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Patient-derived tumor xenograft (PDX) mouse models are widely used for drug screening. 
The underlying assumption is that PDX tissue is very similar with the original patient 
tissue, and it has the same response to the drug treatment. To investigate whether the 
primary tumor site information is well preserved in PDX, we analyzed the gene expression 
profiles of PDX mouse models originated from different tissues, including breast, kidney, 
large intestine, lung, ovary, pancreas, skin, and soft tissues. The popular Monte Carlo 
feature selection method was employed to analyze the expression profile, yielding a 
feature list. From this list, incremental feature selection and support vector machine (SVM) 
were adopted to extract distinctively expressed genes in PDXs from different primary 
tumor sites and build an optimal SVM classifier. In addition, we also set up a group of 
quantitative rules to identify primary tumor sites. A total of 755 genes were extracted 
by the feature selection procedures, on which the SVM classifier can provide a high 
performance with MCC 0.986 on classifying primary tumor sites originated from different 
tissues. Furthermore, we obtained 16 classification rules, which gave a lower accuracy 
but clear classification procedures. Such results validated that the primary tumor site 
specificity was well preserved in PDX as the PDXs from different primary tumor sites were 
still very different and these PDX differences were similar with the differences observed in 
patients with tumor. For example, VIM and ABHD17C were highly expressed in the PDX 
from breast tissue and also highly expressed in breast cancer patients.

Keywords: Patient-derived tumor xenograft, gene expression profile, Monte Carlo feature selection, support 
vector machine, rule learning algorithm

INTRODUCTION

Patient-derived tumor xenograft (PDX) mouse models, developed by implanting patients’ in vivo 
tumor tissues into immune-deficient mice (Harris et al., 2016), are widely used in tumor biology 
and drug screening. Compared with cancer cell lines, PDX mouse models can maintain the original 
tumor development conditions immensely with appropriate tumor microenvironment that mimics 
similar regulatory factors, which are identified in the primary tumor site in vivo (Coats et al., 2017). 
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Furthermore, with the development of humanized-xenograft 
models, PDX-humanized mouse models compensate for one of 
the prominent shortcomings of traditional PDX mouse models—
the absence of immune regulation and selection—thereby 
accomplishing the accurate simulation on tumorigenesis in vivo 
(Jung et al., 2018).

As the PDX mouse model has more advantages in the 
oncology research field compared with traditional routines, 
various typical PDX mouse models have been successfully set 
up with their respective tumor tissues. Early in 2011, Nature 
Medicine published a systematic analysis (DeRose et al., 2011) on 
the pathological and biological characteristics of tumor tissues 
implanted into an immune-deficient mouse model as PDX. 
Such study confirmed that the PDX mouse model can basically 
reflect the same pathological processes during the initiation and 
progression of breast cancer, validating the significance of such 
model in the field of tumor research. Furthermore, PDX mouse 
models have been applied to various tumor subtypes, including 
colorectal cancer, pancreatic cancer, and pediatric cancer (Scott 
et al., 2017). Studies on such tumor subtypes have also confirmed 
that tumor tissues developed in a PDX mouse model have quite 
similar pathological and biological characteristics with tumor 
tissues in situ, though without immune selective pressure. 
Overall, PDX mouse models have been accepted as one of the 
most significant methods for tumor research.

In the field of oncology research, wide attention has been 
paid to gene expression characterizations. Different tumors 
have different expression pattern of functional tumor-associated 
genes as tumor-specific expression profile. Given the distinctive 
microenvironment and environmental selection pressure of 
human bodies and immune-deficient mice, the expression profile 
of a PDX mouse model has been confirmed to be different from 
the expression spectrum of tumor in situ (Ben-David et al., 2017). 
As mentioned above, different tumor subtypes have different 
tumor-specific expression profiles in vivo. However, after the 
selection and passaging in the mouse microenvironment, it 
is quite reasonable to speculate that tumor tissues of different 
subtypes may be differentially selected and lose/gain various 
differentially expressed genes (DEGs), thus generating a novel 
tumor subtype-specific expression profile (Ben-David et al., 
2017). Although various studies have attempted to identify 
tumor subtype-specific biomarkers based on the expression 
profile of tumor tissues in PDX mouse models for years, no direct 
evidence or studies have revealed whether tumor tissues from 
different primary tumor subtypes can maintain tumor-specific 
DEGs during the passaging of PDX mouse models. Moreover, 
it is not clear whether such identified tumor-specific DEGs are 
all derived from the primary tumor tissues or from murine 
microenvironment selection.

To solve the problem, the most convenient way is to explore 
whether DEGs identified in PDX tumor tissues can still distinguish 
different tumor subtypes as potential biomarkers. Herein, we 
selected eight tumor subtypes originating from different tissues, 
including breast, kidney, large intestine, lung, ovary, pancreas, 
skin, and soft tissues, for the identification of DEGs in the PDX 
mouse model based on a study (Gao et al., 2015) on PDX tumor 
expression profile. Several advanced computational methods were 

used in this study, including the Monte Carlo feature selection 
(MCFS) (Draminski et al., 2008), incremental feature selection 
(IFS) (Liu and Setiono, 1998), and support vector machine 
(SVM) (Cortes and Vapnik, 1995). As a result, a group of highly 
related genes was identified, which may be distinctively expressed 
in different tumor subtypes as PDX tumor tissue. Furthermore, 
several quantitative rules were set up for the identification of 
different xenograft tumor subtypes by a specific set of functional 
distinctive genes. The results reported in this study further 
validated that PDX mouse models may be a relatively effective 
and practical mouse model in the field of tumor studies and may 
be favorable to be applied to indicate DEGs from primary tumor 
tissues between different tumor subtypes.

MATERIALS AND METHODS

Dataset
We downloaded the expression data of 20,502 genes in eight 
PDX tumor tissues: (1) kidney, (2) skin, (3) ovary, (4) soft tissue, 
(5)  breast, (6) pancreas, (7) lung, and (8) large intestine. The 
number of samples in each tissue is shown in Table 1. A total of 
594 samples were considered in this study. The high-throughput 
screening data using PDX were obtained from the Gene Expression 
Omnibus (GEO) with accession number GSE78806 (Gao et al., 
2015). To investigate whether the primary site of tumor has great 
influences on PDX, we compared the gene expression profiles of 
PDX from different primary sites.

Feature Selection
Many genes are specifically expressed in the tissues; that is, 
some genes are closely related to certain tissues. To identify 
highly related genes for different tissues, we first used the MCFS 
(Draminski et al., 2008) method to analyze the expression data 
of 20,502 genes, obtaining a feature list and several classification 
rules. Then, the two-stage IFS (Liu and Setiono, 1998) method 
was applied to yield optimum features (genes), wherein the SVM 
(Cortes and Vapnik, 1995) exhibited a strong discriminative 
power for samples from different tissues.

Monte Carlo Feature Selection
MCFS (Draminski et al., 2008) is a type of feature selection 
method. As mentioned in the section Dataset, 594 samples were 

TABLE 1 | Number of samples for each of the eight tissues.

Tissue Number of samples

Breast 79
Kidney 41
Large intestine 121
Lung 99
Ovary 52
Pancreas 94
Skin 46
Soft tissue 62
Total 594
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investigated in this study, and each sample was represented by 
20,502 features. Thus, the dataset we studied is a high-dimensional 
dataset. The MCFS method is ideal in dealing with this type of 
dataset (Draminski et al., 2008). To date, this method has been 
applied to deal with several biological problems (Cai et al., 2018; 
Chen et al., 2018a; Chen et al., 2018c; Pan et al., 2018). In this 
study, it was also adopted to analyze all features and rank them 
for supervised classifiers.

MCFS constructs decision tree classifiers for many bootstrap 
sets that are randomly selected from the original sample set, and 
each tree is grown from a randomly selected feature subset with 
m features of original M features, where m is much less than M. 
During the process, p decision trees are generated on a training 
set randomly selected from a bootstrapping dataset and a feature 
subset. The above process is repeated t times to obtain t feature 
subsets. In total, p × t decision trees can be constructed.

The relative importance (RI) indicates the importance of each 
feature, which mainly considers the number of times that the 
feature is involved in growing the p × t decision trees. The RI 
score of a feature g can be calculated using the following formula:
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where wAcc is the weighted accuracy across all classes, ng(τ) 
indicates a node using feature g in decision tree τ, IG(ng(τ)) is 
the information gain of ng(τ), no.in τ is the number of training 
samples in τ, and no.in ng(τ) is the number of samples in node 
ng(τ). u and v are two weighting factors, and we used their 
default setting of u = v = 1.

A feature assigning a high MI value means that it is quite 
important. To extract most important features, the MCFS method 
adopts a permutation test on class labels. In detail, in a round 
of permutation test, a permutation of class labels is assigned to 
samples and the MCFS method is executed on the dataset with 
new labels, producing a maximal RI value. After several rounds, 
many maximal RI values are generated. The threshold, indicating 
high significance level of features, is determined by the one-sided 
Student’s t test. Features receiving the RI value larger than such 
threshold are selected and termed as informative features. These 
features are deemed to be essential for the investigated dataset. 
For a detailed description, please refer to Dramiński et al. (2011).

The informative features are extracted according to the 
essential properties of the dataset. However, for a given classifier, 
these features are not always optimal. Thus, we further ranked all 
features in a list according to their MI values in a way that features 
with high MI values receive high ranks in the list, whereas those 
with low MI values are placed at the bottom of the list. Here, we 
formulated the obtained feature list yielded by MCFS method as

 F f f fN= [ , , , ],1 2   (2)

where N is the total number of features (N = 20,502 in this study). 
This list was used in the IFS method to select optimal features for 
a given classifier.

In this study, the program of the MCFS method was retrieved 
from http://www.ipipan.eu/staff/m.draminski/mcfs.html.

Rule Learning
Aside from analyzing features and ranking them in a list, the 
program of the MCFS method also integrates a rough set-
based rule learning procedure. Based on informative features, 
the Johnson reducer algorithm (Ohrn, 1999) was used to select 
some important features that can give competitive classification 
performance compared with all informative features. After that, 
Repeated Incremental Pruning to Produce Error Reduction 
(RIPPER) algorithm (Cohen, 1995) produced the rules with the 
above-selected features. Each of these rules describes a relation 
between conditions (the left-hand side of the rule) and the outcome 
(the right-hand side). For example, a rule can be presented as an 
IF–THEN relationship based on expression values: IF Gene1 ≥ 
6.4 AND Gene2 ≥ 4.8 THEN subtype = “kidney.” Following these 
rules, all samples can be easily classified. In addition, compared 
with black-box machine learning methods, the classification 
rules can provide a clearer classification procedure and help in 
understanding the expression differences among different tissues.

Incremental Feature Selection
The MCFS method only analyzes the importance of each feature 
and ranks them in a feature list. For a classification problem, it 
is necessary to extract some optimal features to comprise the 
feature subspace. Meanwhile, different classifiers require different 
optimal features. In view of this, the IFS (Liu and Setiono, 1998) 
method was employed in this study. The IFS method always 
integrates a supervised classifier to screen optimal features 
for accurately classifying samples from different groups. In 
the original IFS method, it first constructs a series of feature 
subsets according to a feature list in a way that the latter subset 
is produced by adding one feature to the former one. Then, for 
each feature subset, the supervised classifier is executed on the 
dataset, in which samples are represented by features in the 
subset. Finally, the feature subset yielding the best performance 
is selected as the optimal feature set. However, this procedure 
is time-consuming, especially when the number of features is 
quite large. Accordingly, we adopted a two-stage IFS method to 
approximately complete the procedure of finding optimal feature 
set in this study, which are described below.

In the first stage, several feature subsets with a large step 
(e.g., 10) were constructed. In detail, we constructed the 
feature subsets, denoted as F F Fm1

1
2
1 1, , ,…  where m = [N/10] and 

F f f fi i
1

1 2 10= ×{ , , , } , that is, the ith feature subset contains the 
top 10 × i features in F. Then, for each of these feature subsets, 
the selected classifier was trained and evaluated on the samples 
that were represented by features in this set using 10-fold cross-
validation (Kohavi, 1995; Chen et al., 2018b; Chen et al., 2018d; 
Guo et al., 2018; Pan et al., 2018; Wang et al., 2018; Zhao et al., 
2018; Zhao et al., 2019). According to the results of these feature 
subsets, a feature number interval [min, max], on which the 
classifier provided satisfied the prediction performance, can be 
obtained. The size of the optimal feature set was in this interval 
with a high probability. In the second stage, based on the above 
feature number interval [min, max], another series of feature 
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subsets was produced, denoted as F F Fmin min max, , ,2
1

2 2
+  , in which 

the latter subset contains one more feature than the former 
one. Similarly, the classifier was trained and evaluated on these 
subsets, like the first stage. We can obtain a feature subset with 
the best performance. For convenience, features in this set were 
still called optimal features, whereas the corresponding classifier 
was termed as the optimal classifier.

SVM
As mentioned in the section Incremental Feature Selection, the 
IFS method required a supervised classifier. Here, we selected the 
classic classifier, SVM (Cortes and Vapnik, 1995). The SVM is a 
popular supervised learning method that distinguishes samples 
based on a set of features, and it is widely used to deal with many 
biological problems (Pan and Shen, 2009; Chen et al., 2017b; Cui 
and Chen, 2019). The basic principle is to infer a hyperplane with 
maximum margin between two classes of samples. In reality, 
most of the data are non-linear in low-dimensional space. In 
this case, all samples are mapped to a high-dimensional space 
using kernel function, such as Gaussian kernel. In this space, 
a linear function can be found to perfectly separate samples of 
two classes. The original SVM is mainly developed for binary 
classification. For multi-class classification, the “One Versus 
the Rest” strategy is adopted. In detail, it constructs m binary 
SVM classifiers for m classes, where each classifier is trained to 
separate samples in one class from the rest using the samples of 
that class as positive samples and other samples as negative ones. 
For an unseen sample, m probability scores can be yielded by m 
SVM classifiers, and the label with the highest probability score 
is assigned to the unseen sample.

Performance Measurement
For a classification problem with multiple classes, the basic 
measurement is the individual accuracy for each class, which is 
defined as

 
ACC M

Ni
i

i
=  (3)

where ACCi represents the individual accuracy of the ith class, 
Mi represents the number of correctly predicted samples in the 
ith class, and Ni represents the total number of samples in the ith 
class. Furthermore, the overall accuracy can completely evaluate 
the prediction performance, which is formulated by

 

ACC
M

N

i
i

i
i

= =

=

∑
∑

1

8

1

8
 (4)

Although the overall accuracy can completely evaluate the 
prediction quality, it is not a fair measurement when the class 
sizes are of great difference. According to Table 1, the biggest 
class (“Large intestine”) is about three times as many as the 

smallest class (“Skin”). In this case, the overall accuracy was not 
a good choice to assess the prediction quality. Thus, we further 
employed Matthew’s correlation coefficient (MCC) in multi-
class (Gorodkin, 2004). It is a generalization version of MCC 
proposed by Matthew (Matthews, 1975; Chen et al., 2017a; Zhao 
et al., 2018; Zhao et al., 2019). It is known that the classic MCC 
is a balanced measurement even if the class sizes vary greatly. 
The MCC in multi-class keeps such merit. Suppose we have 
n samples (i = 1, 2,…, n) and C classes (j = 1, 2,…, C). Let X =  
(xij)n×C be the predicted classes of samples and xij ∈{0,1} be a binary 
value. xij is equal to 1 if the sample i is predicted to belong to class j; 
otherwise, the value xij is 0. The matrix Y = (yij)n×C is defined as the 
true classes of samples, where the binary variable yij = 1 means that 
the sample i belongs to class j; otherwise, it is set to 0.

According to matrices X and Y, the MCC can be defined as 
follows:
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X Y
X X Y Y

x x y yij j ij j
j

=

=

− −
=cov( , )

cov( , )cov( , )

( )( )
111

2 2

1111

C

i

n

ij j ij j
j

C

i

n

j

C

i

n

x x y y

∑∑

∑∑∑∑
=

====

− −( ) ( )

,,

  (5)

where x j  and y j  are the mean values of members in the j-th 
column of X and j-th column of Y, respectively.

RESULTS

In this study, a computational investigation on the gene expression 
data of samples in eight PDX tumor tissues was performed. The 
entire procedure is illustrated in Figure 1.

Results of MCFS Method
To evaluate the investigated features mentioned in the section 
Dataset on discriminating samples from different tissues, the 
MCFS method was used to analyze and rank them in descending 
order according to their RI values. The obtained feature list is 
provided in Supplementary Table 1.

Furthermore, the MCFS method produced 530 informative 
features by determining the threshold of RI value as 0.0155. 
Based on these features, the Johnson reducer and RIPPER 
algorithms can generate some classification rules. To evaluate 
the performance of the rules yielded by these two algorithms, 
10-fold cross-validation was performed thrice. The confusion 
map for such test to classify samples into eight tissues is shown 
in Figure 2. The MCC was 0.794. The individual accuracies for 
eight tissues and overall accuracy are shown in Figure 3. It can 
be seen that the performance of the rules yielded by Johnson 
reducer and RIPPER algorithms was acceptable. Thus, we further 
used Johnson reducer and RIPPER algorithms to generate 16 
classification rules with 530 informative features based on all 
samples, which are listed in Table 2. The performance of these 
rules was evaluated by self-consistency; i.e., these rules were 
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FIGURE 1 | The entire procedures to investigate the gene expression data of samples in eight PDX tumor tissues. These data were first analyzed by the Monte 
Carlo feature selection method, producing a feature list and informative features. The feature list was used in the incremental feature selection method to extract 
optimal features for support vector machine (SVM) and construct the optimal SVM classifier. For informative features, the Johnson reducer and Repeated 
Incremental Pruning to Produce Error Reduction (RIPPER) algorithms were applied on them to generate classification rules.

FIGURE 2 | Confusion map for classifying samples into eight tissues via the classification rules yielded by Johnson reducer and Repeated Incremental Pruning to 
Produce Error Reduction (RIPPER) algorithms, evaluated by 10-fold cross-validation thrice.
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applied to samples to make classification. We obtained the MCC 
of 0.949. The individual and overall accuracies are illustrated in 
Figure 3. It can be observed that the predicted results yielded by 
self-consistency were much better than those of 10-fold cross-
validation. It is reasonable because in self-consistency, samples 
were classified by the rules generated by themselves.

Results of the IFS Method
Based on the Johnson reducer and RIPPER algorithms, 
classification rules were generated. However, their performance 
was not very high. Thus, we further applied SVMs to classify 
samples from different tissues by integrating the selected features 
from two-stage IFS method. In the first stage, the feature sets 
containing multiples of 10 features were constructed, and 
the SVM was trained on the dataset, in which samples were 
represented by features in these sets. The 10-fold cross-validation 
was adopted to evaluate the performance of SVM. The predicted 
results were counted as individual accuracy for each tissue, 
overall accuracy, and MCC described in the section Performance 
Measurement, which are provided in Supplementary Table 2. 
For easy observation of the performance of SVM under different 
feature sets, a curve was plotted in Figure 4A, in which the 
number of used features was termed as X-axis and MCC as 
the Y-axis. The curve first follows a sharp increasing trend and 
eventually becomes stable. To clearly illustrate the increasing 
trend at the beginning of this curve, we plotted the part of the 
curve between X-axis 10 and 2000 in Figure 4B. The highest 
MCC is 0.986 when the top 780 features were used. Around 
780, the MCCs were also very high. Thus, we determined the 

FIGURE 3 | The individual and overall accuracies of the classification rules yielded by Johnson reducer and Repeated Incremental Pruning to Produce Error 
Reduction (RIPPER) algorithms, evaluated by self-consistency and 10-fold cross-validation.

TABLE 2 | Sixteen produced classification rules for distinguishing samples from 
different tissues.

Rules Criteria Tissues

Rule-1 ANGPTL4 ≥ 6.409
BHMT2 ≥ 4.826

Kidney

Rule-2 UPK1A ≥ 6.474 Kidney
Rule-3 PAX3 ≥ 3.401

MIA ≥ 3.562
Skin

Rule-4 BHMT2 ≥ 5.125
ANXA10 ≥ 3.820

Skin

Rule-5 PAX8 ≥ 3.217
ADAM10 ≥ 5.994

Ovary

Rule-6 TRADD ≤ 3.210
ASRGL1 ≥ 6.703

Ovary

Rule-7 CPVL ≥ 7.240
CDX1 ≤ 2.111

Ovary

Rule-8 F11R ≤ 4.935
VSNL1 ≤ 4.528

Soft tissue

Rule-9 HSD17B11≤5.122
ITGA2 ≤ 6.021

Breast

Rule-10 VIM ≥ 8.697
ABHD17C ≥ 3.622

Breast

Rule-11 ADAM28 ≥ 3.637
BTBD6 ≤ 7.581

Pancreas

Rule-12 CXCL5 ≥3.927
PCDH1 ≥ 4.141

Pancreas

Rule-13 LOC102724689 ≥ 7.396 Pancreas
Rule-14 MSN ≥ 5.037

PDGFC ≥ 1.903
BCL2L15 ≤ 5.317

Lung

Rule-15 TP73-AS1 ≥ 3.462
ADAM10 ≥ 6.134

Lung

Rule-16 Other conditions Large intestine
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feature number interval as [700, 900]. The second stage of the IFS 
method constructed a second set of feature subsets with a step 
1 within feature number interval [700, 900]; that is, all feature 
sets containing 700–900 features were constructed. SVM and 
10-fold cross-validation were adopted to test the discriminating 
ability of each feature set. The obtained measurements, including 

individual accuracy for each tissue, overall accuracy, and MCC, 
are listed in Supplementary Table 3. Similarly, we also plotted 
a curve, as shown in Figure 4C. The highest MCC is still 0.986; 
however, it can be achieved only by using the top 755 features. 
Therefore, these 755 features were termed as optimal features, 
and the SVM classifier based on these features was the optimal 

FIGURE 4 | Curves illustrating the performance of SVM on different feature sets. The X-axis represents the number of features participating in the classification; the 
Y-axis represents the MCC. (A) The whole curve illustrating the performance of SVM on feature sets containing multiples of 10 top features. (B) Part of the curve 
between X-axis 10 and 2000. When the top 780 features are used, the MCC reaches the highest (0.986). (C) The curve illustrating the performance of SVM on 
feature sets containing 700–900 top features. When the top 755 features are used, the MCC reaches the highest (0.986).
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SVM classifier. The detailed performance of such optimal 
classifier is illustrated in Figure 5, from which we can see that all 
samples in pancreas and skin were correctly classified, and most 
samples in other tissues were also predicted correctly, indicating 
the effectiveness of this classifier.

Superiority of the Optimal Features
The optimal SVM classifier adopted 755 features to represent 
samples. To further indicate the importance of these features, 

we randomly produced 1000 feature subsets, each of which 
contained 755 features. For each subset, an SVM classifier was 
constructed, and we evaluated its performance via 10-fold cross-
validation. The obtained 1000 MCCs are illustrated in Figure 6 
(black circles), in which the MCC yielded by the optimal SVM 
classifier is also listed (red circle). It can be observed that the 
MCC yielded by the optimal SVM classifier was higher than all 
other MCCs. In addition, it was also higher than the threshold of 
high significance level (p value < 0.05), indicating that these 755 
features were significant.

FIGURE 5 | Bar chart illustrating the individual accuracy on each tissue and overall accuracy yielded by the optimal SVM classifier and the classifier with informative 
features.

FIGURE 6 | MCCs obtained by the optimal SVM classifier and 1000 SVM classifiers on 1000 randomly generated feature subsets. The red circle represents the 
MCC yielded by the optimal SVM classifier and black circles represent MCCs produced by SVM classifiers on randomly generated feature subsets. The blue line 
represents the threshold of high significance level (p value < 0.05).
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Besides, the MCFS method can produce informative features for 
each given dataset. For our dataset, 530 informative features were 
obtained. An SVM classifier can be constructed on these features. 
Such classifier was also evaluated by 10-fold cross-validation. The 
MCC was 0.984, which was lower than that of the optimal SVM 
classifier (0.986). The individual accuracies for eight tissues and 
overall accuracy are illustrated in Figure 5, from which we can 
see that each measurement was no higher than that of the optimal 
SVM classifier. It is implied that the optimal SVM classifier was 
superior to the classifier with informative features. The IFS method 
is useful to extract optimal features for a given classifier.

DISCUSSION

Based on a new study (Gao et al., 2015) on the expression profile 
of various tumor subtypes in PDX models, we deeply analyzed this 
profile for the accurate identification of eight different candidate 
tumor subtypes using several advanced computational methods in 
the present study. On the one hand, a list of effective genes that may 
directly contribute to the qualitative distinction of different tumor 
subtypes was screened out. On the other hand, we also identified 
a group of quantitative rules for the accurate identification of each 
tumor subtypes. This section provides an extensive analysis on the 
extracted genes and quantitative rules via literature reviewing.

Analysis of Optimal Features (Genes)
For constructing an optimal SVM classifier, the top 755 features 
(genes) were used to represent samples. However, analyzing 
them individually is challenging. By carefully checking the 
performance of SVM classifiers in the first stage of the IFS 
method, we found that the MCC achieved 0.980 when the top 
350 features were used. Thus, we believed that these 350 features 
were more important than the other 405 features. However, it is 
still impossible to analyze these 350 features one by one. Here, we 
selected the most important genes, that is, the top 10 genes, listed 
in Table 3, to provide an extensive analysis.

The top gene is IFFO1, which may have a unique expression 
pattern in eight tumor tissues. IFFO1, encoding a primordial 
component of the cytoskeleton and nuclear envelope, has been 
detected with specific methylation patterns and expression 

profiles in the PDX mouse model of lung cancer (Anglim et al., 
2008) and ovarian cancer (Houshdaran et al., 2010), but not 
in other tumor tissues, indicating that the specific expression 
pattern of this gene may be a potential biomarker for identifying 
lung cancer and ovarian cancer.

The gene CDX1 has also been predicted to contribute to 
distinguishing different PDX tumor tissues at the expression level. 
With relatively high expression level in small intestine and colon 
tissues, CDX1 plays a role in the differentiation of the intestine 
(Jones et al., 2015). As for its expression in different PDX tumor 
tissues, this gene has relatively high expression in large intestine-
associated tumor tissues of PDX mouse model, confirming the 
potential distinguishing effect of such gene (Rankin et al., 2004).

HSD17B11, encoding short-chain alcohol dehydrogenases, 
has been widely reported to participate in androgen metabolism 
during steroidogenesis (Rotinen et al., 2011). As for its 
contribution on tumorigenesis and specific role during PDX 
implantation, this gene has only been identified in both primary 
and implanted tumor tissue of the prostate (Hilborn et al., 2017) 
and breast tumorigenesis (Rotinen et al., 2011), implying that 
such gene may distinguish different tumor tissues.

CHMP4C is reported to be involved in multi-vesicular body 
formation and endosomal cargo sorting (Yu et al., 2009). As for 
its specific expression pattern in different tumor tissues, this gene 
has a unique pathological expression profile in multiple tumors 
of the urine system, implying that CHMP4C may be an effective 
marker for identifying kidney-associated tumor from other 
tumor subtypes derived from other tissues (Fujita et al., 2017).

CLIP4, encoding one of the components of the cytoplasmic 
linker protein family, participates in regulating the cellular 
compartmentalization of the AKT kinase family involved in 
tumorigenesis (Saber et al., 2016). Such gene has been confirmed 
to have a unique expression pattern in various tumor PDX mouse 
models, including clear cell renal cell carcinomas (kidney) (Ahn 
et al., 2016), lung adenocarcinoma (lung) (Saber et al., 2016), and 
gastric cancer (stomach) (Chong et al., 2014), implying that this 
gene may be a biomarker for some tumor subtypes investigated 
in this study.

PAX8, encoding a transcription factor of the paired box (PAX) 
family, has been predicted to be a potential identification marker 
for the distinction of different tumor tissues in PDX mouse 
models (Narumi et al., 2010). Recent studies (Butler et al., 2017) 
confirmed that the overexpression of such gene may directly 
induce the initiation and progression of ovarian cancer in PDX 
mouse models, distinguishing tumorigenesis of such tissue from 
the other seven tumor tissues.

GUCY2C, encoding a membrane-associated guanylate kinase, 
participates in immune regulation, including T-cell receptor-
mediated T-cell activation and proliferation (Snook et al., 2012). As 
for its tissue-specific distribution in the PDX mouse model, recent 
studies (Witek et al., 2014) confirmed that in the large intestine 
(especially colon tissue), the high expression level of such gene in 
the PDX model indicates that such mouse model was implanted 
with an invasive large intestine-associated tumor subtype.

The next gene MLANA encodes a GPR143-associated 
functional protein contributing to the maintenance of expression, 
stability, trafficking, and processing of melanocyte protein PMEL 

TABLE 3 | Top 10 features (genes) yielded by the MCFS method.

Rank Gene 
symbol

Description RI

1 IFFO1 Intermediate Filament Family Orphan 1 0.4515
2 CDX1 Caudal Type Homeobox 1 0.4263
3 HSD17B11 Hydroxysteroid 17-Beta Dehydrogenase 11 0.4047
4 CHMP4C Charged Multivesicular Body Protein 4C 0.4042
5 CLIP4 CAP-Gly Domain Containing Linker Protein 

Family Member 4
0.4025

6 PAX8 Paired Box 8 0.4024
7 GUCY2C Guanylate Cyclase 2C 0.4023
8 MLANA Melan-A 0.3857
9 F11R F11 Receptor 0.3689
10 NR3C1 Nuclear Receptor Subfamily 3 Group C 

Member 1
0.3646
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(Witek et al., 2014). As for its relationship with different tumor 
tissues in the PDX mouse model, a recent study (Hollingshead 
et al., 2014) confirmed that such gene may distinguish melanoma 
and various skin-derived tumor subtypes in the PDX mouse 
model from the other seven tumor subtypes.

F11R, as a regulator of cell-to-cell adhesion in epithelial cell 
sheets, has been reported to encode a multi-functional protein 
that interacts with reovirus (Birse et al., 2017), integrin LFA1 
(Gerhardt and Ley, 2015), and platelets (Kedees et al., 2005). As 
for its distinctive function for different PDX tumor tissues, recent 
studies (Jansen et al., 2009) confirmed that in the PDX models 
of glioblastoma (soft-tissue-derived tumorigenesis), F11R has a 
unique expression pattern compared with other tumor tissues.

NR3C1, encoding a tissue-specific transcriptional activator, 
has been widely reported to be involved in chromatin remodeling 
(Geng et al., 2016) and cell proliferation in tissues in situ (Souza 
et al., 2014). As for its distinctive expression pattern in different 
tumor tissues, such gene has a relatively high expression pattern 

in various tumor subtypes, including lung cancer (Lajoie et al., 
2014) and kidney cancer (Zaravinos et al., 2014), compared with 
other tumor subtypes.

Overall, based on advanced computational methods, we screened 
out a group of effective tumor-associated genes that may distinguish 
different tumor subtypes from PDX mouse models. From the 
discussions on the top 10 genes, we confirmed that other optimal 
features (genes) may also be important biomarkers for distinguishing 
different tumor subtypes that need further investigation.

Analysis of Classification Rules
Apart from qualitative biomarkers to distinguish different 
tumor subtypes in the PDX mouse model, we also summarized 
16 classification rules for further quantitative analysis. To show 
the inner relationship between genes involved in these rules, we 
draw a rule network via Ciruvis (Bornelov et al., 2014), which 
is illustrated in Figure 7. Based on the detailed expression 

FIGURE 7 | Rule networks for 16 classification rules generated by Ciruvis.
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profile data in other similar studies, most of the 16 rules can be 
confirmed by their rationalities, reflecting the relative expression 
pattern of such genes involving the rules. The detailed analysis on 
each rule is shown below.

The first two rules are for the identification of PDX tumor 
tissues originating from kidney-associated tumor. According 
to these two quantitative rules, ANGPTL4 should have higher 
expression pattern and the expression level of BHMT2 and 
UPK1A should also be up-regulated. According to recent single-
cell RNA sequencing data of the PDX mouse model (Zhu et al., 
2017), the expression patterns of the three genes have all been 
confirmed to have corresponding expression level.

The following two rules are for the identification of skin-
derived PDX tumor tissues. Four genes named PAX3, MIA, 
BHMT2, and ANXA10 have been screened out as potential 
parameters for the identification of skin-associated PDX tumors. 
Based on recent sequencing publications, all four genes have been 
reported to be upregulated, conforming to these rules (Tso et al., 
2014). The combination of such four parameters may improve 
the efficacy and accuracy for the quantitative identification of 
skin-derived tumor-implanted PDX mouse model. As for the 
detailed FPKM value, the dataset provided by similar studies 
(Wyatt et al., 2014) also corresponds with our rules.

The next three rules describe the expression pattern of ovarian 
cancer. As we have analyzed above, PAX8, encoding a functional 
transcription factor, has a uniquely high expression pattern in 
ovarian-cancer-derived PDX tumor tissues, corresponding with 
Rule-5 (Narumi et al., 2010). As for the other five parameters, a 
recent study (Dobbin et al., 2014) revealed the specific expression 
pattern of ovarian cancer after screening the PDX mouse 
microenvironment. According to recent literature, although the 
expression profile of CDX1 (as one of the parameters mentioned 
above) cannot indicate ovarian cancer alone, the combination 
of CDX1 and CPVL may be specifically enough to recognize 
ovarian-tumor-derived PDX mouse tumor tissues (Dobbin et al., 
2014). According to the dataset provided by such study, the 
remaining four parameters (ADAM10, TRADD, ASRGL1, and 
CPVL) have also been validated to basically match our rules.

Only one rule involving two genes may contribute to the 
identification of soft-tissue-derived PDX tumor tissues. F11R, as 
we have analyzed above, has been confirmed to have a relatively 
low expression pattern in the PDX tumor tissue derived from 
soft tissue, which is somewhat different from those derived from 
other tissues, validating the accuracy and efficacy of this rule 
(Jansen et al., 2009). A similar expression pattern has also been 
identified for the remaining soft-tissue-specific expressing gene 
VSNL1 (Sarver et al., 2015), corresponding with this rule.

The following two rules contribute to the identification of 
breast cancer in the PDX mouse model. Four genes, namely, 
HSD17B11, ITGA2, VIM, and ABHD17C, are involved in these 
rules. The low expression of HSD17B11 and ITGA2 and the high 
expression of VIM and ABHD17C have all been validated by 
recent sequencing studies on breast cancer (Rotinen et al., 2011), 
reflecting the accuracy of these two rules.

The expression levels of five genes (ADAM28, BTBD6, CXCL5, 
PCDH1, and LOC102724689) comprise three rules for the 
identification of pancreatic-tissue-derived PDX tumor tissues. 

According to another dataset (Martinez-Garcia et al., 2014), the 
quantitative parameter of such five genes have been basically 
validated. Among such five genes, PCDH1 is the most effective 
tumor-associated gene, contributing to pancreatic cancer with 
abnormal promoter methylation status and participating in 
FGFR-associated signaling pathways (Zhang et al., 2014).

The two remaining rules contribute to the identification of 
lung-tissue-derived PDX tumor tissues. Five genes, namely, MSN, 
PDGFC, BCL2L15, TP73-AS1, and ADAM10, were screened out as 
candidate parameters. Various studies have revealed the expression 
pattern of lung cancer in PDX mouse model at either the single 
cell or bullet level (Bradford et al., 2016). By comprehensively 
analyzing such expression profiles of the five candidate genes, the 
expression levels of such five genes in lung-cancer-derived PDX 
tumor tissues correspond to the quantitative rules. Furthermore, 
if the expression profile of a certain PDX tumor tissue does not 
satisfy any of the conditions we mentioned above, such PDX tumor 
tissue may be derived from the large intestine.

Overall, we quantitatively analyzed the 16 rules reported in this 
study. Several rules can be supported or validated by recent RNA 
sequencing datasets on PDX tumor tissues, validating the efficacy 
and accuracy of these rules. Combining the qualitative analysis 
presented in the section Analysis of Optimal Features (Genes), we 
not only identified a group of highly related PDX tumor-specific 
biomarkers at the expression spectrum level but also for the first 
time attempted to build a systematic distinctive standard for 
the quantitative identification of PDX tumor originating from 
different tissue subtypes. The genes and rules that we screened out 
not only can provide a new tool for the identification of PDX-
derived tumors originating from different primary tissues but also 
reveal the distinctive expression characteristics and expression 
profile stability of PDX-derived tumor tissues compared with the 
primary ones, validating the efficacy and practicability of the PDX 
mouse model in tumor studies.
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