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Photosynthetic microalgae are potentially yielding sources of different high-value 
secondary metabolites. Salinity is a complex stress that influences various metabolite-
related pathways in microalgae. To obtain a clear view of the underlying metabolic 
pathways and resolve contradictory information concerning the transcriptional 
regulation of Dunaliella species in salt stress conditions, RNA-seq meta-analysis along 
with systems levels analysis was conducted. A p-value combination technique with 
Fisher method was used for cross species meta-analysis on the transcriptomes of two 
Dunaliella salina and Dunaliella tertiolecta species. The potential functional impacts 
of core meta-genes were surveyed based on gene ontology and network analysis. 
In the current study, the integration of supervised machine-learning algorithms with 
RNA-seq meta-analysis was performed. The analysis shows that the lipid and nitrogen 
metabolism, structural proteins of photosynthesis apparatus, chaperone-mediated 
autophagy, and ROS-related genes are the keys and core elements of the Dunaliella 
salt stress response system. Cross-talk between Ca2+ signal transduction, lipid 
accumulation, and ROS signaling network in salt stress conditions are also proposed. 
Our novel approach opens new avenues for better understanding of microalgae stress 
response mechanisms and for selection of candidate gene targets for metabolite 
production in microalgae.

Keywords: Dunaliella, RNA-seq meta-analysis, machine learning, network, retrograde signaling, ROS, tetrapyrrole

INTRODUCTION

Microalgae are photosynthetic organisms that are considered potential sources of different secondary 
metabolites such as β-carotene and lipid (Alcantara et al., 2013; Klein et al., 2013). Microalgae 
produce these metabolites by harvesting sunlight and subsequently fixing CO2 using this energy. 
It has been proposed that efficiency of CO2 fixation and consequently the production rate of lipids 
and secondary metabolites are affected by different stresses such as salt, light, temperature, pH, 

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2019.00752
https://www.frontiersin.org/journals/genetics#editorial-board
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2019.00752&domain=pdf&date_stamp=2019-08-29
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:panahibahman@ymail.com
mailto:b.panahi@abrii.ac.ir
https://doi.org/10.3389/fgene.2019.00752
https://www.frontiersin.org/article/10.3389/fgene.2019.00752/full
https://www.frontiersin.org/article/10.3389/fgene.2019.00752/full
https://www.frontiersin.org/article/10.3389/fgene.2019.00752/full
https://www.frontiersin.org/article/10.3389/fgene.2019.00752/full
https://www.frontiersin.org/article/10.3389/fgene.2019.00752/full
https://loop.frontiersin.org/people/241055


Meta-Analysis of Salt Stress Responsive PathwaysPanahi et al.

2 August 2019 | Volume 10 | Article 752Frontiers in Genetics | www.frontiersin.org

and nutrient starvation (Takagi, 2006; Devi and Venkata, 2012). 
These are common stresses found in industrial production of 
microalgae and are usually considered to hamper production. In 
general, stress decreases the microalgae growth rate and biomass 
production, although it is well known that several stresses can 
be used to increase lipid and/starch accumulation; however, 
the increased accumulation per cells does not often make up 
for the lost cellular growth. Although attempts have been made 
to manipulate the stress response; however, progress has been 
limited due to the lack of understanding of the basic metabolism 
of algae and how the different stresses impact metabolic pathways 
(Shin et al., 2015).

It has been reported that salt stress induce the glycerol 
metabolism enzymes such as glycerol-3-phosphate phosphatase 
(GPP), glycerol 2-dehydrogenase (NADP+) (DHAR), and 
dihydroxyacetone kinase (DHAK) activity in Dunaliella salina 
(Breuer et al., 2013). Similar results have been obtained on 
enzymatic activities of fructose-bisphosphate aldolase (FBPA) 
involved in starch metabolisms (Klok et al., 2013). It has been 
noted that the enzymatic activities of ribulose-5-phosphate 
kinase (RuPK), ribulose-bisphosphate carboxylase (RuBisCO), 
phosphoglycerate kinase (PGK), and glyceraldehyde-3-phosphae 
dehydrogenase (GAPDH) involved in photosynthetic carbon 
fixation increase in stress condition (Ben‐Amotz, 1975; Beardall 
et al., 1976; Johnson et al., 1976; Wegmann, 1979).

Moreover, transcriptional regulation of metabolic enzymes 
is closely associated with the growth rate and physiological 
conditions (Brauer et al., 2008). So, stress-responsive transcripts 
can be populating with the slow growth and metabolite 
production.

It has been proposed that the transcription of enzymes 
involved in glycerol metabolisms and its potential carbon sources 
increases under salinity stress condition. Moreover, correlated 
transcriptional regulation of enzymes involved in glycerol 
metabolisms with the flow of pathways has been proposed (Fang 
et al., 2017). Transcriptomic study of Klebsormidium crenulatum 
has showed increase of sucrose synthase, sucrose phosphate 
synthase, and several enzymes involved in the biosynthesis of 
the raffinose family of oligosaccharides after desiccation stress 
(Holzinger et al., 2014).

However, literatures have showed contradictory findings 
about transcriptional regulation (Alkayal et al., 2010; Cui et al., 
2010; Kim et al., 2010). These incongruences are mostly related to 
differences in severity, time range of treatments, and sample size 
(Farhadian et al., 2018b).

Due to the extensive application of RNA-seq technology for 
global expression analysis, the amount of deposited transcriptome 
data in stress condition is exponentially increasing. With the 
considerable increasing of deposited transcriptome data for the 
various physiological conditions, generalization of the major 
transcriptome regulatory mechanism is essential to provide 
meaningful and precise biological conclusions.

It has been proposed that combining the results of independent 
studies with meta-analysis can bypass the challenges associated 
with individual transcriptome studies (Sharifi et al., 2018). In 
the previous meta-analysis studies, differentially expressed 
genes (DEGs) involved in multiple stresses were identified 

(Ashrafi-Dehkordi et al., 2018). Kong et al. (2019) investigated 
a common transcriptional response to salt stress in different rice 
genotypes at the seedling stage. Wang et al. (2018a), Wang et al. 
(2018b) also identified the salt stress responding genes using 
transcriptome analysis in green algae Chlamydomonas reinhardtii 
and Dunaliella salina, respectively.

In the current study, for the first time, we integrated RNA-seq 
meta-analysis and supervised machine-learning models to detect 
and prioritize the salt stress responding genes and pathways 
which held common between two Dunaliella tertiolecta and D. 
salina species. Machine learning is the term of computer science 
in which computational statistics and information theory employ 
to construct algorithms that can learn from data (Wang et al., 
2018a). The learning process refers to knowledge discovery that 
translate the features in the existing data sets into pattern (Yu 
et al., 2018). Machine learning has attracted wide attention for 
its various applications in modern biology such as cancer study 
(Akay, 2009), robust phenotyping (Platt, 1999), and transcriptome 
data analysis (Ebrahimi et al., 2014). Guo et al. (2016) applied 
the MinReg algorithm to infer the global gene regulatory 
networks in Fusarium graminearum on transcriptome datasets. 
Moreover, machine learning–based differential network analysis 
has been applied to predict stress-responsive genes (Wang et al., 
2018a). Moreover, feasibility of supervised machine-learning 
models on bio-signature identification has been confirmed 
by Farhadian et al. (2018a) and Sharifi et al. (2018). We used 
various feature selection algorithms for modeling and ranking of 
common stress responding genes and proposed some important 
salt stress–responsive genes and pathways in two species of 
Dunaliella microalga.

METHODS AND MATERIALS

Data Set Collection
RNA-seq raw reads were retrieved from the European Nucleotide 
Archive database. One D. salina and two D. tertiolecta datasets 
were selected for meta-analysis. The first dataset from D. 
tertiolecta (PRJNA385719) contains six biological samples which 
were grown in 0.08 M NaCl–treated ATCC media, harvested 
during stationary phase, and sequenced using Illumina MiSeq 
platform. The second dataset from D. tertiolecta (PRJNA51835) 
had five biological samples that were grown in 0.5 M NaCl were 
sequenced using Illumina GAIIx platform. The third dataset 
(PRJNA295823) contains reads from 18 salt–treated samples of 
D. salina. In this dataset, cells were grown in 0.5 M and harvested 
during stationary phase of growth for sequencing with Illumina 
HiSeq 2000 platform. In this work, samples that were treated 
with high salinity were included in our analysis.

RNA-seq and Differential Gene Expression 
Analysis
FastQC v0.11.5 (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/) was used to assess quality of datasets, and reads 
were trimmed using Trimmomatic v0.32 (Bolger et al., 2014). 
The filtered reads were de novo assembled using Trinity v2.4.0 
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(Haas, 2013). The Trinity was run-in strand-specific mode (using 
the “—SS_lib_type RF” and “—SS_lib_type FR” options for D. 
tertiolecta and D. salina detests, respectively). Filtered reads from 
each biological sample were aligned to the de novo assembled 
transcripts using Kallisto (v0.44.0) with default parameters. Reads 
abundant per each transcript were normalized using fragment per 
kilo bases per million (FPKM), and the deferentially expressed 
genes (assembled transcripts) between treated and untreated 
samples were captured using Fisher model in edgeR package 
(Robinson et al., 2010). Significant differential expression was 
defined as a fold change ≥ |2| and a false discovery rate (FDR) 
corrected p-value ≤ 0.05 (Benjamin and Hochberg, 1995).

Orthology Definition and Meta-Analysis
Protein orthology was determined using Blastx (cutoff value of 
6) against C. reinhardtii, Volvox carteri, and D. salina (https://
phytozome.jgi.doe.gov/). The best hits were extracted with an 
in-house python scripts (Supplementary script S1). A meta-
analysis was carried out on the integrated dataset to find the 
DEGs between two species. First, to reduce number of statistical 
tests and control of false positives, 10% of genes that have low 
expression levels and variance were excluded. A comparison 
between two classes for each species designed and moderated 
t-statistic with 1,000 random permutations carried out to define 
the genes with significant expression. The adjusted p-value 
(FDR <0.05) (Benjamini and Hochberg, 1995) were considered 
significant. P-value of DEGs in the each of the datasets was 
merged. To combine p-values of DEGs between two conditions, 
Fisher method was used. The log ratio of means (ROM) was 
applied to measure the gene expression values by following 
formula:
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where y r rgn gr gs, ,  represent ROM, mean expression level for each 
gene in dataset, respectively. The preprocessing and analysis were 
performed with the metaRNASeq package (Rau et al., 2014) of 
R software. A Venn diagram was generated using the ggplot2 
package in R (Wickham, 2016).

Gene Ontology Enrichment and Functional 
Analysis
GO enrichment analysis of biological process (BP), molecular 
function (MF), and cellular component (CC) categories with 
p-value < 0.05 cutoff was performed using the Algal Functional 
Annotation tools (Lopez et al., 2011). Pathway enrichment of 
DEGs and meta-analysis results were visualized in MapMan 
software (Thimm, 2004).

Protein–Protein Network Analysis
Protein function information is critical for the elucidation of 
dynamics in complex processes (Panahi et al., 2014b; Panahi et al., 

2015). This study used STRING database version 11.0 (https://
string-db.org/) to predict protein–protein interactions networks 
from the DEGs. The k-means clustering algorithm was used for 
the functional module identification. Finally, identified modules 
were enriched using the KEGG database version 88.2.

Supervised Machine-Learning Models
Data cleaning on the merged dataset was conducted with useless 
and correlated attribute-removing approaches. The useless 
and correlated attributes (genes) were defined for genes with 
expression variation lower than 0.1 and correlation higher than 
95%, respectively. Cleaned data subsequently were normalized, 
and the results from different weighting algorithms were 
presented as values between 0 and 1. Different attribute weighting 
algorithms including the information gain, information gain 
ratio, chi-squared, deviation, rule, SVM, Gini index, uncertainty, 
and relief were used as supervised machine-learning models to 
repeat ably investigation of the discrimination genes between 
the control and stress conditions in the Dunaliella spp. Two 
approaches were used to survey the species dependency or 
independency of identified meta-genes. For the first approach, 
models were run for each separate species while the stress 
treatment status was defined as a label variable. Discriminating 
genes that were shared by both species were defined as species-
independent salt stress–responsive genes. In the second approach, 
the expression value (count data) and type of species (D. salina 
and D. tertiolecta) were set as features for attribute weighting 
while stress treatment status was defined as a label variable. The 
importance value of each feature calculates as (1-p) where p was 
the p-value of the feature selection test between the candidate 
predictor and the stress condition.

RESULTS

De Novo Assembly
Strand-specific RNA sequencing data from each condition were 
pooled together for de novo assembly and subsequent gene 
expression analysis. In PRJNA385719 data set, 17,312 transcripts 
were matched to proteins based on our criteria. Moreover, 
transcript length ranged from 110 bps to 15,458 bps. Detailed 
assembly information of three data sets was provided in Table 1.

Metabolic Overview of Differentially 
Expressed Genes
The MapMan annotation tool was used to display potential 
metabolic impacts from DEGs the three different data sets 
(Figure 1 and Tables S1–S3). DEGs were annotated as minor 
carbohydrate, light reactions, sucrose and starch, lipid, amino 
acid, and TCA metabolism. The three experiments showed similar 
expression patterns for the metabolic genes although the amount 
of expression was different. For example, a putative PfkB-type 
carbohydrate kinase which participate in minor carbohydrate 
metabolism showed severe (fold change > 3), moderate (2 < fold 
change < 3), and lower (2 > fold change) down-regulation in 
PRJNA385719, PRJNA51835, and PRJNA295823, respectively. 
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Of all the lipid metabolism genes, an acyl carrier protein 
thioesterase was dramatically up-regulated in all experiments. 
This is contrast to majority of lipid metabolism genes that were 
moderately down-regulated in the salt stress condition. Species-
specific patterns were observed for the light reaction genes. In 
D. tertiolecta datasets, the moderate up- and down-regulated 
genes were uniformly observed whereas in D. salina dataset; 
most of light reactions underlying genes were moderately down-
regulated in salt stress condition.

RNA-seq Meta-Analysis
Fisher method defined 49 differentially expressed transcripts 
representatives of 41 meta-genes (Figure 2). Details of identified 
meta genes and annotations were presented in Table 2. Of the 
41 meta-genes, AMT1A, CLPD, and CLPB1, which encode 
ammonium transporter, chloroplast ClpD chaperone, and 
cytosolic ClpB chaperone, respectively, were up-regulated in salt 
stress conditions (Figure 3).

Functional Impacts of Meta-Genes Based 
on Gene Ontology and Network Analysis
Functional gene ontology analysis of identified meta-genes was 
conducted in three categories including biological process (BP), 

MF, and CCs (Table 3). In the biological process, fatty acid and 
carboxylic acid biosynthetic processes were enriched (Table  3). 
Regarding the MF categories, oxidoreductase activity was 
most prevalent, even though different functions such as CoA 
desaturase, fatty acid synthase, omega-3 fatty acid desaturase, 
stearoyl-CoA 9-desaturase, nitrate reductase (NADH), 
ferredoxin-nitrite reductase, and geranylgeranyl reductase 
activities were also enriched (Table 3).

Protein–protein network of meta-genes based on 
co-expression and experimentally verified knowledge showed 
that 60% of identified meta-genes had a significant interaction 
with important functional modules, and remaining meta-genes 
had no other connections in the network (these nodes were 
removed from constructed network). Nitrogen metabolism, 
photosynthesis, oxidative phosphorylation, and splicing were the 
most important modules in the constructed network (Figure 4). 
We used a network modules analysis to investigate the core 
molecular networks that may be participating in biosynthesis 
of secondary metabolisms. Closer inspection of constructed 
networks revealed some important finding in Dunaliella responses 
to salt stress including 1) SHMT2 as important coordinator 
between nitrogen and carbon metabolism, photosynthesis, 
and secondary metabolite biosynthesis; 2) crosstalk between 
identified functional modules and splicing as a transcriptome 

TABLE 1 | Read and assembly statistics of datasets.

Total raw reads Total processed reads Number of coting’s GC (%) Size range (pb)

PRJNA385719 40,868,954 3,452,785 17,312 50 110-15,458 
PRJNA51835 41,635,032 4,645,287 17,856 49 115-14,751
PRJNA295823 38,475,935 3,124,575 16,957 50 114-14,971

FIGURE 1 | Metabolic overview of differentially expressed genes of D. tertiolecta (PRJNA51835) in responses to salt stress.
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plasticity mechanism; 3) anterograde-/retrograde-signaling 
networks importance in Dunaliella responses to salt stress 
condition; and 4) crosstalk between tetrapyrrole and secondary 
metabolite biosynthesis.

Data Mining
Two hundred ninety-six attributes were selected from 2,900 
common genes of merged file after data cleaning steps. The 
attributes with weight values higher than 0.5 were selected 
(Table  S4). Results of species-specific analysis were also 
presented in Tables S5 and S6. Of the 41 meta-genes, 16 genes 
were selected by more than three weighting algorithms (Table 4). 
The verified meta-genes were related to photosynthesis (PSBQ, 
LHL3), lipid metabolism (ESD, KAS2), nitrogen metabolism 
(NIT1), ROS detoxification (APX, SHMT2), and retrograde-
signaling network (DVR1, LHL3). Thereafter, the verified genes 
and pathways were defined as core and key salt stress–responsive 
genes and pathways in Dunaliella.

DISCUSSION

Recently, high-throughput transciptomics data has helped 
increase the elucidation of the complexity of gene regulation in 
various abiotic stress conditions (Panahi et al., 2014b; Panahi 
et al., 2015). However, the complex interaction between genes and 
environment is not yet well understood. It has been proposed 
that integrative analysis of global gene expression data is effective 

approach for identification of key regulatory networks (Panahi 
et al., 2013; Shahriari Ahmadi et al., 2013; Farhadian et al., 2018a; 
Panahi et al., 2019). To our knowledge, this is the first study where 
multiple transcriptomic datasets under salt stress condition 
were used to probe the genetic response of the Dunaliella spp. 
In the current study, integration of supervised machine-learning 
algorithms with RNA-seq meta-analysis was proposed that lipid 
and nitrogen metabolism, structural proteins of photosynthesis 
apparatus, signaling, and ROS-related genes are the key and core 
elements of the Dunaliella salt stress response system.

Photosynthesis Machinery Structural 
Proteins as Important Salt Stress–
Responsive Genes
Photosynthesis–related structural and functional proteins such 
as chloroplast stem-loop–binding protein (CSP41b), oxygen-
evolving enhancer protein (PSBQ), photosystem II reaction 
center protein (PSB28), photosystem I reaction center subunit 
V (PSAG), thylakoid luminal protein (TEF14), and photosystem 
I chlorophyll a–/b–binding protein 2 (LHCA2) were all defined 
as meta-genes. These findings of the current study are consistent 
with those of Ji et al. (2018) who found that photosystem II (PSII) 
is one of the most sensitive components of the electron transport 
chain under stress condition (Ji et al., 2018). So, the presence of 
several photosystem structural genes as meta-genes in salt stress 
is not unsurprising; more importantly, some of these genes (PSBQ 
and PSB28) were defined as key salt stress–responsive genes 
(Table 2). The PSBQ protein is an extrinsic subunit of the PSII 

FIGURE 2 | Venn diagram of identified meta-genes in three data sets based on Fisher method.

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Meta-Analysis of Salt Stress Responsive PathwaysPanahi et al.

6 August 2019 | Volume 10 | Article 752Frontiers in Genetics | www.frontiersin.org

and is necessary for the regulation of both activity and assembly 
of PSII (Thornton et al., 2004; Summerfield et al., 2005). The 
down-regulation of PSBQ during salt stress in the three datasets 
also agrees with a previous study done on other Dunaliella spp. 
(Suorsa et al., 2006). The importance of PSBQ transcriptional 
in response to salt stress in Dunaliella was also confirmed by 
five different machine-learning algorithms (Table 4). Another 
PSII-related gene, PSB28 was also an important meta-genes for 

Dunaliella spp. PSB28 is involved in the biogenesis of PSII inner 
antenna CP47 (PsbB) and is essential for the protection of the 
reaction-center against high-light stress (Weisz et al., 2017). Our 
data suggests that PSB28 may also play a role in the salt stress 
response. The down-regulations of PSBQ and PSB28 may be an 
important adaptation response for microalgae against salt stress. 
In addition to PSII, photosystem I (PSI) was also affected by salt 
stress. PSI is composed of chlorophyll-binding core complex 
and a chlorophyll a–/b–binding peripheral antenna called light 
harvesting complex (LHCs). The results of transcriptome meta-
analysis along with machine-learning weighting confirmed 
the importance of PSAG and LHCA2 in adaptation responses 
to salt stress condition (Table 2). It has been proposed that 
salt stress weakens the connection between LHCs and PSI 
and consequently reduces the conversion of light energy to 
chemical energy (Gupta et al., 2017). Our hypothesis has been 
also confirmed by recent study (Wang et al., 2019). Wang 
et  al. (2019) found that salt stress induce protein interactions 
between FTSY-RPL13a-RPL18-EIF3A and chlL-chlN-rbcL-
psaB-psaA-LHCB4-ATPvL1-atpI-cox1. The downregulation of 
rbcL, HSP90A, and LHC in the PPI network was also consistent 
with previous findings (Wang et al., 2019). It has also been 
found that chlorophyll a–/b–binding proteins such as LHCA2 
are affected by light, oxidative stress, and chlorophyll retrograde 
signaling (Gupta et al., 2017). Downregulation of LHC under 
the stress condition corroborates these earlier finding that 
downregulation of the LHC under stress conditions is an attempt 
to minimize energy utilization by lowering photosynthetic 
demands (Xu et al., 2012). It has been proposed that these down 
regulations are attempting to minimize energy utilization by 
lowering photosynthetic demands. Additionally, decreased 
levels of chlorophyll a–/b–binding proteins were correlated with 
accumulation of ROS (Xu et al., 2012). Our data also confirms 
the coordinate response of chlorophyll a–/b–binding proteins, 
signaling, and ROS detoxification system–related genes (Tables 2 
and 4 and Figure 4).

Contribution of ROS Scavenging and 
Signaling Pathways in Adaptation Network
In the present study, several meta-genes (APX, CLPB1, CLPD, 
LHL3, SHMT2, DVR1, and WD40, which encode ascorbate 
peroxidase, chaperone protein ClpB1 chaperone protein ClpD, 
Lhc-like protein, serine hydroxyl methyl transferase, protein 
DVR-1, and WD40 repeat-containing protein, respectively) 
were found as the main backbone of ROS and signaling network. 
Although different scavenging enzymes were up-regulated in 
response to salt stress, APX was the only enzyme selected as 
meta-genes in Dunaliella (Figure 1 and Table 2) and also verified 
by four machine learning–based weighting algorithms (Table  4). 
This may indicate that APX is more effective than other 
scavenging enzymes. Although there are no published reports 
comparing the efficiency of different algal scavenging enzymes 
in salt stress conditions, it has been reported that APX activity 
in halophyte plants is more important than other scavenging 
enzymes (Shalata et al., 2001; Sekmen et al., 2007; Panahi et al., 
2014a). Due to the dual roles of ROS in toxicity and as signal 

TABLE 2 | Detailed information of identified meta genes and corresponding 
annotations.

Protein ID 
(JGI v4.0 ID)

Annotated 
name

DefLine

55268 HDS 1-hydroxy-2-methyl-2-(E)-butenyl 
4-diphosphate synthase, chloroplast precursor

56237 FAD7 Chloroplast glycerolipid omega-3-fatty acid 
desaturase

76602 ATP1A Mitochondrial F1F0 ATP synthase, alpha 
subunit

111372 PfkB PfkB-type carbohydrate kinase
132210 PGK1 Phosphoglycerate kinase
135322 CSP41b Chloroplast stem-loop-binding protein
136810 ChlP Geranylgeranyl reductase
139619 KAS2 3-ketoacyl-ACP-synthase
150826 TEF9 Predicted protein
152648 CPLD48 Predicted protein
153656 PSBQ Oxygen evolving enhancer protein 3
158745 AMT1A Ammonium transporter
159574 GLPX1 Fructose 1,6-bisphosphatase
165416 PSAG Photosystem I reaction center subunit V
175746 ESD Esterase D
182361 TEF14 Thylakoid lumenal protein
182896 PSB28 Photosystem II subunit 28
184661 NIT1 Nitrate reductase
185309 LHL3 Low molecular mass early light-induced protein
185571 CYN20-3 Peptidyl-prolyl cis-trans isomerase, 

cyclophilin-type
192085 NII1 Nitrite reductase
194676 TEF2 Rhodanese-like Ca-sensing receptor
195417 CLPD ClpD chaperone, Hsp100 family
195423 CLPB1 ClpB chaperone, Hsp100 family
195952 DVR1 3,8-divinyl protochlorophyllide a 8-vinyl 

reductase
196354 SHMT2 Serine hydroxymethyltransferase 2
196500 DLA2 Dihydrolipoamide acetyltransferase
196604 CMS 4-diphosphocytidyl-2C-methyl-D-erythritol 

synthase, chloroplast precursor
205649 TL19 Thylakoid lumen protein
205993 TEF30 Predicted protein
206548 APX L-ascorbate peroxidase
345325 NAR3 Nitrate/nitrite transporter
117883 SCD Stearoyl-CoA desaturase ∆9
144607
151316 WD40 WD40 repeat-like superfamily protein
182023 hypothetical 

protein
183558 DUF Containing domain of unknown function 

(DUF4399) 
183986 LHCA2 Chlorophyll A-B binding protein
192088 NAR4 High affinity nitrate transporter (system II)
286834 F4J9G2 Rhodanese/Cell cycle control phosphatase 

superfamily protein
344487 hypothetical 

protein
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molecules, Dunaliella species seems to have developed complex 
strategies to regulate and detoxify ROS in salt stress conditions. 
Meta-analysis and machine learning–based weighting algorithms 
analysis proposed that chaperone-mediated autophagy (CMA) is 
another important system for Dunaliella spp. to cope with salt 
stress conditions (Xiong et al., 2007).

CLPB1 and CLPD and DVR1 are other groups of important 
salt stress–responsive genes in Dunaliella. These chaperones are 
proposed to be involved in plastid protein quality control and 
degradation of oxidized proteins (Ramundo et al., 2014).

SHMT1 (serine hydroxyl methyl transferase 1), which 
regulates ROS generation by controlling photorespiratory 
pathways, was another important ROS signaling–related genes 
(Moreno et al., 2005). SHMT1 is known to influence resistance 
to different stress conditions and mutation of SHMT1 resulted 
in increased cell damage due to strong accumulation of H2O2 
(Moreno et al., 2005). LHL3 (low molecular mass early light-
induced protein) is proposed as an ROS protection system 
against oxidative damage and was identified as a meta-gene for 
Dunaliella spp. (Hutin et al., 2003). Additionally, the presence 

of spliceosome components and ROS signaling cascades in the 
meta-genes suggests cross-talk between these pathways (Figure 4), 
and this is reflected in a recent investigation showing that 
spliceosomal protein mutants are related with ROS accumulation 
(Gu et al., 2018).

Cross-Talk Between ROS Signaling 
Pathways, Lipid Biosynthesis, and 
Calcium Signal Transduction
Multiple studies reported that stress-induced lipid accumulation 
always correlates with an increase in antioxidant defenses 
systems (Hu et al., 2008; Zhao et al., 2015). In addition to 
their function in carbon and energy storage, lipids may act as 
antioxidants or protective defense molecules as part of the stress 
response (Hu et al., 2008). Our data also suggests this, since 
lipid metabolism–related genes responded transcriptionally to 
salt stress treatments in both species of Dunaliella (Figure 1). 
Particularly, KAS2 (3-ketoacyl-ACP-synthase) and FAD7 
(chloroplast glycerol lipid omega-3-fatty acid desaturase) are 

FIGURE 3 | Clustering of metagenes based on expression patterns in three data sets. The fold changes were used as the expression value in 
constructing heatmap.
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implicated in the salt-induced response of lipid metabolism 
plasticity (Tables 2 and 4).

TEF2 which encodes a rhodanese-like Ca-sensing receptor 
was determined as another important gene in Dunaliella spp. 
responses to salt stress conditions (Table 2). It has been proposed 
that calcium-sensing receptors are important regulators of 
extracellular calcium content in which increases cytosolic 
Ca2+ concentration in stress conditions (Zhao et al., 2015). 
The co-occurrence in the meta-gene list as well as verification 
by machine-learning algorithms and network analysis of the 
calcium signal transduction gene TEF2 and lipid biosynthesis–
related genes suggests that there may be potential cross-talking 
between Ca2+ signal transduction, lipid accumulation, and ROS 
signaling pathways in salt stress conditions. Similar cross-talking 
has been proposed for nitrogen starvation; so, it is feasible that 
similar pathways could be used for the salt stress responses also 
(Chen et al., 2014).

Transport and Assimilation of Nitrogen 
Are Important Coordinators for Adaptation 
Network
Excessive cytosolic NaH4

+ concentration can induce the 
accumulation of ROS, oxidative damages, and subsequent 
membrane disruption in different eukaryotic cells (Shahriari 
Ahmadi et al., 2013). Flexibility in NaH4

+ uptake mechanisms 
was proposed as one of the important acclimatization approaches 
in salt stress conditions (Abouelsaad et al., 2016). Among the 
different NaH4

+ transporters and assimilation-related genes that 
were differentially expressed in that salt stress condition (Figure 1), 
AMT1A, NIT1, NII1, NAR3, NAR4, encoding ammonium 
transporter, nitrate reductase, nitrite reductase, and high-affinity 
nitrate transporter, respectively, were selected as meta-genes 
(Table 2). Based on expression profiles, the ammonium transporter 
was up-regulated while the nitrate transporters and nitrate 
reduction genes were downregulated. A recent transcriptome 

TABLE 3 | Gene ontology enrichments of meta genes in three categories including BP (biological process), MF (molecular functions) and CC (cellular components), 
number of hits, and corresponding FDR value.

GO names GO ID GO category Hits FDR

Fatty acid biosynthetic process GO:0006633 BP 3 0.000175
Lipid biosynthetic process GO:0008610 BP 3 0.001142
Photosynthesis GO:0015979 BP 2 0.001301
Nitrate assimilation GO:0042128 BP 1 0.002636
Carboxylic acid biosynthetic process GO:0046394 BP 3 0.004328
D-ribose metabolic process GO:0006014 BP 1 0.00789
Small molecule biosynthetic process GO:0044283 BP 4 0.009843
Monosaccharide metabolic process GO:0005996 BP 2 0.010695
Pentose metabolic process GO:0019321 BP 1 0.015722
Chlorophyll biosynthetic process GO:0015995 BP 1 0.01832
Alcohol metabolic process GO:0006067 BP 2 0.020593
Cellular carbohydrate metabolic process GO:0044262 BP 2 0.02434
Oxygen and reactive oxygen species metabolic process GO:0072593 BP 1 0.026077
Superoxide metabolic process GO:0006801 BP 1 0.026077
Oxoacid metabolic process GO:0043436 BP 3 0.035025
Cellular ketone metabolic process GO:0042180 BP 3 0.035662
Ferredoxin-nitrite reductase activity GO:0048307 MF 1 0.002307
Geranylgeranyl reductase activity GO:0045550 MF 1 0.002307
3,4-dihydrocoumarin hydrolase activity GO:0018733 MF 1 0.004609
1-oxa-2-oxocycloheptane lactonase activity GO:0018731 MF 1 0.004609
Butyrolactone hydrolase activity GO:0018734 MF 1 0.004609
Nitrate reductase (NADH) activity GO:0009703 MF 1 0.004609
Phosphoglycerate kinase activity GO:0004618 MF 1 0.004609
Stearoyl-CoA 9-desaturase activity GO:0004768 MF 1 0.004609
Sulfolactone hydrolase activity GO:0018732 MF 1 0.004609
Ribokinase activity GO:0004747 MF 1 0.006906
3-oxoacyl-[acyl-carrier-protein] synthase activity GO:0004315 MF 1 0.009198
Oxidoreductase activity GO:0016491 MF 5 0.009936
CoA desaturase activity GO:0016215 MF 1 0.016044
Omega-3 fatty acid desaturase activity GO:0042389 MF 1 0.016044
Phosphotransferase activity, carboxyl group as acceptor GO:0016774 MF 1 0.022847
Fatty acid synthase activity GO:0004312 MF 1 0.031849
Dioxygenase activity GO:0051213 MF 1 0.034088
Phospholipase activity GO:0004620 MF 1 0.034088
Inorganic anion transmembrane transporter activity GO:0015103 MF 1 0.042994
Oxygen evolving complex GO:0009654 CC 1 0.012942
Extrinsic to membrane GO:0019898 CC 1 0.015086
Membrane part GO:0044425 CC 3 0.021468
Endoplasmic reticulum GO:0005783 CC 1 0.021495
Thylakoid part GO:0044436 CC 1 0.036321
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from Dunaliella viridis shows the same expression pattern when 
cells are grown with NH4

+ as a nitrogen source (Dums et al., 2018), 
which might suggests a difference in nitrogen source between the 
different datasets used. However, the study done with salt tolerance 
in tomato shows ammonium transporter up-regulation and nitrate 
transporter down-regulation under salt stress (Abouelsaad et al., 
2016). This equally reflects that data in this study. Regulation of 
inorganic nitrogen metabolism genes seems to contribute to the 

salt stress response and possibly could be tied into crosstalk with 
aforementioned pathways.

CONCLUSION

In conclusion, we identified a number of genes whose expression 
was putatively altered in the response to salt stress in two 

FIGURE 4 | Protein–protein interaction network of  meta-genes. The unconnected meta-genes were removed from constructed network. Meta-genes were signed by red circles. 
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species of Dunaliella. The importance of identified responsive 
genes was validated with machine-learning algorithms, which 
mainly involved in ROS scavenging and signaling, chaperone-
mediated autophagy, calcium signal transduction, and nitrogen 
metabolism. Furthermore, coordinate responses of chlorophyll 
a–/b–binding proteins, signaling, and ROS detoxification systems 
were highlighted by machine-learning and network analysis. PPI 

network analysis suggested the cross-talk between Ca2+ signal 
transduction, lipid accumulation, and ROS signaling pathways 
in salt stress conditions. Exploration of these signaling networks 
and additional knowledge about the identified meta-genes could 
provide new avenue for engineering of Dunaliella spp. for the 
production of a variety of secondary metabolites.
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TABLE 4 | Machine learning models based on attribute weighting 
algorithms demonstrated the most important salt stress responsive genes 
(species independent).

Attribute The number of weighting models 

PSBQ 5
SCD 5
GLPX1 4
PSAG 4
ESD 4
LHL3 4
APX 4
PfkB 3
CSP41b 3
ChlP 3
KAS2 3
NIT1 3
DVR1 3
SHMT2 3
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