not recommended
Quality score recalibration QualCal BaseRecalibrator
Apply new quality scores Invoked during 

Haplotyper
PrintReads (3.8)/
ApplyBQSR (4.0)

Variant callling Haplotyper HaplotypeCaller

Sentieon’s optimized BWA MEM marked with †.
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with DNASeq’s ReadWriter algorithm, this step is extraneous to 
Sentieon’s recalibration process. Therefore, there is no equivalent 
to GATK’s PrintReads/ApplyBQSR tool in our DNASeq pipelines.

RESULTS

Thread-Level Scalability
We tested the single-node scalability of Sentieon DNASeq by 
running the same pipeline with 4, 8, 16, 24, and 40 (max) threads. 
Optimal scalability was calculated by projecting the walltime 
decrease proportionately to the increase in thread count, using the 
first walltime measurement at 4 threads as the starting point. Each of 
the constituent tools appeared to scale equally well (data not shown), 
and the entire DNASeq pipeline scaled near-optimally up to our 
max of 40 threads/node (Figure 1). The pipeline completed in ~16 h 
when running across 4 threads, and ~2 h when running across 40.

Effect of Sequencing Depth on 
Performance
We investigated the impact of sequencing depth on performance 
by running our Sentieon DNASeq pipeline on NA24694 WGS 

data subsets representing 25X, 50X, 75X, and 100X coverage 
depth. We ran each subset on the maximum available cores/
node (40) to minimize runtime. All individual tools in the 
pipeline, including alignment, appeared to scale equally well. 
(Figure 2, top). The pipeline as a whole showed a small drop-off 
in performance between 25X and 50X: walltime increased more 
than twofold on 50X depth, compared to the 25X dataset, which is 
half the size (Figure 2, bottom). However, it scaled near-linearly 
at all depths beyond 25X. Linear scaling was calculated using 
the median walltime measurement by projecting that an n-fold 
increase or decrease in depth would lead to an equivalent n-fold 
increase or decrease in runtime. We do not believe this scaling 
pattern is due to any specific feature of alignment, as it also 
holds for the post-alignment portion by itself (data not shown). 
Considering the I/O-intensive nature of the DNASeq workflow 
(described below), it is more likely that the 25X data were not 
large enough to impact performance on our filesystem, resulting 
in lower run time. Nonetheless, the overall walltime performance 
remains outstanding: on data sequenced at 100X depth, the 
pipeline completed in fewer than 13 h. We expect these results 
to apply, qualitatively if not numerically, to other human data 
sequenced using Illumina technology. In other species, such as 

FIGURE 1 | Sentieon DNASeq pipeline: demonstrated scaling across threads 
on Skylake architecture vs. optimal (linear) scaling. Sample: NA12878, WGS, 
20X. Data points reflect averages over two replicates, highlighting (A) post-
alignment steps only and (B) the full pipeline including alignment.

FIGURE 2 | Sentieon DNASeq scalability as a function of sequencing 
coverage depth (A) by tool and (B) across the entire pipeline. Sample: 
NA24694, WGS, 25X-100X. Datapoints reflect averages over two replicates. 
Error bars are included in (B) but are too small to be visible.
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polyploid plants, which have greater content of highly repetitive 
genomic regions, the scalability pattern might be different due to 
the extra work required for read realignment, and higher content 
of multiply mapped reads. An in-depth investigation of these 
differences was deemed out of scope for this manuscript.

Computational Performance Relative 
to GATK
To understand the extent of the performance improvements 
introduced by Sentieon, we compared the runtime of GATK vs. 
DNASeq on NA12878 WGS data. The computational performance 
of GATK3.8 and GATK4.0 have been reviewed in detail by 
Heldenbrand et al. (2018). We ran each of the three pipelines 
with their respective default settings and maximum thread count 
(40) to establish a “baseline.” Then we ran each pipeline with 
“optimal” settings: for DNASeq, 40 threads across the pipeline 
(same as baseline), and for GATK3.8 and GATK4, the optimized 
parameters recommended in Heldenbrand et al. (2018) (Table 2, 
reproduced with permission). No data-level parallelization was 
applied, and each test was performed on a single node. This 
choice was driven by the fact that both GATK 3.8 and DNASeq 
do not support cross-node parallelization via MPI, and the 
GATK4 Spark-enabled cross-node parallelization was not yet 
mature enough for testing at the time we ran our experiments.

Our walltime comparison excludes BWA MEM (not part of 
GATK; see Comparison of Sentieon BWA to Traditional BWA) 
and realignment (as the GATK team recommends against it). In 
this configuration, DNASeq completed in less than half an hour 
on NA12878 WGS 20X, while the GATK pipelines took between 
15 and 25 h on the same dataset (Table 3).

Comparison of Sentieon BWA to 
Traditional BWA
Sentieon DNASeq includes an optimized version of BWA 
MEM and a proprietary utility for sorting an aligned SAM 
into a BAM. We juxtaposed Sentieon’s BWA MEM and sort 
utility with a typical alignment and sorting pipeline consisting 
of traditional BWA MEM (Li, 2013), samtools view (Li et al., 
2009), and NovoSort (Novocraft Technologies, 2014). We 
compared performance of the two by running both with 40 
threads on NA12878 WGS data (no piping). The Sentieon 
version was ~28% faster: 1.25 h vs. 1.73 h. This speed-up 
results from optimization of the klib library, at the cost of 

almost doubling the memory used by BWA: 22.45 ± 1.58 GB vs 
12.13 ± 0.56 GB, measured as the resident set size (no swapping 
to disk was observed).

Version 201711.03
A new version of Sentieon (201711.03) was released as we 
completed our testing, featuring a non-trivial speed-up of BWA 
MEM derived from a complete rewrite of the traditional BWA 
MEM code. This new version completed in 0.95 h, 25% faster 
than 201711.02 and 45% faster than “BWA MEM → samtools 
view → NovoSort.”

Variant Calling Accuracy
The accuracy of Sentieon’s DNASeq pipeline has been 
demonstrated in several FDA and DREAM Challenges (U.S. 
Food and Drug Administration, 2016a; U.S. Food and Drug 
Administration, 2016b; Sage Bionetworks, 2016). As the 
algorithms underlying Sentieon are nearly identical to those 
underlying GATK, the two can be expected to produce similar 
results. Nevertheless, we ran a cursory comparison of Sentieon’s 
DNASeq accuracy against GATK4. NA12878 and the synthetic 
chr 20-22 dataset were run through both pipelines. The resultant 
VCFs were compared to their respective truth sets and to each 
other, using the vcf-compare tool from the NEAT package 
(Stephens, 2018). The comparison was limited to the Illumina 
Platinum confident regions (Illumina, 2018a). In comparing 
Sentieon and GATK4 directly, we treated the output from GATK4 
as the truth set because DNASeq is based on GATK algorithms. 
The command used to run comparisons is available on github.

The output of vcf-compare provides counts for true positives 
(TP), false positives (FP), and false negatives (FN). To account 
for both precision (p) and recall (r), we calculated F-scores based 

on these values using the formula F pr
p r1
2=

+
, where p TP

TP FP
=

+
 

and r TP
TP FN

=
+

. Precision and recall values were similar for 

each comparison.
Sentieon and GATK4 were highly concordant with each other 

(Table 4) on both datasets, as expected. Using realignment in 
DNASeq did not meaningfully affect concordance with GATK4; 
the difference could become more significant on datasets of poorer 
quality. Both toolkits had high rates of variant detection relative 
to the truth sets. Significantly, GATK and Sentieon demonstrated 
effectively identical detection rates on the Illumina Platinum data.

TABLE 2 | Summary of optimized parameter values for GATK3.8 and GATK4.0 in reference to parallel garbage collection (PGC) threads, tool threads, async I/O, and 
AVX threads.

Tool name GATK3.8 GATK4.0

PGC Tools threads PGC Async AVX threads

MarkDuplicates 2 threads 1 2 threads N/A N/A
BaseRecalibrator 20 threads −nct 40 20 threads

Yes for Samtools, 
No for Tribble

N/A
ApplyBQSR Off −nct 3 Off N/A
HaplotypeCaller Off −nt 1 – nct 39 Off 8

Reproduced from Heldenbrand et al. (2018) with permission.
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Computer Resource Utilization
Variant calling workflows are notorious for high RAM utilization, 
high rates of disk I/O, and inefficient data access patterns, all 
of which can lead to performance issues (Banerjee et al., 2016; 
Kathiresan et al., 2017). Therefore, we investigated the patterns of 
compute resource utilization for DNASeq in addition to its speed 
and accuracy. We recorded CPU load, memory utilization and 
I/O patterns for each tool while running the DNASeq pipeline 
on the NA12878 dataset. Our in-house profiling utility memprof 
(Kindratenko, 2018) accesses/proc/PID for each process 
it monitors.

CPU Utilization
The resulting profile of DNASeq (Figure 3) shows near-
maximum core utilization by all tools except LocusCollector 
(one of the algorithms used for deduplication). This suggests 
that the tools are largely CPU-bound, explaining the strong 
thread-level scalability described above.

RAM Utilization
Haplotyper uses the most memory in the pipeline (up to 6 
GB), as expected for the local reassembly subroutine. High 
RAM utilization toward the end of the process is likely due to 
processing of the difficult HG38 decoy regions. Nonetheless, 
DNASeq RAM utilization across all tools is lower than some 
previous GATK benchmarks (Chapman, 2014) have shown.

I/O Rates
Deduplication and realignment show very active and similar 
I/O patterns, reaching high rates for both reads from the input 
BAM and writes to the output BAM. Many intermediary BAM 
files are created during these steps, resulting in high data-level 
parallelization at the cost of high I/O (Figure 3, inset in the 
bottom panel). This could introduce a filesystem bottleneck 

when analyzing large numbers of samples (hundreds) 
simultaneously on a cluster, but can be countered by using local 
disk or SSDs instead of network storage. In contrast, no new 
BAMs are created during QualCal (BQSR), as it only calculates 
the required modification of the quality scores and the actual 
recalibration is applied during the variant calling stage.  
Thus the rate of writes/sec is very low for QualCal. We also 
include the near-identical profile for the optional command 
that applies the recalibration to calculate the post calibration 
data table (Figure 3, step Recal Data Table). For comparison, 
GATK’s I/O performance was extensively measured and 
reviewed by Banerjee et al. (2016).

DISCUSSION

The tests we conducted were intended to a) benchmark Sentieon’s 
DNASeq speed and scalability and b) compare DNASeq to 
GATK as an alternative option for germline variant calling. Our 
results show that DNASeq is fast: for a WGS sample sequenced 
to approximately 20X depth, the DNASeq pipeline processes 
from FASTQ to VCF in under 2 h, and from aligned sorted BAM 
to VCF in less than half an hour. This opens up possibilities for 
point-of-care patient analysis in the clinic, massive reanalysis of 
legacy data and high throughput variant calling in livestock and 
crop breeding programs.

Our scaling tests show that DNASeq scales optimally across 
threads, which suggests that it will run efficiently on a variety 
of processors. Our tests were limited to single-node, multi-
threaded scaling, although both single-threaded and multi-
node tests may be of future interest. DNASeq also scales well 
as sequencing depth increases, a useful characteristic as deeper 
sequencing becomes more common. There does appear to 
be a small slowdown between 25X and 50X, however, which 
suggests that DNASeq may be most efficient on less deeply 
sequenced samples.

When compared to GATK, we found Sentieon DNASeq to 
be equally accurate. Sentieon uses the same algorithms as GATK 
and reliably puts out new releases in response to GATK version 
updates. Comparisons to Illumina platinum calls for NA12878 
yielded equivalent results, suggesting no meaningful differences 
in reliability. It is possible that more discrepancies may be 
revealed when measuring with different metrics.

In terms of runtime, GATK post-alignment processing can 
take up to a day. Even with parameter optimizations in place, 
we found GATK3.8 took 15 h, while GATK4 (single-threaded) 
took 20 h. DNASeq is able to complete the same work over 30x 
faster, representing a time savings of approximately 97%. This 
increase in speed doesn’t appear to rely on increased resource 
consumption: While Sentieon’s BWA MEM implementation did 
utilize twice as much RAM as traditional BWA MEM, we found 
that RAM utilization among the other DNASeq tools did not 
exceed previous results recorded for GATK. Overall, our results 
suggest that Sentieon’s DNASeq pipeline does present a viable 
alternative to GATK, offering significantly better speed than 
GATK3.8 and GATK4 without sacrificing accuracy.

TABLE 3 | Speed comparison: Sentieon DNASeq vs. GATK.

Pipeline Walltime (h) Sentieon Speedup

DNASeq .49 –
GATK3.8 Baseline 21.7 x44
GATK3.8 Optimized 15.3 x31
GATK4.0 Baseline 24.9 x51
GATK4.0 Optimized 20.7 x42

Speedup factor indicates n-fold speedup represented by DNASeq walltime as 
compared to GATK walltime. Sample: NA12878, WGS, 20X.

TABLE 4 | Variant detection accuracy in Sentieon DNASeq and GATK4: F1 scores.

Dataset Synthetic WGS, chr 20-22 NA12878

Sentieon vs. GATK4 0.99 0.997 w/ Realigner
0.997 w/o Realigner

Truth sets Golden VCF Illumina Platinum 
variant calls

Sentieon vs. Truth set 0.96 0.96
GATK4 vs. Truth set 0.95 0.96
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AUTHOR’S NOTE

The authors of this paper did not receive any benefits or 
compensation, financial or otherwise, from Sentieon in exchange 
for testing DNASeq, evaluating its performance, or expressing 
positive views thereof.

DATA AVAILABILITY

The NA12878 and NA24694 datasets analyzed in this study can 
be found in the appropriate Genome in a Bottle repositories: 

NA12878: ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/
NA12878/NIST_NA12878_HG001_HiSeq_300x

NA24694: ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/
ChineseTrio/

The synthetic dataset representing WGS on chromosomes 20–22 
will be made available by the authors, without undue reservation, 
to any qualified researcher.

Benchmarking scripts and commands used to generate 
synthetic data and accuracy comparisons are available at 
https://github.com/ncsa/Sentieon_DNASeq_Benchmarking.

FIGURE 3 | CPU utilization, memory usage and I/O of the Sentieon DNASeq tools, excluding BWA MEM. The pipeline steps are labeled in the middle panel, 
following the –algo options used in the script. CPU utilization in the top panel corresponds to the sum total across the 40 cores on the node. RAM utilization in the 
middle panel was measured as resident set size (VmRSS) and total RAM reserved for computation (VmSize). I/O rates in the bottom panel were measured in reads 
and writes per second. Sample: NA12878, WGS, 20X.
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