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Dispersal of Homo sapiens across the globe during the last 200,000 years was accompanied 
by adaptation to local climatic conditions, with severe winter temperatures being probably 
one of the most significant selective forces. The TRPM8 gene codes for a cold-sensing 
ion channel, and adaptation to low temperatures is the major determinant of its molecular 
evolution. Here, our aim was to search for signatures of cold climate adaptation in TRPM8 
gene using a combined data set of 19 populations of East Asian ancestry from the 
1000 Genomes Project and Human Genome Diversity Project. As a result, out of a total 
of 60 markers under study, none showed significant association with the average winter 
temperatures at the locations of the studied populations considering the multiple testing 
thresholds. This might suggest that the principal mode of TRPM8 evolution may be different 
from widespread models, where adaptive alleles are additive, dominant or recessive, at 
least in populations with the predominant East Asian component. For example, evolution 
by means of selectively preferable epistatic interactions among amino acids may have taken 
place. Despite the lack of strong signals of association, however, a very promising single 
nucleotide polymorphism (SNP) was found. The SNP rs7577262 is considered the best 
candidate based on its allelic correlations with winter temperatures, signatures of selective 
sweep and physiological evidences. The second top SNP, rs17862920, may participate in 
adaptation as well. Additionally, to assist in interpreting the nominal associations, the other 
markers reached, we performed SNP prioritization based on functional evidences found in 
literature and on evolutionary conservativeness.
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INTRODUCTION

Recent paleoanthropological evidences show the presence of anatomically modern humans in Africa 
as early as 300 kya (Hublin et al., 2017), with the earliest known “Out of Africa” migration event dating 
back to 200 kya (Hershkovitz et al., 2018). Dispersal of Homo sapiens across the globe during the last 
200,000 years was accompanied by adaptation to local environments. Spatial variations in selective 
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pressures have ultimately led to observable geographic distribution 
of many physiological and anatomical traits in present-day 
humans. For example, the low level of UV radiation at higher 
latitudes is now considered to be the major cause of evolution of 
depigmented skin (Jablonski and Chaplin, 2010).

Since the mid-2000s, there has been significant progress 
in genotyping technologies, followed by publicly available 
databases of human genetic variation. This circumstance helped 
the population geneticists to discover signatures of human 
local adaptation from genome-wide genotyping data. Human 
microevolution driven by the action of low temperatures has 
long been attracting attention of the scientific community. Now, 
a number of studies have been dedicated to this issue both at the 
genome level (e.g., Hancock et al., 2011a; Cardona et al., 2014; 
Valverde et al., 2015) and at the level of selected regions or genes 
(Hancock et al., 2008; Ohashi et al., 2011; Hancock et al., 2011b; 
Sazzini et al., 2014; Quagliarello et al., 2017).

Probably the best-known gene in terms of its possible role 
in adaptation to cold climate is TRPM8 located on human 
chromosome 2. This gene codes for ion channel functioning as 
a thermal sensor, detecting temperatures in the range from 15 
to 30°C (Fernández et al., 2011). There are evidences supporting 
its physiological role in thermoregulation, and in fact, TRPM8 
is the only well-established cold receptor in mammals (Bautista 
et al., 2007; Colburn et al., 2007; Dhaka et al., 2007). Besides 
these, there are data on associations of its single nucleotide 
polymorphisms (SNPs) with sensitivity to cold (Kozyreva et al., 
2011), the respiratory system response to cooling (Kozyreva 
et al., 2014), blood lipids, and anthropometric parameters in 
humans (Potapova et al., 2014). The TRPM8 gene was suggested 
to underlie genetic adaptation to cold in ground squirrel and 
hamster (Matos-Cruz et al., 2017), sheep (Fariello et al., 2014; Liu 
et al., 2016), and humans (Cardona et al., 2014; Key et al., 2018). 
According to modern views, adaptation to low temperatures is 
the major determinant of TRPM8 molecular evolution (Myers 
et al., 2009; Majhi et al., 2015).

To our knowledge, a study by Key and colleagues (2018) is 
the only one to use environmental data to search for signatures 
of cold climate adaptation in the TRPM8 gene. The authors 
used latitudes and annual average temperatures at the locations 
of the populations of the Old World as predictors for SNP 
allele frequency distributions. They found evidences that SNP 
rs10166942 had undergone climate-mediated selection, which 
raised its derived allele frequency from south to north.

In our opinion, focusing on closely related populations 
is preferable to using large population sets for the following 
reasons. First, the ability to survive in a severely cold climate is 
supposed to be highly polygenic, as many biological processes 
like vasoconstriction, nonshivering thermogenesis, regulation of 
adipocyte differentiation, and thermoception are expected to be 
involved. It is known that the adaptation to cold can be associated 
with quite different genetic bases (Yudin et al., 2017). Because 
different branches of Homo sapiens are likely to have had distinct 
genetic background before and during the process of climate-
driven selection, it is possible that in phylogenetically distant 
groups, adaptation may have recruited different genes. Second, 

even in the case when selection is acting on the same gene, variants 
involved in adaptation may differ in different branches. Our 
supposition is supported by the example of variants associated 
with lactase persistence. Thus, within European populations, the 
activity of the lactase enzyme in adulthood is connected with 
the C/T-13910 variant in the enhancer region of the LCT gene, 
whereas in sub-Saharan Africa, this trait is mainly correlated with 
the presence of the G/C-14010 mutation (Tishkoff et al., 2007). 
Therefore, it would  be sensible to search for microevolution in 
clusters of related populations.

For the above reasons, the aim of this study was to search 
for signatures of adaptation to low temperatures in the TRPM8 
gene under various null hypotheses of population structure 
and dynamics using a combined data set of 19 populations of 
the East Asian ancestry from Human Genome Diversity Project 
(HGDP) and 1000 Genomes (1000G) Project with the assistance 
of environmental correlation analysis techniques. Locations 
of chosen populations are characterized by a large range of 
average winter temperatures (−37–+27°C), implying substantial 
differences in selection pressures.

MATERIALS AND METHODS

Genotypic and Environmental Data
In this study, we used genotypic data on 656 individuals 
from 19 HGDP (Cann et al., 2002) and 1000G Project (1000 
Genomes Project Consortium et al., 2010) populations 
(Supplementary Table 1) having predominantly the East Asian 
genetic component. Data on SNPs belonging to TRPM8 gene 
were obtained from NCBI dbSNP (https://www.ncbi.nlm.nih.
gov/snp/), resulting in 60 polymorphic markers (minor allele 
frequency >0.01) being at the intersection of HGDP and 1000G 
sets. The missing genotypes in HGDP data were imputed using 
fastPHASE v.1.4.8 software (Scheet and Stephens, 2006) with 
default parameters. Genotypic information from HGDP and 
VCF formats was combined by using a self-made Python 3 
script, so that inconsistency of DNA strands between databases 
(if that was the case) was resolved using 1000G VCF as a 
reference. Besides TRPM8 SNPs, we used 5 Mb regions upstream 
and downstream this gene (1,309 markers at r2 < 0.7) to infer 
the phylogenetic tree used in PGLS, to estimate the covariance 
matrix used in Bayenv2-BLM and Bayenv2-SRC, to correct for 
background levels of the population structure in LFMM and to 
make population inferences in BayScEnv more precise. Also, 
this set of SNPs was used to construct a null distribution for 
empirical p-value calculation. Information on latitudes and 
longitudes for 1000G populations was taken from Key et al. 
(2018). Latitudes and longitudes for HGDP populations were 
taken from Cann et al. (2002), and average winter temperature 
values were obtained from ClimateCharts.net database (https://
climatecharts.net) using the corresponding coordinates. We 
believe the average winter temperature to be a more pertinent 
predictor for distribution of cold-adaptive alleles than the 
annual average temperature, as regions with a continental 
climate may have cold winters and hot summers.
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Construction of a Phylogenetic Tree and 
Statistical Analysis
As our sample consisted of phylogenetically close populations, 
we first performed conventional Spearman’s rank correlation test 
not accounting for the sample structure (Spearman, 1904) at the 
population (i.e., using allele frequencies) and individual’s (i.e., 
using allele dosages) levels.

PGLS analysis (R package ‘ape,’ Paradis et al., 2004) was 
carried out at the individual’s level using the simplest Brownian 
motion model. We selected this type of analysis because it is an 
opposite alternative (phyletic evolution) to the conventional 
Spearman’s rank correlation test. The phylogenetic tree used in 
this test was reconstructed with IQ-TREE v. 1.5.5 subprogram 
ModelFinder (Kalyaanamoorthy et al., 2017) based on the best 
nucleotide substitution model.

Our primary aim was to test the association between the 
climatic factor and allele frequencies. For this purpose, we chose 
two independent approaches: the Bayesian linear model from 
Bayenv2 (further referred to as Bayenv2-BLM) software (Günther 
and Coop, 2013) and LFMM (Frichot et al., 2013), each building 
a regression model relating allele frequencies to environmental 
values. To minimize the problem of false-positive associations 
between allele frequencies and environment because of the 
population structure, the above methods take into account allele 
frequency correlations across populations while performing the 
analysis by various ways.

In addition, we used Spearman’s rank correlation test from 
Bayenv2 (further referred to as Bayenv2-SRC) that uses allele 
frequencies standardized to have no covariance. It is less powerful 
than Bayenv2-BLM but more robust to outliers and can detect 
monotonic relationships.

BayScEnv test (de Villemereuil and Gaggiotti, 2015) was 
used as an alternative to Bayenv2-BLM and LFMM. This 
method assumes that all populations are independent and 
exchange genes through the limited migrant pool; it includes 
a locus-specific effect unrelated to the environmental variable, 
taking into consideration locus-specific deviations from a 
neutral model. BayScEnv software was also used to calculate 
Fst distances for each locus averaged over populations 
(Supplementary Table 2).

In addition to the correlation techniques, we tried the 
XP-CLR test (Chen et al., 2010) as a complementary approach. 
This test is designed for detecting selective sweeps on the basis of 
joint modeling of the multilocus allele frequency differentiation 
between two populations. The method does not require 
information on the ancestral/derived status at each SNP (Chen 
et al., 2010; Vatsiou et al., 2016).

For more details on phylogenetic tree construction and 
statistical analysis, please see the Supplementary Material.

SNP Prioritization
We prioritized SNPs based on three types of evidences found 
in literature, “association with trait relevant to survival in a cold 
climate,” “evidences for cold-mediated selection,” and “association 
with any other phenotype or risk.” These categories were given 
weights 3, 2, and 1, respectively, and a score for each SNP was 
summarized (Supplementary Table 3). The key assumption behind 
this prioritization is that because of the pleiotropic nature of TRPM8 
gene, allelic substitutions having any functional manifestation may 
potentially have more chances of affecting survival in cold climate 
conditions than those not having any known effects.

Additionally, we obtained the PhyloP100way vertebrate 
conservation score for each SNP (Supplementary Table 4) from 
UCSC Genome Browser (Casper et al., 2018). Currently, it is 
commonly thought that the genetic drift plays a minor role in the 
evolution of conservative sites, and relatively rare allele replacements 
occurring therein are mostly driven by positive selection (Andolfatto, 
2005; Cai et al., 2009; Halligan et al., 2011; Bazykin and Kondrashov, 
2012). Therefore, significant allelic correlation with environmental 
gradient supported by a high conservation score promises to be the 
true sign of local adaptation.

RESULTS

Contrary to what we had expected, only three SNPs out 
of a total of 60 markers under study showed nominally 
significant association with the average winter temperatures 
at the locations of the studied populations by any two types 
of analysis (the results of tests carried out using default/
recommended parameters are shown in Table 1; for full results, 

TABLE 1 | Genic and upstream TRPM8 variants showing nominally significant (in bold) association in at least two correlation tests with default/recommended 
parameters (K = 2 for LFMM and pi = 0.1/p = 0.5 for BayScEnv).

Methods and scores rs7577262 rs17862920 rs6723922 rs11682848

SNP evidence score NA* 5 1 1
PhyloP100way conservation score −1.7724 −0.1171 −2.2644 −5.512
Bayenv2-BLM empirical p-value 0.0374 0.06 0.064 0.0069
PGLS p-value 0.0331 0.04 0.101 0.121
Bayenv2-SRC empirical p-value 0.0252 0.0328 0.075 0.0145
SRC individual-based empirical p-value 0.0267 0.054 0.096 0.0481
SRC population-based empirical p-value 0.042 0.149 0.0428 0.102
LFMM p-value 0.074 0.127 0.005 0.0013
BayScEnv posterior error probability/q-value 0.97/0.829 0.984/0.903 0.993/0.957 0.795/0.525
BayScEnv empirical p-value 0.042 0.084 0.208 0.0115

*The SNP evidence score was not calculated for rs7577262 because of a high level of confidence in its adaptive role.
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see Supplementary Tables 5 and 6). When considering the 
multiple testing threshold, however, none of them is significant 
(adjusted p values not shown).

SNP rs11682848 was previously reported as associated with 
the prognosis of colorectal cancer (Walther, 2010). Interestingly, 
such connection of climate-associated loci with cancer has 
already been noticed by other researchers (Hancock et al., 
2011a). Furthermore, it has been recently shown by combination 
of 247 genome-wide association studies that cold selected 
genes are enriched with cancer-associated genes (Voskarides, 
2018). Ironically, SNP rs11682848 has the lowest conservation 
score among 60 markers under study. This means that either 
rs11682848 is being a false-positive finding or being linked to 
some functional variant.

SNP rs17862920 has evidences of associations with migraine 
susceptibility (Freilinger et al., 2012; Meng et al., 2018). The 
rs17862920-С allele predisposing to migraine is more prevalent 
in northern latitudes. Also, rs17862920 has been shown to be 
associated with sensing cold pain in Finnish and Norwegian 
individuals, with C allele carriers being more susceptible 
(Kaunisto et al., 2013). Migraine has been reported to be related 
to increased pain perception of nonnoxious cold temperatures 
(Burstein et al., 2000). Unlike rs11682848, PhyloP100way 
conservation score for rs17862920 is more promising and has 
a rank of 20/60 while still being negative. It is possible that 
allele substitution in rs17862920 has a functional effect. Thus, 
rs17862920 was predicted to regulate TRPM8 transcription by 
TFsearch and GoldenPath in F-SNP bioinformatics tool (Ghosh 
et al., 2013).

As for rs6723922, this SNP is a genetic risk factor for 
severe cutaneous adverse drug reactions (Park et al., 2018). 
One could hypothesize that there is a certain mechanism 
underlying both the altered cold sensation and the increased 
cutaneous susceptibility to chemicals. It could be no surprise 
given that the TRPM8 channel is activated by a variety of 
chemical ligands (Beccari et al., 2017). Like rs11682848, SNP 
rs6723922 has a low conservation score (the rank of 55/60), 
implying conclusions for this marker similar to those for 
rs11682848.

The results of the XP-CLR test are more encouraging 
(Supplementary Figure S1). It appears that there is a 
pronounced trend for several pairs of populations to show the 
signature of a selective sweep 10 ± 6 Kb upstream from the 
TRPM8 gene. The direction of selection in this region is seen 
when reversing tested and reference populations in pairs (e.g., 
compare “JPT vs. KHV” and “KHV vs. JPT”). The strongest 
XP-CLR peaks within this putative sweep are mainly located 
near rs10929317 and rs7577262 SNP loci. The former was 
removed from the analysis because of high LD with rs17862920: 
r2 = 0.966/D’ = 0.995 in East Asian populations (LDlink tool; 
Machiela and Chanock, 2015) and is therefore expected to be 
as significant as rs17862920. The latter was used in the control 
set of 1,309 markers. Surprisingly, this SNP demonstrates 
significant association with our climatic variable in almost all 
of the correlation tests (Table 1). Also, rs7577262 has been 

reported to be associated with susceptibility to migraine 
(Anttila et al., 2013) and blood pressure response to the cold 
pressor test (He et al., 2013).

DISCUSSION

A variety of facts have led us to think of TRPM8 gene as 
being under intense positive selection. We expected that the 
large amount of SNPs in TRPM8 would demonstrate strong 
signals because of being under selection immediately or being 
linked to some causal variants. However, this is not the case. 
Furthermore, SNPs detected do not pass the corrected threshold, 
considering multiple testing. Among possible explanations are 
the following hypotheses:

1. The predominant mode of TRPM8 evolution may be different 
from the widespread models exploited by our tests, where 
adaptation is assumed to be mediated by selecting alleles 
with additive or at least recessive/dominant trait coding. 
However, it is suggested that epistatic interactions may play 
a role in the evolution of thermoTRP channels (Saito and 
Tominaga, 2017). Therefore, conformational epistasis-based 
evolution, where some epistatic interactions among amino 
acids are preferred, might have resulted in the inability of 
approaches we used to detect strong signatures of selection 
in the TRPM8 gene.

2. The level of allele frequency variation (see Supplementary 
Table 7 for minor allele frequency distributions) in 
the populations studied is not sufficient to robustly 
discriminate the loci under selection. Thus, the averaged 
Fst distances for populations used by Key et al. (2018) are 
much higher than those for our data set (Supplementary 
Table 2).

3. Only 5 out of 19 locations of populations from our data 
set have the average winter temperature below −10°C. 
It is possible that the underrepresentation of northern 
populations in this study might lead to insufficient signal 
strength. Further accumulation of open access data on 
genetic variation in the north would help in detecting loci 
under selection.

Despite the lack of strong signals of association, however, 
a very promising candidate SNP was found. SNP rs7577262 
is 7.1 kb upstream of the transcription start site for TRPM8 
mRNA, implying its possible involvement in transcriptional 
regulation. In addition to correlations and signatures of 
sweep, physiological data contribute equally to the evidences 
in favor of selection acting on rs7577262. The rs7577262-G 
allele is associated with a higher blood pressure response to 
the cold pressor test (He et al., 2013). It is known that the 
blood pressure response to the cold pressor test primarily 
stems from alpha-adrenergically mediated peripheral 
vasoconstriction (Leppäluoto and Hassi, 1991; Larra et al., 
2015), which is, in turn, one of the basic mechanisms of cold 
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adaptation (Daanen and Lichtenbelt, 2016). Given that this 
allele is more prevalent in northern latitudes (Figure 1), its 
adaptive role may be assumed.

Another SNP, rs17862920, is linked with rs7577262 (r2 = 0.59 
in East Asians). Probably, this is the reason for the correlation 
the former demonstrates. Both SNPs are risk loci for migraine. 
At the same time, it has been mentioned above that rs17862920 
is associated with sensing cold pain in Finnish and Norwegian 
individuals, with C allele carriers (more prevalent in northern 
latitudes) being more susceptible. It can be assumed that both loci 
are independently involved in adaptation to low temperatures. 
In that case, however, the adaptive role of rs17862920-C allele is 
hard to explain. The possible mechanism of differential survival 
might be avoidance of potentially lethal hypothermia by those 
harboring С allele.

As for rs6723922 and rs11682848 loci, none of them shows 
any sign of selective sweep in the XPCLR test. Probably, those are 
false positives, or at least, linked to an unobserved variant under 
selection. It is also worth noting that SNP evidence scores for 
these loci are quite low.

In addition to the search for signatures of selection, we would 
like to note some details on the BayScEnv test not published 
anywhere (as far as we know).

Changing model parameters drastically affects the output in 
BayScEnv (see Supplementary Table 6). For example, significant 
results (q value <0.05) were obtained when using model 
parameters pi = 0.5/p = 0.1 (SNP rs11682848 being significant) or 
pi = 0.9/p = 0.1 (18/60 SNPs being significant). At the same time, 
empirical p values are more stable. Thus, we suggest using them 
in hypothesis-driven studies (with default model parameters) of 
local adaptation and choosing the significance threshold based 
on expert’s opinions rather than relying on FDR outputs.

Counterintuitively, a reduction in the number of tests in 
BayScEnv does not lead to a greater number of statistically 
significant FDR outputs (the posterior error probability and the 
q value). Furthermore, in our case, given parameters pi = 0.9/ 
p = 0.1, 18 out of a total of 60 SNPs reach significance level when 
analyzing 1,369 markers, whereas none is significant when using 
60 SNPs. This discrepancy might be explained by less precise 
constructing a null model of population structure.

FIGURE 1 | Geographic distribution of allele frequencies for rs7577262 polymorphism in populations of East Asian ancestry. Average winter temperatures at the 
locations of the populations studied are shown. 1000 Genomes population: CHB, Han Chinese in Beijing, China; JPT, Japanese in Tokyo, Japan; CDX, Chinese Dai 
in Xishuangbanna, China; CHS, Han Chinese South, China; KHV, Kinh in Ho Chi Minh City, Vietnam.
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CONCLUSIONS

Several lines of evidence point to possible involvement of 
rs7577262 in cold adaptation. This SNP is considered the 
best candidate based on its allelic correlations with winter 
temperatures, signatures of selective sweep and physiological 
evidences. The second top SNP, rs17862920, may participate in 
adaptation as well. As for rs6723922 and rs11682848 loci, these 
appear to be false positives or at least linked to some unobserved 
selected variant.
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