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Current studies have shown that long non-coding RNAs (lncRNAs) play a crucial role in 
a variety of fundamental biological processes related to complex human diseases. The 
prediction of latent disease-lncRNA associations can help to understand the pathogenesis 
of complex human diseases at the level of lncRNA, which also contributes to the detection 
of disease biomarkers, and the diagnosis, treatment, prognosis and prevention of disease. 
Nevertheless, it is still a challenging and urgent task to accurately identify latent disease-
lncRNA association. Discovering latent links on the basis of biological experiments is 
time-consuming and wasteful, necessitating the development of computational prediction 
models. In this study, a computational prediction model has been remodeled as a matrix 
completion framework of the recommendation system by completing the unknown items 
in the rating matrix. A novel method named faster randomized matrix completion for 
latent disease-lncRNA association prediction (FRMCLDA) has been proposed by virtue 
of improved randomized partial SVD (rSVD-BKI) on a heterogeneous bilayer network. 
First, the correlated data source and experimentally validated information of diseases 
and lncRNAs are integrated to construct a heterogeneous bilayer network. Next, the 
integrated heterogeneous bilayer network can be formalized as a comprehensive 
adjacency matrix which includes lncRNA similarity matrix, disease similarity matrix, and 
disease-lncRNA association matrix where the uncertain disease-lncRNA associations are 
referred to as blank items. Then, a matrix approximate to the original adjacency matrix 
has been designed with predicted scores to retrieve the blank items. The construction of 
the approximate matrix could be equivalently resolved by the nuclear norm minimization. 
Finally, a faster singular value thresholding algorithm with a randomized partial SVD 
combing a new sub-space reuse technique has been utilized to complete the adjacency 
matrix. The results of leave-one-out cross-validation (LOOCV) experiments and 5-fold 
cross-validation (5-fold CV) experiments on three different benchmark databases have 
confirmed the availability and adaptability of FRMCLDA in inferring latent relationships of 
disease-lncRNA pairs, and in inferring lncRNAs correlated with novel diseases without 
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INTRODUCTION

Long non-coding RNAs are RNA molecules whose transcripts 
are not less than 200 nucleotides, including intronic/exonic 
lncRNAs, antisense lncRNAs, overlapping lncRNA and long 
intergenic ncRNAs (lincRNAs). LncRNAs have long been 
considered as transcriptional noise, because of their absence in 
encoding proteins. Recently, it has been found that some lncRNAs 
regulate the expression of target genes after transcription, whose 
malfunction may lead to a number of diseases. For example, 
abnormal lncRNA expression may be involved in certain stages 
of cancer progression, which can serve as a potential biomarker 
for early tumor diagnosis (Zhou et al., 2015; Niknafs et al., 2016). 
In addition, lncRNAs are found able to interact with signaling 
pathways involved in the pathology of malignancy (Bian et al., 
2015). However, studies on the prediction of relationships 
between lncRNAs and diseases are still limited in number. One 
key bottleneck is the high cost and labor-intensity of laboratory 
techniques in discovering the relationships between lncRNAs 
and diseases. To break the bottleneck, a lot of computational 
models have been proposed which can generally be divided into 
two major categories depending on the source of the interaction 
data: models for single-interaction data sources and models for 
multi-interaction data sources.

In the first major category, models for single-interaction data 
sources are based on diseases-lncRNAs interaction (association/
link) data, which is unique known interaction information. 
According to its method, the model can be divided into 
two minor branches. The first minor branch is composed 
of machine-learning based models, in which the prediction 
of latent disease-lncRNA association takes experimentally 
validated disease-lncRNA associations as labeled data (training 
set) and unknown associations as unlabeled samples (invalidated 
relationship information). For example, a method named 
Laplacian Regularized Least Squares (LRLSLDA) was first 
proposed by Chen et al. to infer disease-lncRNA associations with 
a semi-supervised learning model (Chen et al., 2013). It is assumed 
that diseases with high semantic similarity are more likely to 
interact with lncRNAs with high functional similarity. LRLSLDA 
effectively predicts latent associations without negative samples, 
but it is difficult to select appropriate parameters and classifiers 
that optimize similarity measures for both lncRNAs and diseases. 
Inspired by the recommendation system, the authors consider 
disease-lncRNA association prediction as a recommendation 
task. A computational model named SIMCLDA is designed to 
predict latent disease-lncRNA relationships, taking advantage of 
the inductive matrix completion (IMC) method (Lu et al., 2018). 
The main idea of SIMCLDA is to extract informative feature 

vectors of lncRNAs and diseases to complete the association 
matrix. It is able to discover more accurate primary feature 
vectors and predict associations for novel lncRNAs and diseases.

Additionally, the second minor branch is composed of 
network-based models, random walk and a variety of propagation 
algorithms implemented on a heterogeneous network to infer 
latent disease-lncRNA associations. The heterogeneous network 
is constructed by integrating lncRNA-disease interaction 
network, disease similarity network and lncRNA similarity 
network. For instance, based on the hypothesis that functional 
lncRNAs are associated with diseases with similar phenotypes, 
a lncRNA functional similarity network (LFSN) is constructed 
and a novel computational framework RWRlncD is proposed for 
predicting latent disease-lncRNA associations through random 
walk with restart (Sun et al., 2014). However, the method of 
RWRlncD fails to infer related lncRNAs for novel diseases without 
prior interaction. Gu et al. put forward a global network-based 
random walk where negative samples are not required to predict 
latent disease-lncRNA relationships (Gu et al., 2017). Although 
this method can predict relationships related to isolated diseases 
or lncRNAs, it is prone to biased prediction. A computational 
method called BPLLDA is brought forward in a heterogeneous 
network on a basis of simple paths with finite length (Xiao et al., 
2018). However, BPLLDA also has some limitations such as 
biased predictions. And the simplistic distance-decay function 
has yet to be improved by machine learning.

Due to the fact that known experimentally validated disease-
lncRNA interactions are still rare, the second major category 
of computational models is models based on multi-interaction 
data sources proposed for association prediction. Multi-
interaction data sources, such as lncRNA-gene interaction, 
lncRNAs-miRNAs interaction, disease-gene interaction and 
miRNA-disease interaction, are also included to infer latent 
disease-lncRNA associations. For example, a TPGLDA method 
is proposed to identify the underlying relationships by a tripartite 
graph of disease-lncRNA-gene and to develop an efficient 
resource allocation algorithm in the graph (Ding et al., 2018). 
TPGLDA effectively reduces the biased prediction in the resource 
allocation process, but it focuses on an unweighted tripartite 
graph and its accuracy for prediction needs to be improved. In 
this category, the weights of heterogeneous interaction data are 
difficult to determine, so the fusion of heterogeneous data is a 
challenging task.

Inferring latent disease-lncRNA association can also be 
modeled as a recommendation system which recommends 
top-ranked lncRNAs for given diseases. Based on matrix 
completion, the establishment of the disease-lncRNA 
recommendation system aims to complete unknown terms 

any prior interaction information. Additionally, case studies have shown that FRMCLDA is 
able to effectively predict latent lncRNAs correlated with three widespread malignancies: 
prostate cancer, colon cancer, and gastric cancer.

Keywords: heterogeneous bilayer network, association prediction, matrix completion, faster SVT, randomized 
partial SVD, similarity measurements
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in the association matrix according to its ranked scores. 
Similar to the hypothesis in the user-item recommendation 
system that users with similar behaviors prefer similar 
items, the prediction of disease-lncRNA association assumes 
that phenotypically similar diseases tend to interact with 
functionally similar lncRNAs (Chen and Yan, 2013). In our 
study, we assume that semantically or functionally similar 
diseases tend to interact with similar lncRNAs (similar in 
sequence, expression profiles or function). Thus, theoretically 
the integration of lncRNA-lncRNA and disease-disease 
interaction will benefit the prediction of lncRNA-disease 
associations. Based on that, we proposed a computational 
model FRMCLDA similar to the recommendation system 
to infer latent associated lncRNAs for queried diseases, and 
solved it with faster randomized partial matrix completion 
(fSVT) algorithm (Feng et al., 2018). FRMCLDA consolidated 
disease integrated similarity network, lncRNA integrated 
similarity network and known disease-lncRNA interaction 
network to construct a heterogeneous bilayer network. Then 
a randomized SVD technique incorporating the block Krylov-
subspace iteration (BKI) scheme (named rSVD-BKI algorithm) 
was proposed to complete large-scale matrix. In addition, a 
novel subspace reuse technique was integrated to accelerate 
matrix completion. Our method is based on semi-supervised 
machine learning, which does not need the information of 
negative samples. So, it generally belongs to the first category.

Our work main contributions are threefold: first, the 
integrated similarities for diseases and lncRNAs were properly 
calculated by different methods dealing with different types of 
data sources. The ratio of cosine similarity in integrated similarity 
was better determined by learning, which extracted similarity 
information based on known disease-lncRNA interaction. 
Therefore, FRMCLDA was able to offset biased predictions 
by similarity integration which was not entirely dependent on 
known interaction. Second, diseases and lncRNAs were mapped 
into the same network by constructing a heterogeneous bilayer 
network. FRMCLDA completed the disease-lncRNA interaction 
matrix by completing the adjacency matrix of the large-scale 
heterogeneous network. Thus, the similar information was 
included in the association prediction. Third, we took advantage 
of an effective fSVT algorithm which adopted rSVD-BKI and 
a novel subspace reuse technique to expeditiously approximate 
the dominant singular values and homogeneous singular vectors 
in an adaptive manner. Hence, the recommendation system 
could be extended for comprehensive adjacency matrices of 
heterogeneous bilayer networks.

For evaluating the performance of our method, cross 
validation experiments were performed on three benchmark 
databases, Dataset 1, Dataset 2 and Dataset 3. FRMCLDA 
obtained reliable AUCs of 0.92068, 0.91224 in global LOOCV 
and local LOOCV respectively in Dataset1, at least 5% higher 
than other comparison models. In Dataset 2 and Dataset 3, 
FRMCLDA achieved an AUC of 0.9182 and 0.8999 by global 
5-fold CV, higher than other comparison methods. In addition, 
a case study on inferring latent lncRNAs associated with 
prostate cancer, colon cancer and gastric cancer in Dataset 3 
were performed. In terms of the results, 16, 15, 16 out of the top 
20 predicted lncRNAs associated with prostate cancer, colon 
cancer and gastric cancer respectively were confirmed by recent 
literature and public databases. The results show that FRMCLDA 
is able to effectively infer the associations between diseases and 
lncRNAs with higher accuracy than the other existing models.

MATERIALS AND METHODS

We denote a disease-lncRNA association matrix as DL m n∈ ×
  , 

the rows of which represent diseases and columns represent 
lncRNAs. The variable m is the number of diseases, and n is the 
number of lncRNAs. If disease di is associated with lncRNA lj, 
the value of DL(i, j) in the association matrix is 1. And if the 
link between di and lj is unknown or uncertain, DL(i, j) is 0. It 
is noted that the unlinked evidence between di and lj is difficult 
to obtain. The known experimentally validated disease-lncRNA 
links can be retrieved from the public association database, based 
on which disease-lncRNA interaction matrix DL is established. If 
the number of nonzero elements is far smaller than that of zero 
elements, and the distribution of nonzero elements in the matrix 
is irregular, the matrix will be called sparse matrix. Generally, 
matrix DL is a sparse matrix, because, due to the insufficient 
number of studies, there are much more unknown associations 
(value 0) in matrix DL than known ones (value 1) (see Table 1). 
LS and DS denote lncRNA integrated similarity matrix and 
disease integrated similarity matrix respectively, which can be 
calculated through various biological data. It is assumed that 
the underlying determinants of the disease-lncRNA associations 
are closely related. Hence the number of independent factors is 
less than the number of lncRNAs or diseases. Accordingly, the 
matrix of known disease-lncRNA association is of low rank. That 
assumed, matrix completion can recover the unknown items of 
the disease-lncRNA interaction matrix by constructing a low-
rank matrix which aims to approximates adjacency to matrix A.

TABLE 1 | Details of three benchmark datasets.

Datasets Number of known 
associations 

Number of lncRNAs Number of diseases Sparsity of the matrix DL Weights in integrated 
Similarity 

Dataset 1 352 156 190 1.187*10−2 wl = 0.7, wd = 0.9
Dataset 2 540 115 178 2.638*10−2 wl = 0.5, wd = 0.7
Dataset 3 621 258 226 1.065*10−2 wl = 0.5, wd = 0.5

The sparsity is calculated by the ratio of existed known association number to the size of the matrix (all the possible association number).
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Overview
In our work, a new method called FRMCLDA is proposed to infer 
latent disease-lncRNA associations on the basis of fast matrix 
completion. The mechanism of FRMCLDA is shown in Figure 1. 
Firstly, we obtaine known disease-lncRNA associations from the 
public databases. Secondly, we calculate the disease similarity and 
lncRNA similarity with different methods. Next, we construct a 
heterogeneous bilayer network with three networks, i.e., a disease 
similarity network, a lncRNA similarity network and a disease-
lncRNA interaction network. Furthermore, we implement a faster 
matrix completion algorithm with an improved randomized partial 
SVD and a sub-space reuse technique to restore the adjacency 
matrix of heterogeneous bilayer network. Finally, we infer potential 
disease-lncRNA associations through the predicted scores.

Datasets and Data Preprocessing
All the known diseases-lncRNA interactions were obtained 
from three gold standard databases in three benchmark datasets 
respectively: MNDR database, Lnc2Cancer database and 
LncRNADisease database (Chen et al., 2013; Wang et al., 2013; 
Ning et al., 2016).

The known associations between lncRNA and disease in 
Dataset 1 were retrieved from the MNDR database in 2015. After 
removing all the duplicate records of lncRNAs and diseases, and 
what do not belong to human beings, and correcting the names 
of the lncRNAs (according to LncRNAdb, Lncipedia, NCBI and 
HGNC) and diseases (according to UMIS, MeSH and NCBI), 
we finalized 352 disease-lncRNA associations, including 156 
lncRNAs and 190 diseases.

FIGURE 1 | Scheme of FRMCLDA to infer latent disease-related lncRNAs by matrix recovery.
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In Dataset 2, the known associations between lncRNA and 
disease were obtained from the Lnc2Cancer database in 2016. 
After eliminating the duplicate associations on account of 
different evidences, we obtained 540 distinct known disease-
lncRNA associations, including 115 lncRNAs and 178 diseases.

In Dataset 3, the known disease-lncRNA associations were 
downloaded from the manually curated LncRNADisease 
database (http://cmbi.bjmu.edu.cn/lncrnadisease) in 2015. In 
the same way as data preprocessing, we downloaded 621 known 
disease-lncRNA associations, including 248 lncRNAs and 226 
diseases. The details of the three datasets are shown in Table 1.

Similarity Calculation
Diseases Similarity
In the three benchmark datasets, disease integrated similarities 
were calculated with three different similarity data sources.

a) Disease semantic similarity: In previous studies by Chen et al., 
a graph of directed acyclic (DAG) is utilized to label a disease, 
which includes overall relevant annotation labels acquired 
from the U.S. National Library of Medicine (MeSH) (Cai et al., 
2008; Chen and Yan, 2013). It is assumed that diseases sharing 
larger common DAGs areas might have higher similarity 
scores. Therefore, the semantic similarity of diseases denoted 
as DS–semantic was calculated on the basis of DAG values by 
DOSim. DOSim is a package of R language for the semantic 
similarity calculation based on disease ontology (Wang 
et al., 2007).

b) Disease functional similarity: Disease functional similarity 
was calculated using the Jaccard similarity coefficient on 
account of gene-gene ontology relationships and disease-gene 
relationship, as reported in previous studies (Pinero et al., 
2017; Lu et al., 2018). Disease functional similarity is denoted 
as DS–jaccard(di, dj), and can be calculated by formula (1):

 

DS jaccard d d
GO GO

GO GO
i j

d d

d d

i j

i j

_ ( , ) =




 (1)

  where GOdi represents the gene ontology terms related to 
disease di, and the symbol |·| represents the number of items 
in a set.

c) Disease cosine similarity: Widely used in information retrieval 
and data mining, the cosine similarity is a popular method for 
calculating the similarity as the cosine of the angle between 
vectors. Here we used cosine similarity to extract disease 
feature information from the known interaction matrix DL. 
The disease cosine similarity denoted as DS–cosine(di, dj)can 
be calculated by formula (2):

 
DS ine d d

IP d IP d
IP d IP di j

i j

i

_cos ( , )
( ) ( )
( ) ( )

=
⋅

j
 (2)

  where IP(di) is the interaction profile of disease di, the i-th row 
vector of the interaction matrix DL. If disease di is associated 

with lncRNA lk, the k-th element in IP(di) is 1, otherwise the 
value is 0. The value 0 does not mean that association does 
not exist but means it is uncertain. ||IP(di)|| is the 2-norm of 
IP(di).

d) Integrated disease similarity DS: To illustrate the adaptability 
of our model to different similarity data, we adopted two 
different integrated disease similarities in three benchmark 
datasets. In Dataset 1 and Dataset 2, DS was calculated 
by: DS w DS semantic w DS ine

d d
= ∗ + − ∗

1 1
_ ( ) _ cos1  

In Dataset 3, DS was calculated by: 
DS w DS jaccard w DS ine

d d
= ∗ + ∗

2 2
-_ ( ) _ cos1 .

LncRNAs Similarity 
To calculate lncRNA integrated similarity, we adopted four 
different sources of similarity data: lncRNA sequence similarity, 
lncRNA expression similarity, lncRNA functional similarity and 
lncRNA cosine similarity.

a) LncRNA sequence similarity: Most of the RNA sequences 
of lncRNAs were downloaded mainly from the database 
LncRNADisease (http://www.cuilab.cn/lncrnadisease). The 
sequences not available in LncRNADisease were retrieved 
from the databases UCSC and LNCipedia. The sequence 
similarity between two lncRNAs were calculated with 
Needleman-Wunsch global alignment algorithm (Emboss-
Needle tool) (Needleman and Wunsch, 1970; Rose and 
Eisenmenger, 1991). We set the parameters to default values. 
The Matrix file name was set to EDNAfull for nucleic, Gap 
opening penalty was set to 10 and Gap extension penalty was 
set to 0.5 for any sequences. LncRNA sequence similarity is 
defined as formula (3):

 

LS seq l l
SW l l

SW l l SW l l
i j

i j

i i j j

_ ( , )

( , )

( , ) ( , )

=
⋅

 (3)

  where SW(li, lj) is the alignment score calculated by Emboss-
Needle, which is equal to the sum of the matches taken from 
the scoring matrix, minus penalties arising from opening and 
extending gaps in the aligned sequences.

b) LncRNA expression similarity: The expression profiles of 
lncRNA can be obtained from the dataset E-MTAB-513 in 
ArrayExpress (Parkinson et al., 2007; Derrien et al., 2012). 
Based on the previous literature, we normalized these 
expression data and calculated the lncRNA expression 
similarity LS_exp with the absolute Spearman correlation 
coefficient (Chen and Yan, 2013).

c) LncRNA functional similarity: Based on an accepted 
assumption that lncRNAs with similar functions have similar 
interaction patterns to those of diseases, the functional 
similarity of lncRNA can be obtained via computation of 
disease semantic similarity from a previous study by Sun 
et al., (2014). It is supposed that lncRNA li is correlated with a 
set of diseases Di = {di1, di2,…, dim}, and lncRNA lj is correlated 
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with a set of diseases Dj = {dj1, dj2,…djn}. Semantic similarity 
between dil and Dj is calculated as formula (4):

 
DS semantic d D DS semantic d d

il j d D il
j

_ ( , ) max( _ ( , ))=
∈  

(4)

  And then the functional similarity of lncRNAs can be 
computed as formula (5):

LS func l l

DS semantic d D DS sem

i j

il jl m

_ ( , )

_ ( , ) _
=

+
≤ ≤∑1

aantic d D

m n
jk ik n

( , )
1≤ ≤∑

+  
 (5)

  where LS_ func(li, lj) denotes the functional similarity between 
lncRNA li and lncRNA lj.

d) LncRNA cosine similarity: In the same way, we used cosine 
similarity to extract lncRNA feature information from the 
known interaction matrix DL. lncRNA cosine similarity can 
be calculated as formula (6):

 

LS ine l l
IP l IP l

IP l IP l
i j

i j

i j

_cos ( , )

( ) ( )

( ) ( )

=
⋅  (6)

  where IP(lj) is resulted from the j-th column of the interaction 
matrix DL. IP(lj) is a vector which denotes the feature vector 
for lncRNA lj.

e) Integrated lncRNA similarity LS: In three benchmark datasets, 
we adopted three different similarity computation methods 
to fully demonstrate the robustness of FRMCLDA. In 
Dataset 1, integrated lncRNA similarity LS was calculated as: 
LS w LS func w LS ine

l l
= ∗ + − ∗

1 1
_ ( ) _ cos1 . In Dataset 2, LS 

was calculated as: LS w LS w LS ine
l l

= ∗ + − ∗
2 2

_ exp ( ) _ cos1  . 
In Dataset 3, LS was calculated as: 
LS w LS seq w LS ine

l l
= ∗ + − ∗

3 3
_ ( ) _ cos1 .

Construction of the Heterogeneous 
Bilayer Network
Based on the integrated disease and lncRNA similarity matrices 
DS and LS calculated above, disease similarity network and 
lncRNA similarity network can be constructed. Let D = {d1, 
d2,…, dn} represent the set of n diseases in the disease similarity 
network. The edge between disease di and dj is weighted by 
integrated disease similarity DS(i, j). Let L = {l1, l2,…, lm} represent 
the set of m lncRNAs in the lncRNA similarity network. The 
edge between lncRNA li and lj is weighted by integrated lncRNA 
similarity LS(i, j). Besides, the disease-lncRNA interaction 
network can be modeled as G(V, E), where V(G) = {D,L}, E(G) 
⊆ D × L, E(G) = {eij, edge between disease di and lncRNA lj}. The 
edge eij is initialized to 1, if there exists a known link between 
disease di and lncRNA lj, otherwise, eij is initialized to 0. DL is the 
adjacency matrix for the disease-lncRNA interaction network.

Finally, a heterogeneous bilayer network is constructed by 
connecting disease similarity network and lncRNA similarity 
network via disease-lncRNA association network, as shown 
in Figure 1. Accordingly, the adjacency matrix A of the 
heterogeneous bilayer network is defined as formula (7):

 
A DS DL

DL LST
=













 (7)

where diagonal sub-matrices DS and LS are the adjacency matrix 
of the disease similarity network and the lncRNA similarity 
network. The off-diagonal sub-matrix DL is the adjacency matrix 
for the disease-lncRNA interaction network, DLT is the transpose 
of DL. Usually, the interaction between lncRNAs and diseases is 
mutual, and values of the matrix DL are nonnegative, therefore 
the adjacent matrix A is meristic and positive semi-definite. The 
singular values of the adjacent matrix A are nonnegative real 
numbers and equivalent to the eigenvalues. In conclusion, the 
prediction of disease-lncRNA association can be remodeled as 
the matrix completion of the adjacency matrix A. If matrix A is 
only comprised of matrix DL, rather than the large-scale matrix 
of the heterogeneous network, then the completion based on 
rank minimization will not generate significant results. That is 
because all known disease-lncRNA associations are positive in 
matrix. Only restoring the matrix DL will result in an optimized 
solution to rank minimization problem, i.e., all-one matrix with 
rank 1.

Inferring Latent Associations by Faster 
Randomized Matrix Completion
Our goal is to restore the unknown entries of the adjacent matrix 
A by constructing a proximate matrix A* with the same size (m + 
n) × (m + n). It is assumed that A have rank r(r ≪ (m + n)). Φ is 
denoted as an index set for all the known entries of matrix A. The 
problem of matrix completion can be converted to solving the 
rank minimization problem by formula (8):

min ( )rank A∗

 s t P A P A. . ( ) ( )Φ Φ
∗ =  (8)

in which PΦ(A) is denoted as an orthogonal projector onto the 
span of matrix A. Its value is 0 when the element (i, j) is not in 
the set Φ. Matrix A is the adjacency matrix of the heterogeneous 
network constructed in Datasets and Data Processing. However, 
the problem of rank minimization is generally considered as 
a NP-hard problem (Natarajan, 1995). An approach called 
relaxed convex optimization is widely used by minimizing 
the nuclear norm (||·||*) of the matrix, which is known to be 
solved by standard singular value threshold (SVT) algorithm 
(Candès and Recht, 2009). Therefore, the matrix completion 
can be resolved by a proximal optimization solution (Cai et al., 
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2008). Minimization of the nuclear norm can be resolved by 
formula (9):

min A∗

∗

 s t P A P A. . ( ) ( )*
Φ Φ=  (9)

Equation (9) can be solved by the iterative processes in 
formula (10) and (11):

 

X shrink Y
Y Y P A X
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where the function shrink(Y(i), τ) is a soft thresholding operator 
that computes the singular value of the matrix Y at level τ (Aken 
et al., 2016). δ is the iteration step length. σ j

i( )  is one of the singular 
values of Yat the ith iteration. uj

i( )  and v j
i( )  are the corresponding 

left singular vector and right singular vector respectively. Y (i) is 
usually a relatively large matrix with high sparsity, and usually 
can be stored with a sparse matrix. Starting computation from 
Y P(0)=c (A)δ Φ , a series of X(i) and Y(i) can be generated through 
the linearized Bregman iteration.

In FRMCLDA, δ is set to ( /m n)+ Φ  as assigned in 
previous literature (Li and Yu, 2017). We set c p A=  τ δ/ ( ( ) )Φ , 
τ φ= + P A m nF( ) ( ) / Φ  to balance the accuracy of approximation 
against the speed of convergence as suggested by Candès et  al.
(Candès and Recht, 2009). Although the SVT algorithm has high 
accuracy for both symmetric and real data matrix, the costs are 
large when executing SVD repeatedly at each iteration. So many 
improved methods like truncated singular value decomposition 
and randomized SVD have been proposed for accelerating SVT 
by keeping the cost of shrink (·) low throughout the iteration 
(Halko et al., 2010). In this study, FRMCLDA adopts a faster SVT 
algorithm, fSVT, based on partial and improved randomized SVD 
which exploits a sub-space reuse technique to extract key singular 
value and corresponding singular vector. The main concept of 
randomization is to determine the sub-spaces for obtaining 
dominant information and ignore insignificant information 
by random projection. Randomized SVD algorithms execute 
as many or fewer floating-point operations (flops) with the 
runtime benefit. Faster matrix completion even incorporates 
a block Krylov sub-space iteration rSVD-BKIr scheme and a 
novel sub-space reuse mechanism (reuse the orthogonal basis 
Q from the last round of iteration) (Musco and Musco, 2015). 
The fast matrix completion algorithm with rSVD-BKI has been 
proven the have the same reliability and accuracy as the original 
singular value thresholding algorithm, while at higher speed for 
large data matrix completion (Feng et al., 2018). FRMCLDA 

applies the faster singular value threshold (fSVT) algorithm for 
a similarly optimal low-rank approximation of the adjacency 
matrix, and prediction of latent links between lncRNAs and 
diseases in LD. Our faster randomized matrix completion 
method is illustrated in Algorithm 1 in the Supplementary 
Materials S6. The function rSVD-BKI(·) performs singular 
value decomposition and the details of realization can be found 
in an earlier study (Feng et al., 2018)

EXPERIMENTS AND RESULTS

We first put forward the evaluation metrics for the methods of 
association prediction. Second, we tested the effects of cosine 
similarity on diseases and lncRNAs and fine-tuned the weights 
of cosine similarity. Third, we implemented permutation test to 
assess the influence of different data sources on optimization 
procedure. Fourth, we recorded the time usage of FRMCLDA 
for different sizes of heterogeneous network. Fifth, we compared 
FRMCLDA with other existing methods by global LOOCV 
experiments, local LOOCV experiments and global 5-fold cross-
validation experiments. Finally, we implemented case studies to 
validate the practicability of FRMCLDA.

Evaluation Metrics of Performance
In order to assess the performance of FRMCLDA in inferring 
latent disease-correlated lncRNAs, global LOOCV experiments, 
local LOOCV experiments and global 5-fold cross-validation 
experiments are implemented on three benchmark datasets. 
Under the framework of LOOCV, each known experimentally 
validated association is picked in turns as a test sample, and all 
the other known associations are considered as training samples. 
The test sample is sorted together with the candidate samples 
without known association evidence. The test sample whose rank 
exceed the given threshold would be considered as a successful 
prediction. The main difference between global and local 
LOOCV is whether to investigate all diseases simultaneously or 
only query one disease at a time to select candidate samples. That 
is to say, global LOOCV considered all the unknown associations 
as candidate samples, whereas local LOOCV only focused on 
one disease in the test sample and selected the corresponding 
unknown associations as candidate samples. In global 5-fold 
cross-validation, all of the known experimentally validated 
associations are divided into five uncrossed sets, whose size must 
be strictly equal. Each set of the five is taken in turns as the test 
sample, but the other 4 sets are served as training samples. After 
matrix completion is performed, the test samples are ranked 
together with candidate samples and then are sorted in the 
descending order of their predicted scores.

Furthermore, false negative (FN), false positive (FP), true 
negative (TN) and true positive (TP) are summarized based 
on the ranked results for each specific threshold. The receiver 
operating characteristic curves are made by plotting the true 
positive rate (TPR, recall) against false positive rate (FPR) 
based on varying thresholds. The precision-recall (PR) curve is 
also plotted to fully evaluate the performance of the prediction. 
The area under the ROC curve (AUC) and the area under the 
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PR curve (AUPR) are finally calculated to evaluate the overall 
performance of the prediction. An AUC value of 0.5 implies 
a random prediction and an AUC value of 1 implies a perfect 
prediction performance. Therefore, AUC and AUPR are used as 
primary evaluating measures.

Effects of Cosine Similarity on Diseases 
and lncRNAs
Both integrated disease similarity and integrated lncRNA 
similarity in three benchmark datasets are calculated with cosine 
similarity combined, which can extract feature information 
from the known interaction matrix. The weights of wl and wd 
in integrated similarity calculations can be fine-tuned by cross 
validation in three benchmark datasets separately. Let wd and wl 
vary from 0.1 to 1 at the increment of 0.1. According to AUC 
values of LOOCV based on Dataset1, FRMCLDA performed 
best when wd1 = 0.9 and wl1 = 0.7. Likewise, on Dataset2, we 
chose wd2 = 0.7 and wl2 = 0.5. On Dataset3, we chose wd3 = 0.5 
and wl3 = 0.5. All can be seen in Table 1.

In Dataset2, we implemented 5-fold cross validation 20 times 
to test the effects of the cosine similarity on model performance. 
The four test settings were: 1) using cosine similarity both for 
integrated similarity of neither lncRNAs nor diseases; 2) only 
the lncRNA similarity integrating the cosine similarity; 3) only 
the disease similarity integrating the cosine similarity; 4) both 
lncRNA similarity and disease similarity integrating cosine 
similarity. The results can be seen in Table 2. When both 
similarities are calculated with cosine similarity combined, the 
AUC value (0.9145 ± 0.0013) achieves the best of four. Therefore, 
FRMCLDA performance can be improved by incorporating 
effective feature information extracted by cosine similarity from 
interaction profiles with fast matrix completion.

Influence of Different Data Sources on 
Optimization Procedure
To evaluate the influence of different data sources on the 
optimization procedure of matrix completion, we have 
implemented a permutation test on disease-lncRNA interaction 
matrix DL, lncRNA similarity matrix LS, and disease similarity 
matrix DS separately. Based on the LOOCV framework, we 
randomized each of the three matrices in turns, while keeping 
the other two matrices unchanged. We carried it out 20 times 
and recorded the average AUC value for each type of data 
source. Usually, if a matrix contributes more to the optimization 
procedure, the result of the permutation test based on it will be 

closer to the stochastic value. As shown in Table 3, the mean 
AUC based on randomized matrix DL is the lowest and close 
to  0.5, indicating that matrix DL has the greatest influence on 
the performance of our model. In the same way, it is concluded 
that matrix LS contributes more than DS to the performance of 
our model.

Time Usage of FRMCLDA for Different 
Sizes of the Heterogeneous Network
In FRMCLDA model, we implement matrix completion through 
fSVT as proposed by a previous study (Feng et al., 2018). 
Algorithm fSVT used a block Krylov iteration approximation 
SVD method rSVD-BKIr and a sub-space reuse mechanism 
to replace the original exact SVD. Thus, the turn-around time 
of SVT is significantly reduced while the accuracy remains 
the same. As seen in algorithm 1 in Supplementary file S6, 
tolerance ε is the terminating condition. When mean absolute 
error (MAE) is greater than ε, the program will terminate. The 
value of power parameter p can be dynamically adjusted as the 
operation accuracy changes. Therefore, the parameter ε and p can 
decide the rounds of the iteration, which will greatly affect the 
main turn-around time of FRMCLDA. Therefore, we were not 
able to compare the running time with other of other methods 
because of different conditions. We just recorded the time usage 
of FRMCLDA for different sizes of heterogeneous network.

Here, we set p = 2 and ε = 0.4. We executed 20 times FRMCLDA 
in three benchmark datasets. Average time usage of FRMCLDA 
and standard deviations are shown in Table 4. In Dataset 1, 2 
and 3, the CPU time reached 2.1758 ± 0.2826 s, 1.5367 ± 0.1799 
s and 3.9016 ± 0.2703 s, respectively.

Comparison of Performance With Other 
Methods on Different Datasets
On Dataset 1, the performance of FRMCLDA is compared 
with four popular methods: LRLSLDA (Chen and Yan, 2013), 
KATZLDA (Chen, 2015), SIMCLDA (Lu et al., 2018) and 

TABLE 2 | The effects of the cosine similarity on AUC by 5CV in dataset2.

No LS_cosine 
and DS_cosine

Only combing 
LS_cosine 
in LS

Only combing 
DS_cosine 
in DS

Combing 
LS_cosine in LS 
and DS_cosine 
in DS

0.7995 ± 0.0044 0.8705 ± 0.0050 0.8510 ± 0.0032 0.9145 ± 0.0013

TABLE 3 | The result of contribution test on performance of prediction by 
LOOCV in dataset 2.

Set the data source to random matrix Average AUCs by 20 times 
randomization

lncRNA similarity matrix (LS) 0.8615 ± 0.0061
Disease similarity matrix (DS) 0.8081 ± 0.0059
disease-lncRNA association matrix (DL) 0.5332 ± 0.0174

TABLE 4 | The time usage of FRMCLDA for different sizes of heterogeneous 
network.

The size of heterogeneous 
network

CPU time (second)

Dataset1 156 × 190 2.1758 ± 0.2826 
Dataset2 115 × 178 1.5367 ± 0.1799 
Dataset3 258 ×226 3.9016 ± 0.2703
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BPLLDA (Xiao et al., 2018). The ROC curves of global LOOCV 
are shown in Figure 2. Obviously, FRMCLDA achieved an AUC 
of 0.92068, which outperformed LRLSLDA (0.81952), KATZLDA 
(0.79708), SIMCLDA (0.87368) and BPLLDA (0.87117) by 5% 
at least. Therefore, FRMCLDA is superior compared to other 
methods in predicting disease-lncRNA association.

One advantage of FRMCLDA is that it is able to infer latent 
correlated lncRNAs with queried diseases, even novel diseases. 
To show the performance of FRMCLDA in predicting novel 
disease-correlated lncRNAs, we implemented local LOOCV 
on Dataset 1. The results of FRMCLDA with local LOOCV on 
Dataset 1 were recorded in Supplementary S1. As shown in 
Figure 3, compared with three methods (LRLSLDA, BPLLDA, 
and GrwLDA) (Gu et al., 2017), the AUC of FRMCLDA was 
0.91224, significantly higher than those of LRLSLDA (0.65812), 
BPLLDA (0.78528) and GrwLDA (0.65802) with increases 
of about 27.8%, 13.9%, and 27.86% respectively. The AUPR of 
FRMCLDA was 0.54644, significantly higher than those of 
LRLASLDA (0.12517), GrwLDA (0.1180) and BPLLDA (0.0753). 
In conclusion, FRMCLDA has been proven to be effective in 
inferring related lncRNAs with novel diseases in terms of AUC 
values and AUPR values. For example, we deleted all the known 
breast cancer-correlated associations, just as breast cancer was 
a novel disease. After matrix completion by FRMCLDA, we 
ranked all the candidate lncRNAs according to their scores. As 
can be seen in Table 5, all 14 deleted breast cancer-associated 
lncRNAs were finally successfully ranked out of top 20 of all the 
predicted lncRNAs.

The robustness of FRMCLDA was further validated by 
inferring latent associations on Dataset 2 and Dataset 3. We 
conducted 20 times global 5-fold cross-validation experiments 

to validate the precision of prediction by FRMCLDA on Dataset 
2 and Dataset 3. The results of ROC curve, PR curve, precision-
rank bars and recall-rank bars using different methods are 
shown in Figure 4 and Figure 5, respectively. For example, as 
shown in Figure 4, after one time global 5-fold cross-validation 
on Dataset 2, FRMCLDA achieved an AUC of 0.91827, higher 
than SIMCLDA (0.88401) and KATZLDA (0.83693). The AUPR 
of FRMCLDA was 0.23794, also higher than those of SIMCLDA 
(0.1989) and KATZLDA (0.0635). Furthermore, on Dataset 2, 
the maximum precision reached by FRMCLDA is 0.88, which is 
higher than other methods, as shown in Table 6. On Dataset 3, 
after 20 times 5-fold CV, the average AUC of FRMCLDA is 0.8999 
(±0.0049), which is superior to SIMCLDA 0.84694 (±0.0033) 
and KATZLDA 0.78561 (±0.0053). The AUPR of FRMCLDA 
is 0.1908 (±0.0033), higher than those of SIMCLDA 0.13717 
(±0.0027) and KATZLDA 0.0293 (±0.0036), as shown in Figure 5. 
Furthermore, in terms of precision-rank bar and recall-rank bar, 
FRMCLDA boasts the best precision at every rank except for the 
top-20 rank in Dataset 3. In summary, FRMCLDA demonstrates 
high prediction accuracy on three different datasets.

Case Study
After performing cross validation to confirm the ability of 
FRMCLDA, we conducted a global prediction of potential 
related disease-lncRNA pairs. All known lncRNAs-diseases 
links were considered as training samples, while other 
unknown associations constituted the candidate samples. 
FRMCLDA can infer the latent correlated lncRNAs for all 
diseases simultaneously by faster random matrix completion. 
All candidate lncRNAs correlated with a queried disease were 

FIGURE 2 | Overall performance assessment of FRMCLDA, BPLLDA, SIMCLDA, KATZLDA and LRLSLDA in predicting disease-lncRNA relationships on Dataset 1 
by global LOOCV.
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ranked according to predicted scores generated by FRMCLDA. 
The predicted and ranked lncRNAs (excluding known correlated 
lncRNAs) correlated with 226 diseases on Dataset 3 can be 
seen in Supplementary S2. To confirm whether top-ranked 
lncRNAs for queried diseases are real through public literature 
and three public databases (LncRNADisease, Lnc2Cancer and 
MNDR), we have conducted case studies on Dataset 3. Three 
databases are kept updated with new disease-lncRNA links 
verified by biological experiments in support of our validation. 
As shown by one of the prediction results in Supplementary 
S2, we take prostate cancer, colon cancer and gastric cancer 
and show the verification of top-20 predicted lncRNAs for each 
selected cancer.

Prostate cancer is one of the most common malignant 
tumors for males, accounting for about 13% of cancer-related 
death (Miller et al., 2016). In prostate cancer, the expression 

level of lncRNAs may be increasing or decreasing steadily 
(Smolle et al., 2017). Thus, it is justifiable to predict the 
possible links between lncRNAs and prostate cancer. Recent 
biological experiments have identified several lncRNAs 
associated with prostate cancer. For example, LncRNA H19 is 
down-regulated significantly in the cell line M12 of metastatic 
prostate carcinoma (Zhu et al., 2014). HOTAIR is found to 
be significantly regulated via genistein, and the expression of 
HOTAIR in castration-resistant PCa cell line is higher than 
that of standard prostate cell lines (Chiyomaru et al., 2013). 
MEG3 can enhance Bax, activate caspase 3 and inhibit the 
internal survival pathway of cells in vivo and in vitro through 
decreasing the bcl-2 protein expression (Zhang et al., 2003). 
MALAT1 is upregulated in prostate tumor tissue and cell line 
of human beings (Ren et al., 2013). It is reported that CBX7 
and CDKN2B-AS1 levels are enhanced in prostate tumor 
tissues (Yap et al., 2010). PVT1 can accelerate the intrusion 
and transfer by prostate carcinoma via regulating EMT (Chang 
et al., 2018). Linc00963 is a new lncRNA which is involved in 
the transformation from the androgen-dependent stage to the 
androgen-independent stage of prostate carcinoma (Wang 
et al., 2014). In our work, FRMCLDA is performed to infer 
possible lncRNAs correlated with prostate cancer. Finally, 
10 out of top-10 and 16 out of top-20 predicted prostate 
cancer-associated lncRNAs are verified on the three databases 
(LncRNADisease, MNDR, Lnc2Cancer) mentioned above. 
They are shown in Table 7.

Colon cancer is considered as one of the most widespread and 
deadly cancers in the world. Disorders of lncRNAs are associated 

FIGURE 3 | Performance assessment of LRLSLDA, GrwLDA, BPLLDA and FRMCLDA in inferring novel disease-correlated lncRNAs on Dataset 1 by local LOOCV. 
(A) ROC curve of inferring novel disease-related lncRNAs. (B) PR curve of inferring novel disease-related lncRNAs.

TABLE 5 | Predicting novel disease-related lncRNAs by deleting known 
associations for each disease.

Known but deleted 
breast cancer-related 
lncRNAs

Rank 
number

Known but deleted 
breast cancer-

related lncRNAs

Rank 
number

BCAR4 13 LSINCT5 7
BCYRN1 6 MALAT1 2
CDKN2B-AS1 4 MEG3 3
DSCAM-AS1 8 MIR31HG 14
GAS5 10 PINC 15
H19 1 PVT1 5
HOTAIR 9 SRA1 11
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with miscellaneous biological processes, including tumorigenesis 
(Ba-Alawi et al., 2016). For example, CDKN2B-AS1 up-regulates 
proliferation in HCT116 cells in a manner independent of the 
p15/p16-pRB pathway (Chiyomaru et al., 2013). The lower 
expression of GAS5 is highly related to big tumor volumes, low 
histological scores and late TNM stages. LncRNA Plasma UCA1 
can be used as a potential biomarker for inchoate diagnosis 
and monitoring of colon cancer (Aken et al., 2016). It is found 
that overexpression of lncRNA TUG1 promotes colon cancer 
progression (Ba-Alawi et al., 2016). We utilize FRMCLDA to 
restore the possible colon cancer-correlated lncRNAs. The results 
suggest that, 9 out of the top 10 (9/10) and 15 out of the top 20 
(15/20) predicted lncRNAs are confirmed by three databases 

mentioned before (LncRNADisease, MNDR, Lnc2Cancer), as 
shown in Table 8.

Gastric cancer is one of the cancers with the highest 
incidence and mortality in the world. Gastric cancer is a 
complicated disease, caused by an imbalance of the cancer-
causing and cancer-suppressing pathways (Aken et al., 2016). 
An increasing number of studies show that lncRNAs may play 
an active role in primary processes of gastric cancer. FRMCLDA 
predicts the gastric cancer-associated lncRNAs, some of which 
are validated though the latest public literature and databases. 
For instance, the expression of GAS5 is found to be lowered 
in gastric tumors, contrary to the up-regulated expression 
of mir-23a (Ba-Alawi et al., 2016). It is suggested that a high 

FIGURE 4 | Performance of FRMCLDA, KATZLDA and SIMCLDA on inferring lncRNAs by global 5-fold cross-validation on Dataset 2. (A) ROC curve of predicting 
disease-lncRNA associations. (B) PR curve of predicting disease-lncRNA associations. (C) Results of precision at every rank. (D) Results of recall at every rank.
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FIGURE 5 | Performance of FRMCLDA, KATZLDA and SIMCLDA on inferring lncRNAs by global 5-fold cross-validation on Dataset 3. (A) ROC curve of predicting 
disease-lncRNA associations. (B) PR curve of predicting disease-lncRNA associations. (C) Results of precision at every rank. (D) Results of recall at every rank.

TABLE 6 | Precision-rank on dataset 2.

lncRNA Top 20 Top 40 Top 60 Top 80 Top 100 Top 120 Top 140

precision

FRMCLDA 0.8800 0.5150 0.4233 0.3775 0.3440 0.3200 0.3029
SIMCLDA 0.5300 0.4150 0.3667 0.3175 0.2860 0.2671 0.2343
KATZLDA 0.2100 0.1500 0.1500 0.1300 0.1200 0.1167 0.1086

recall
FRMCLDA 0.1630 0.1707 0.2352 0.2796 0.3185 0.3556 0.3926
SIMCLDA 0.0981 0.1537 0.2037 0.2352 0.2648 0.2907 0.3037
KATZLDA 0.0389 0.0556 0.0833 0.0963 0.1111 0.1296 0.1407
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level of MALAT1 could be a potential biomarker for distant 
metastasis of gastric cancer. Further studies have shown that 
lincrna-p21 knockout can promote the malignant behavior of 
gastric cancer cells according to overexpression assay (Aken 
et al., 2016). LncRNA SNHG16 is found to be highly expressed 
in gastric cancer and thus has become a novel target of clinical 
treatment for gastric cancer (Lian et al., 2017). The results 
show that, 8 out of the top-10 ranked lncRNAs and 16 out of 
the top-20 ranked lncRNAs are validated by FRMCLDA, as 
shown in Table 9.

The network of the top 50 ranked links with prostate cancer, 
colon cancer and gastric cancer on Dataset 3 by FRMCLDA 
is shown in Figure 6. We find that some top-ranked lncRNAs 

are associated with one or more diseases. The results in case 
studies for three selected cancers have shown an outstanding 
prediction performance of FRMCLDA. As stated, FRMCLDA 
is a comprehensive method which could infer latent disease-
lncRNA link for overall diseases synchronously. As a result, 
we also prioritized overall candidate disease-lncRNA pairs 
(excluding known links) on Dataset 3 by their global scores 
assigned through FRMCLDA. The higher the global scores of 
the links, the more likely that links between them exist. For 
example, the predicted global score for GAS5 and gastric 
cancer ranks 6th out of all the 60,169 non-zero predicted 
results by FRMCLDA. This prediction was confirmed in the 
latest research by Sun M et al. (Aken et al., 2016). They verified 
that the reduced expression of GAS5 indicates poor prognoses 
and will lead to gastric cancer cells spreading. Therefore, top-
priority prediction further proves the validity of FRMCLDA, 
and so do the other high-ranked links. The results of the global 
rank for all the predicted links are provided in Supplementary 
S3. We hope that the prediction results may help discovery of 
disease-related lncRNAs.

CONCLUSIONS

With the development of the next-generation sequencing in 
biomedical research, constructing a heterogeneous network on 
the basis of clinical NGS big data will benefit in prediction models 
of latent human disease-lncRNA associations. The prediction of 
disease-lncRNA links is very important in the biomedical field, 
among others. Construction of computational prediction models 
for new disease-lncRNA relationships will help understand the 
molecular mechanism of complicated human diseases at the level 
of lncRNA, and recognize the disease biomarker for diagnosis, 
treatment, prognosis and prevention of disease.

In this paper, we calculated the integrated similarities for 
diseases and lncRNAs using different methods and dealing with 
different types of data sources. We constructed a heterogeneous 
bilayer network by integrating similarity networks and 
interaction network. Then we utilized the algorithm fSVT 
to retrieve the unknown entries in adjacency matrix of the 
heterogeneous network. Theoretically FRMCLDA has a 
superior performance compared to other association prediction 
methods, because it takes account of all the predominant 
eigenvalues and the relevant eigenvectors of the matrix to be 
restored. In addition, FRMCLDA is able to process large scale 
matrices and execute proximate SVD rapidly at each SVT 
iteration by incorporating rSVD-BKI with a novel sub-space 
reuse technique. To assess the performances of FRMCLDA, 
experiments including global LOOCV and local LOOCV, global 
5-fold CV and case studies are conducted. The experimental 
results show that the effectiveness of FRMCLDA is consistent 
with the theoretical estimation. Nevertheless, there are also a 
few limitations for FRMCLDA. First, if the adjacency matrix 
lacks low rank, then matrix completion with fSVT will lose its 
speed advantage. Second, the p value in power iteration can be 
adapted to guarantee the accuracy of SVD, but it can increase to 

TABLE 7 | The top-20 lncRNAs predicted for prostate cancer.

Rank LncRNA Pubmed 
ID

Rank LncRNA Pubmed 
ID

1 H19 24988946 11 IGF2-AS 27507663
2 HOTAIR 23936419 12 PCAT1 22664915
3 MEG3 14602737 13 LincRNA-p21 27976428
4 MALAT1 23845456 14 PTENpg1 not found
5 CDKN2B-AS1 20541999 15 PRNCR1 20874843
6 PVT1 23728290 16 SNHG16 not found
7 GAS5 22664915 17 MINA not found
8 Linc00963 24691949 18 SRA1 16607388
9 C1QTNF9B-AS1 27507663 19 NEAT1 25415230
10 UCA1 27686228 20 LSINCT5 not found

TABLE 8 | The top-20 lncRNAs predicted for colon cancer.

Rank Name of 
LncRNA

Pubmed ID Rank Name of 
LncRNA

Pubmed 
ID

1 CDKN2B-AS1 26708220 11 DRAIC Not found
2 PVT1 25043044 12 IGF2-AS Not found
3 GAS5 25326054 13 NPTN-IT1 23395002
4 LincRNA-p21 26656491 14 XIST 29679755
5 UCA1 26885155 15 PCAT29 Not found
6 KCNQ1OT1 16965397 16 LSINCT5 25526476
7 TUG1 27634385 17 anti-NOS2A Not found
8 MINA Not found 18 HIF1A-AS2 29278853
9 BCYRN1 29625226 19 SNHG16 24519959
10 MIAT 29686537 20 HIF1A-AS1 28946548

TABLE 9 | The top-20 lncRNAs predicted for gastric cancer.

Rank Name of 
LncRNA

Pubmed 
ID

Rank Name of 
LncRNA

Pubmed 
ID

1 GAS5 27827524 11 SNHG16 29081409
2 MALAT1 27486823 12 PTENpg1 25694351
3 LincRNA-p21 28969031 13 PCAT29 25700553
4 BCYRN1 29435146 14 XIST 29053187
5 KCNQ1OT1 Not found 15 BDNF-AS1 Not found
6 IGF2-AS Not found 16 HIF1A-AS1 26722487
7 TUG1 27983921 17 HIF1A-AS2 25686741
8 NPTN-IT1 28951520 18 lncRNA-ATB 28115163
9 MIAT 29039602 19 HAR1B Not found
10 DRAIC 25700553 20 CCAT2 29435046
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