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Recently, increasing attempts have been made to understand how plant genes function 
in natura. In this context, transcriptional profiles represent plant physiological status 
in response to environmental stimuli. Herein, we combined high-throughput RNA-
Seq with insect survey data on 19 accessions of Arabidopsis thaliana grown at a field 
site in Switzerland. We found that genes with the gene ontology (GO) annotations of 
“glucosinolate biosynthetic process” and “response to insects” were most significantly 
enriched, and the expression of these genes was highly variable among plant accessions. 
Nearly half of the total expression variation in the glucosinolate biosynthetic genes (AOPs, 
ESM1, ESP, and TGG1) was explained by among-accession variation. Of these genes, 
the expression level of AOP3 differed among Col-0 accession individuals depending on 
the abundance of the mustard aphid (Lipaphis erysimi). We also found that the expression 
of the major cis-jasmone activated gene CYP81D11 was positively correlated with the 
number of flea beetles (Phyllotreta striolata and Phyllotreta atra). Combined with the field 
RNA-Seq data, bioassays confirmed that AOP3 was up-regulated in response to attack 
by mustard aphids. The combined results from RNA-Seq and our ecological survey 
illustrate the feasibility of using field transcriptomics to detect an inducible defense, 
providing a first step towards an in natura understanding of biotic interactions involving 
phenotypic plasticity.

Keywords: AOP3, in natura, Lipaphis erysimi, RNA-Seq, plant–insect interaction

Abbreviations: ANOVA, analysis of variance; AOP, alkenyl hydroxalkyl producing; ESM1, epithiospecifier modifier 1; ESP, 
epithiospecifier protein; FDR, false discovery rate; GO, gene ontology; GSL, glucosinolate; MAM, methylthioalkylmalate 
synthase; rpm, reads per million; TGG, thioglucoside glucohydrolase.
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INTRODUCTION

As sessile organisms, plants are exposed to multiple stresses under 
naturally fluctuating environments (Wilczek et al., 2009; Carrera 
et al., 2017; Mishra et al., 2017). Recently, increased efforts have 
been made to understand how plants cope with complex field 
conditions (Kerwin et al., 2015; Carrera et al., 2017; Kono et al., 
2017; Sugiyama et al., 2017; Taylor et al., 2017; Hiraki et al., 2018). 
Such in natura studies are important to gain a comprehensive 
understanding of gene functions from the laboratory to the field 
(Shimizu et al., 2011; Kudoh, 2016; Yamasaki et al., 2018; Zaidem 
et al., 2019; Nagano et al., 2019). Insect herbivores are the most 
diverse group of organisms that impose biotic stresses on land 
plants (Schoonhoven et al., 2005; Ahuja et al., 2010; Escobar-
Bravo et al., 2018). To deal with various threats, plants activate 
some defense mechanisms only when necessary. Such inducible 
defenses are triggered through jasmonate (JA) signaling after 
wounding or insect attacks (Mewis et al., 2005; Escobar-Bravo 
et al., 2017; Tsuda, 2017; Nakano and Mukaihara, 2018; Zhou 
et al., 2018; Zhu et al., 2018), whereas constitutive defenses are 
continuously expressed. Notably, the magnitude of inducible 
defense varies among plant genotypes (Agrawal et al., 2002; 
Kuśnierczyk et al., 2008; Snoeren et al., 2010). Furthermore, 
spatiotemporal variation in herbivory and insect abundance in 
the field could modulate defense metabolism through phenotypic 
plasticity or gene-by-environment interactions (Agrawal, 2001; 
Kerwin et al., 2015; Kerwin et al., 2017).

In the glucosinolate (GSL)–myrosinase system of Arabidopsis 
thaliana and related Brassicales, methionine-derived or aliphatic 
GSLs confer plant defenses against herbivory (Kliebenstein et al., 
2002; Brachi et al., 2015; Kerwin et al., 2015). The accumulation 
and profiles of these GSLs are variable among A. thaliana 
accessions worldwide (Kliebenstein et al., 2001b; Kroymann 
et al., 2003; Chan et al., 2010; Brachi et al., 2015). Production of 
aliphatic GSLs is initiated by MYB28 and MYB29 transcription 
factors (Hirai et al., 2007). Double mutants of both of these genes 
accumulate few aliphatic GSLs (Sønderby et al., 2007). During 
the accumulation of aliphatic GSLs, amino acids and side chain 
structures are modified by methylthioalkylmalate synthase 
(MAM), 2-oxoglutarate-dependent dioxygenase (encoded 
in alkenyl hydroxalkyl producing (AOP) loci), and flavin-
monooxygenase glucosinolate S-oxygenase (Kliebenstein et al., 
2001a; Kroymann et al., 2003; Hansen et al., 2007). When insect 
herbivores bite plant tissues, the enzyme myrosinase [also known 
as thioglucoside glucohydrolase (TGG)] catalyzes breakdown of 
GSLs, resulting in emission of isothiocyanates, nitriles, or other 
hydrolysis products (Lambrix et al., 2001; Barth and Jander, 
2006; Zhang et al., 2006; Shirakawa and Hara-Nishimura, 2018). 
Epithiospecifier proteins (ESPs, also known as TASTY; Jander 
et al., 2001; Lambrix et al., 2001) promote the hydrolysis of GSL 
with some modification by the EPITHIOSPECIFIER MODIFIER1 
(ESM1) locus (Zhang et al., 2006), resulting in different defense 
activities against insect herbivores (Ratzka et al., 2002).

Different defense responses of a host plant species are elicited 
depending on the feeding habits and host specializations 
of insect herbivores attacking the plant. For example, leaf-
chewing herbivores crush plant tissues, which activates the 

GSL–myrosinase system (Barth and Jander, 2006; Martinoia 
et al., 2018; Shirakawa and Hara-Nishimura, 2018). Although 
the hydrolysis products of GSLs are toxic to generalist chewers 
(Lambrix et al., 2001; Kliebenstein et al., 2002; Barth and Jander, 
2006), specialist herbivores exploit GSL and its hydrolysis 
products as a host plant signal (Ratzka et al., 2002; Renwick et al., 
2006). Sapsuckers, such as aphids and thrips, consume plant 
fluids and very rarely crush plant tissues (Mewis et al., 2005; 
Kempema et al., 2007). In addition, damaged plants may emit 
volatile chemicals that elicit defenses of other individual plants 
or alter feeding behaviors of other insect species (Bruce et al., 
2008; Matthes et al., 2011; Yazaki et al., 2017). However, only 
a few field studies have conducted a genome-wide analysis to 
address which inducible defenses may accurately function under 
simultaneous attacks by insect herbivores with different feeding 
modes (Broekgaarden et al., 2010).

In wild populations, A. thaliana has multiple generations per 
year (Thompson, 1994; Wilczek et al., 2009; Taylor et al., 2017) and 
is attacked by various herbivores (Arany et al., 2005; Harvey et al., 
2007; Sato et al., 2019a). Previously, Sato et al. (2019a) found that 
12 insect species, including the mustard aphid (Lipaphis erysimi; 
Homoptera), flea beetles (Phyllotreta striolata and Phyllotreta 
atra; Coleoptera), the diamondback moth (Plutella xylostella; 
Lepidoptera), and the western flower thrips (Frankliniella 
occidentalis; Thysanoptera), colonized an experimental summer 
population of A. thaliana near Zurich, Switzerland. In addition, 
the insect community composition significantly varied among 
A. thaliana accessions (Sato et al., 2019a); however, there was no 
correlation between herbivore abundance in the field and GSL 
profiles of Arabidopsis accessions grown in growth chambers 
(Sato et al., 2019a). To develop a more comprehensive picture of 
plant defense expression in the field, transcriptomics techniques 
have been applied to assess the environmental responses of many 
plant species (e.g., Kempema et al., 2007; Broekgaarden et al., 
2010; Kamitani et al., 2016; Sun et al., 2017; Lin et al., 2017; Wang 
et al., 2018; Xu et al., 2018).

The purpose of this study was to first reveal to what extent 
variations in gene expression could be explained by plant 
genotypes under field conditions and then to identify which 
herbivores could modulate plant defense responses. To address 
these issues, we combined our previously established protocol 
of cost-effective RNA-Seq (Nagano et al., 2015; Kamitani et al., 
2016; Ishikawa et al., 2017) with insect monitoring data on 19 
accessions of A. thaliana individuals (Table 1; Figure 1). This 
joint approach using transcriptome analysis and insect surveys 
provides an overall picture of how A. thaliana responds to 
multiple attackers under field conditions.

MATERIALS AND METHODS

Field Experiment
In a field experiment, we used 17 natural accessions and two 
glabrous mutants (Table 1) of A. thaliana, thus covering a range 
of phenotypic variation in both trichomes (Larkin et al., 1999; 
Atwell et al., 2010; Bloomer et al., 2012) and glucosinolates 
(Chan et al., 2010). We initially prepared 10 replicates of the  
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19 accessions (190 plants in total) in an environmental chamber, and 
then we transferred them to the outdoor garden of the University of 
Zurich at the Irchel campus (Zurich, Switzerland: 47°23′N, 8°33′E, 
altitude ca. 500 m) (Figure 1A). Plants were cultivated using mixed 
soils of agricultural composts (Profi Substrat Classic CL ED73, 
Einheitserde Co.) and perlite, with a compost to perlite ratio of 
3:1 by volume. No additional fertilizers were supplied because the 
agricultural soils contained fertilizers. Seeds were sown on the 
soil and stratified under constant dark conditions at an ambient 
temperature of 4°C for 1 week. Plants were grown under short-day 
conditions (8:16-h light:dark (L:D) at 20°C and a relative humidity 
of 60%) for 1 month. The tray positions were rotated every week 
to minimize growth bias due to light conditions. Individual plants 
were moved to plastic pots (6.0 × 6.0 × 6.0 cm) and acclimated for 
3 days in a shaded area outdoors prior to field experiments. The 
potted plants were randomly placed in a checkered pattern between 
three blocks, each containing 68, 69, or 53 plants. The potted plants 
were set on water-permeable plastic sheets without being embedded 
in the ground (Figure 1A). Blocks were more than 1.0 m apart from 
each other, and the plants were watered every morning and dawn. 
These experiments were conducted from July 13 to August 3, 2016. 
Several accessions of field-grown A. thaliana were small, and it was 
difficult to obtain sufficient amounts of leaf tissues for metabolome 
analyses. Because of this limitation, we used transcriptomes as 
proxy to plant defense responses.

Insects and the leaf holes made by flea beetles were counted 
every 2–3 days on individual plants, and the final observation 
data were used for statistical analyses. The initial plant size 
(evaluated by the length in mm of the largest leaf at the start of 
field experiment) and presence or absence of flowering stems  
(2 weeks after the start of experiment) were also recorded so that 

these phenotypes could be included as covariates in statistical 
analyses. All monitoring was conducted by a single observer 
during the daytime (08:00–17:00) for 3 weeks after the beginning 
of the field experiment to minimize variation. Details of insect 
abundance and diversity are reported in our previous publication 
(Sato et al., 2019a). To avoid unintentional activation of plant 
defenses by mechanical damage, we did not sample any leaves 
until the end of the field experiment.

RNA-Seq Experiments and Data Filtering
Leaves were collected from field-grown plants at the end of the 
experiment (August 4, 2016). The leaf samples were immediately 
soaked in an RNA preservation buffer of pH 5.2 consisting 
of 5.3-M (NH4)2SO4, 20-mM EDTA, and 25-mM trisodium 
citrate dihydrate at 4°C overnight and stored at −80°C until 
RNA extraction. Total RNA was extracted using the Maxwell 
16 Lev Plant RNA Kit (Promega Japan, Tokyo) according to 
the manufacturer’s protocol. Selective depletion of rRNAs and 
highly abundant transcripts was conducted prior to RNA-Seq 
library preparation as previously described (Nagano et al., 2015). 
Then, RNA-Seq libraries were prepared as previously described 
(Ishikawa et al., 2017). Sequencing using Illumina HiSeq® 2500 
was carried out by Macrogen Co. We sequenced 92 samples per 
lane and obtained 829,681 mapped reads per sample on average.

The fastq files generated by sequencing were preprocessed using 
Trimmomatic version 0.32 (Bolger et al., 2014). The preprocessed 
sequences were mapped onto the A. thaliana reference genome 
(TAIR10 cDNA) using Bowtie version 1.1.1 (Langmead et  al., 
2009) and then quantified using RSEM version 1.2.21 (Li 
and Dewey, 2011). The parameter settings of Trimmomatic, 
Bowtie, and RSEM were the same as those described by 

TABLE 1 | List of Arabidopsis thaliana accessions used in this study.

Accession ID Locality Trichome (no./cm2) Aliphatic GSL (nmol/mg)$

Short-chain Long-chain

Bay-0 N22633 Germany 26.3 6.09 2.03
Br-0 N22628 Czech Republic 0 10.69 1.89
C24 N22620 Portugal 2.5 11.1 5.52
Col-0 N22625 USA 32.5 3.1 0.5
Col(gl1-2) CS3126† USA 4.0‡ NA NA
Cvi-0 N22614 Cape Verde 104.3 11.18 0.8
Est-1 N22629 Russia 39.3 1.75 0.92
Kas-2 CS6751 India 9 15.5 0.84
Kin-0 N22654 USA 14 13.52 2.22
Ler-1 N22618 Germany 14.3 7.61 1.16
Ler(gl1-1) CS64* Germany 0 NA NA
Mr-0 N22640 Italy 23.3 14.8 3.2
Ms-0 N22655 Russia 43.6‡ 9.83 2.04
Nd-1 N22619 Switzerland 47 9.47 0.59
Se-0 N22646 Spain 30.5 6.62 0.68
Shahdara N22652 Tajikistan 55.5 9.2 0.83
Tsu-1 N22641 Japan 11.3 14.26 2.18
Van-0 N22627 Canada 20.8 7.85 1.53
Ws-2 N22659 Russia 33.3 7.58 0.76

The table shows stock ID, locality, trichome density (no./cm2: Atwell et al., 2010), and GSL accumulation (Chan et al., 2010).
*Obtained from the Kiyotaka Okada Laboratory of Kyoto University, Japan.
†Obtained from Dr. M. Ohto.
‡Estimated from the trichome density relative to the Col-0 accession presented in previous publications (Hauser et al., 2001 and Yoshida et al., 2009 for Ms-0 and Col(gl1-2), respectively).
$Short-chain: the sum of C3- and C4-aliphatic GSLs; Long-chain: the sum of C7- and C8-aliphatic GSLs obtained from Chan et al. (2010).
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FIGURE 1 | Outline of the field study on A. thaliana. (A) Procedure of the field experiment. (B) Observed variation in insect abundance among plant accessions. 
(C) Filtering and statistical analysis of RNA-Seq data. In the ANOVA formula, “Herbivore” represents the main effect of the number of herbivores, while the “A × H” 
indicates the interaction term between the plant accession and the number of herbivores.
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Kamitani  et  al.  (2016). Following Kamitani et al. (2016), we 
calculated the raw read counts and reads per million (rpm) from 
the expected read counts generated with RSEM. Transposable 
elements were excluded prior to statistical analyses. We calculated 
the total raw read counts for each plant sample and discarded 
shallow-read samples belonging to the lower fifth percentile of 
the total raw read counts (Figure 1C). Consequently, samples 
with >12,130 reads were subjected to statistical analyses. To 
exclude non-expressed genes, we then averaged log2(rpm + 1) 
for each gene between all plant samples and eliminated genes 
with an average log2(rpm + 1) of zero (Figure 1C). Overall, we 
obtained a final dataset on 24,539 genes for 173 plants. In this 
final dataset, 53 out of 173 samples had <105 total reads. Overall 
trends did not change when we set the threshold at 105, although 
the statistical power decreased due to lower sample size.

Sequence data from our RNA-Seq were submitted to the 
NCBI Sequence Read Archive repository under the BioProject 
number, PRJNA488315 (https://www.ncbi.nlm.nih.gov/bioproject/
PRJNA488315). Read count data and source code are available 
via the GitHub repository (https://github.com/naganolab/
AthRNAseq2016Zurich_Sato_et_al).

Statistical Analysis
We used Type III analysis of variance (ANOVA; Sokal and 
Rohlf, 2012) to screen genes showing large expression variation 
among accessions (Figure 1C). We formulated the linear model 
as: Y ~ Accession ID (factorial) + Flowering stem (binary data) 
+ Initial leaf length (mm), where Y indicates log2(rpm + 1) of 
a focal gene. Sum of squares (SS) were calculated to partition 
expression variation attributable to each explanatory variable. 
The proportion of expression variation explained by the plant 
accession was evaluated as the SS of the plant accession ID divided 
by the total SS. Genes in the top 5% of expression variation were 
selected and subjected to statistical analysis, as described below. 
All statistical analyses were performed using R version 3.2.0 
(R Core Team, 2015).

Subsequently, gene ontology (GO) enrichment analysis 
was applied to the genes that showed the top 5% of values of 
the proportion of expression variation explained by the plant 
accession. The “GO.db” package (Carlson, 2017) and “TAIR10” 
gene annotation package were used to obtain the GO terms. The 
statistical significance of each GO term was determined using 
Fisher’s exact tests against the entire database. The P-values 
were adjusted by the false discovery rate (FDR; Benjamini and 
Hochberg, 1995) using the “p.adjust” function of R. When 
significant GO terms were detected, the “GOBPOFFSPRING” 
database in the “GO.db” package was used to find the most 
specific GO within the biological process.

We next incorporated the effects of herbivores into an 
ANOVA to determine whether insect herbivory altered gene 
expression among plant accessions. We formulated linear 
models as: Y ~ Accession ID (factorial) + No. of herbivores 
+ Flowering stem (binary data) + Initial leaf length (mm) + 
(Accession ID × No. of herbivores). This ANOVA was repeated 
for five different explanatory variables for the No. of herbivores 
term: the number of mustard aphids (L. erysimi), flea beetles 

(P. striolata and  P.  atra), leaf holes made by P. striolata and P. 
atra, diamondback moths (P. xylostella), and western flower 
thrips (F. occidentalis). Significance of these terms in ANOVAs 
tested whether the expression of a focal gene might be induced 
by the herbivore species. The interaction term (Accession 
ID × No. of herbivores; A × H in Figure 1C) represented the 
combined effect exerted by the plant accession and the number 
of herbivores, and it tested whether the presence or magnitude 
of inducible defenses to the herbivore species depended on plant 
accessions having different genomic backgrounds. The number 
of herbivores was log-transformed to improve normality. Given 
that previous laboratory experiments detected inducible defenses 
24–48 h after insect attacks (e.g., Mewis et al., 2005; Kuśnierczyk 
et al., 2008; Matthes et al., 2011), we used insect abundance data 
on August 3, 2016, that is, 1 day prior to RNA sampling, for 
explanatory variables. The P-values were calculated using F-tests 
corrected by FDR. The “aov” function in R was used to perform 
ANOVAs, and we compared models with or without a focal term 
by the F-tests.

Laboratory Bioassay and RT-qPCR
To determine whether AOP3 was induced after attack by the 
mustard aphid, L. erysimi, we released this aphid species onto 
plants of the Col-0 accession under controlled conditions in 
the laboratory, and then we quantified expression of AOP3 in 
infested and non-infested plants (Figure 4A, B). Lipaphis erysimi 
were collected from Rorippa indica growing at the Seta campus of 
Ryukoku University, Japan (34°58′N, 135°56′E), and maintained 
on leaves of Raphanus sativus “Longipinnatus” before the bioassay. 
Seeds were sown in plastic pots (6 cm in diameter and height) 
filled with moist vermiculite. After germination, seedlings were 
thinned to four per pot. Seedlings were grown under 16L:8D 
conditions at an ambient temperature of 20°C for 1 month. Liquid 
fertilizer (diluted 2,000×) was supplied to plants during their 
cultivation (Hyponex, Hyponex Japan, Osaka; N:P:K = 6:10:5). 
We assigned eight plants (two pots of four plants each) to the 
aphid treatment and eight plants (two pots of four plants each) 
for controls. Approximately 80 wingless aphids were released per 
pot for the aphid treatment, and the pots were separately covered 
with mesh. Leaf sampling was conducted once a week after the 
release of aphids. Leaves were soaked in an RNA preservation 
buffer of pH 5.2 consisting of 5.3-M (NH4)2SO4, 20-mM EDTA, 
and 25-mM trisodium citrate dihydrate overnight and stored at 
−80°C until RNA extraction.

Total RNA was extracted using a Maxwell 16 Lev Plant RNA Kit 
(Promega Japan, Tokyo), and RNA concentration was measured 
using a Quant-iT RNA Assay Kit Broad Range (Invitrogen, 
Carlsbad, CA, USA). cDNA was synthesized from 300 ng of 
the total RNA using a reaction solution composed of 10 μL of 
template RNA, 4.0 μL of 5× SuperScript IV Reverse Transcriptase 
Buffer (Invitrogen, Carlsbad, CA), 0.5 μL of RNasin® Plus RNase 
inhibitor (Promega Japan, Tokyo), 2.0 μL of 100-mM DTT 
(Invitrogen, Carlsbad, CA), 0.4 μL of 25-mM dNTPs (Clontech, 
Palo Alto, CA), 0.5 μL of SuperScript IV Reverse Transcriptase 
(Invitrogen, Carlsbad, CA, USA), and 0.6 μL of 100-μM random 
primer (N)6 (TaKaRa, Kusatsu, Japan), with RNase-free water 
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added up to 20 μL. For the reverse transcription step, the mixture 
was incubated at 25°C for 10 min, followed by 50 min at 56°C. 
SuperScript IV was inactivated by heating the mixture at 75°C for 
15 min. The cDNA was 10× diluted with RNase-free water, and 
then reverse transcription–quantitative polymerase chain reaction 
(RT-qPCR) was performed using a Roche LightCycler® 480 with 
10 μL of reaction solution composed of 2 μL of the template, 5 μL 
of KAPA SYBR Fast RT-qPCR solution (Kapa Biosystems, Inc., 
Woburn, MA), 0.5 μL of 10-μM forward and reverse primers, and 
2 μL of RNase-free water. The forward and reverse primers of the 
target gene AOP3 was 5′-TCAGGGGTCGGTTTTGAAGG-3′ 
and 5′-GTGAAAGGTTTCGGGCACAC-3′, respectively. 
Expressions of ACT2 and EF-1α were measured for the internal 
controls (see Czechowski et al., 2005 for primer sequences). The 
cDNAs were amplified following denaturation, with 35 cycles 
of 10 s at 95°C, 20 s at 63°C, and 10 s at 72°C. Three technical 
replicates were used for individual plants and primers. The primer 
of the target gene AOP3 was designed based on its full-length 
coding sequence using NCBI Primer-BLAST with a product 
length parameter of 50–150 bp. We tried six candidate primers 
and selected the AOP3 primer above based on the melting curve 
of laboratory-grown Col-0 and Ler-1 accessions. Cp values were 
calculated following the second derivative maximum method and 
averaged among three technical replicates. The geometric mean 
of Cp values between ACT2 and EF-1α was used as the internal 
control. Delta Cp values were calculated for each individual plant 
between the target and internal control. A Wilcoxon rank sum 
test was used to test differences in the delta Cp values between 
the intact and aphid-infested plants.

RESULTS

Insect Herbivores Observed on  
Field-Grown A. thaliana
The major insect herbivores observed included L. erysimi, P. 
striolata, P. atra, P. xylostella, and F. occidentalis (Sato et al., 2019a). 
Of these herbivores, L. erysimi and F. occidentalis are sucking 
insects, while P. xylostella, P. striolata, and P. atra are leaf chewers 
(Ahuja et al., 2010; Escobar-Bravo et al., 2018). L. erysimi, P. 
xylostella, P.  striolata, and P. atra are specialists of Brassicaceae 
(Ahuja et al., 2010), whereas F. occidentalis is a generalist that feeds 
on various plant families (Escobar-Bravo et al., 2018) (Figure 1B).

Gene Expression Variation Among 
A. thaliana Accessions
Our statistical analysis showed that, when ordered by the 
expression variation explained by plant accessions, the top 5% 
of genes had more than 20% of their variation attributable to the 
plant accessions (Figure 2A; Table S1). In these highly variable 
genes, 22 GOs were significantly enriched at PFDR < 0.05 (Table 2). 
The GO annotations of “response to insect” and “glucosinolate 
biosynthetic process” were most and second most significantly 
enriched, respectively (Table 2).

Several key genes of aliphatic GSL biosynthesis, such as AOPs 
(Kliebenstein et al., 2001a), had over half of their expression 

variation attributable to plant accession (Figure  2A, C, D).  
AOP2 and AOP3 are located nearby in the genome and encode 
2-oxoglutarate-dependent dioxygenases involved in side chain 
modification of aliphatic GSLs (Kliebenstein et al., 2001a). 
If AOP3 is expressed, plants accumulate hydroxypropyl. If 
AOP2 is expressed, plants accumulate alkenyl (Kliebenstein 
et al., 2001a; Chan et al., 2010). Mean expression levels of 
AOP3 or AOP2 among 17 A. thaliana accessions transplanted 
in the field were highly correlated with the known levels of 
hydroxypropyl or alkenyl accumulated in plants grown in a 
growth camber (Figure S1). Genes involved in GSL hydrolysis, 
such as TGGs, ESM1, and ESP (Lambrix et al., 2001; Barth and 
Jander, 2006; Zhang et al., 2006), exhibited a similarly large 
variation in expression; these genes had nearly half of their 
variation attributable to the plant accession (Figures 2B, E, 
F, G). TGG1 and TGG2 are functionally redundant, and their 
double mutants are known to become palatable for generalist 
caterpillars, but not to aphids and specialist caterpillars (Barth 
and Jander, 2006). ESM1 and ESP were initially screened by 
quantitative trait locus (QTL) mapping utilizing the natural 
variation between the Col and Ler accession (Jander et al., 
2001; Lambrix et al., 2001; Zhang et al., 2006). Furthermore, 
the transcription factor gene MYB29, which is responsible for 
the high accumulation of aliphatic GSLs (Hirai et al., 2007), 
showed 32% variation in the expression level among field-
grown accessions (Figure 2H).

Inducible Responses to Leaf-Chewing 
and Sap-Sucking Herbivores
The results of ANOVA indicated that 27, 25, 20, and 19 candidate 
genes were significantly related to inducible responses to mustard 
aphids, flea beetles, diamondback moths, and western flower 
thrips, respectively (Table S2).

In response to mustard aphid feeding (L. erysimi), AOP3 
had a significant interaction between its expression with the 
number of aphids (PFDR < 0.001: Figure 3A, Table S2), indicating 
that its induction by aphids depended on background genomic 
variation. This statistical interaction explained 7% of variation 
in AOP3 expression. Similar interactions with aphid herbivory 
were observed for MYB113 and JAX1. MYB113 is known to 
be involved in anthocyanin biosynthesis and induced via JA 
signaling (Gonzalez et al., 2008), and JAX1 encodes jacalin-type 
lectin resistance to potexvirus and exhibits varying resistance 
among natural accessions (Yamaji et al., 2012).

The number of flea beetles (P. striolata and P. atra) was 
positively correlated with the expression level of CYP81D11 
(PFDR  = 0.027: Figure 3B, Table S2), which is known to be a 
major cis-jasmone activated gene (Matthes et al., 2010; Matthes 
et al., 2011). However, its expression was not affected by plant 
accession (plant accession × beetles, PFDR = 0.99), indicating 
limited effects of background genomic variation. Additionally, 
the number of leaf holes made by the flea beetles was only 
related to the expression of three loci, all of unknown function, 
AT2G41590 (plant accession × holes, PFDR < 10−6), AT1G34844 
(plant accession × holes, PFDR < 10−13), and AT2G47570 (plant 
accession × holes, PFDR = 0.007).
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In addition, AT5G48770, which encodes disease resistance 
proteins of the TIR-NBS-LRR family and has a GO annotation of 
“defense response,” was expressed in response to the diamondback 
moth (P. xylostella) (Table S2).

Finally, the presence of the western flower thrips (F. occidentalis) 
was correlated with the expression of one locus, AT2G15130. This 
locus encodes a basic secretory protein family protein in plants and 
has the GO annotation “defense response” (Table S2).

FIGURE 2 | Natural variation in the expression levels of genes involved in glucosinolate biosynthesis and hydrolysis. (A) Histogram showing the proportion of 
variation explained by plant accessions, (B) the expression of ESM1, (C) AOP3, (D) AOP2, (E) TGG1, (F) TGG2, (G) ESP, and (H) MYB29. Grey bars and vertical 
lines indicate mean ± SE. The list of the top 5% most variable genes is available in the Supporting Information (Table S1).
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Laboratory Bioassay Using the  
Specialist Aphids
The statistical interaction between plant accession and 
number of aphids (Section 3.3) could be explained by the 
positive correlation we found between the expression level 
of AOP3 and the number of mustard aphids (L. erysimi) in 
Col(gl1-2) plants (Figure 3A). In our laboratory bioassay,  

the expression of AOP3 was up-regulated in aphid-infested 
Col-0 plants (Wilcoxon rank sum test, W = 0, n = 16, P = 
0.0002: Figure 4C).

DISCUSSION

Expression Variation in Glucosinolate 
Biosynthetic Genes
Glucosinolate profiles, leaf damage, and plant fitness significantly 
vary among A. thaliana accessions, as demonstrated by similar 
field experiments using GSL mutants (Kerwin et al., 2015; Kerwin 
et al., 2017) or a number of natural accessions (Brachi et al., 
2015). Previous laboratory studies show that GSL biosynthesis 
is affected by many factors other than herbivory, including 
nutrient deficiency (Hirai et al., 2007), light conditions (Wu 
et al., 2018), drought (Mewis et al., 2012), and pathogen infection 
(Kliebenstein et al., 2005; Gudiño et al., 2018; Shirakawa and 
Hara-Nishimura, 2018). In our field study, where these factors 
were not controlled for and subject to natural variation, GO 
enrichment of “GSL biosynthesis” and “response to insects” genes 
corresponded to the top 5% most variably expressed genes among 
A. thaliana accessions (Table 2). These two GOs were the most 
and second most significantly enriched terms, while “systemic 
acquired resistance” and “response to water deprivation” were 
also noted. This result suggests that anti-herbivore defense may 
be one of primary functions of GSL biosynthesis in the field. 
Notably, nearly half of the expression variation in AOPs, ESM1, 
and TGG1 was explained by plant accessions (Figure 2), showing 
a comparable magnitude of variation with the heritability 
reported by a laboratory eQTL study (Wentzell et al., 2007). A 
third of the expression variation in the transcription factor gene 
MYB29 was attributable to plant accessions, even though this 
gene is known to respond to water stress and other abiotic stimuli 

TABLE 2 | Gene ontology (GO) enrichment analysis of genes with the top 5% of 
expression variation explained by plant accessions. P-values are corrected by 
the false discovery rate (PFDR). Shown are the significant GOs within the biological 
process terms (PFDR < 0.05).

GO ID Term PFDR

GO:0009625 Response to insect 4.76E−05
GO:0019761 Glucosinolate biosynthetic process 6.35E−05
GO:0055114 Oxidation-reduction process 0.000116
GO:0009627 Systemic acquired resistance 0.000327
GO:0009414 Response to water deprivation 0.000446
GO:0042742 Defense response to bacterium 0.000457
GO:0009409 Response to cold 0.00167
GO:0010555 Response to mannitol 0.00254
GO:0015996 Chlorophyll catabolic process 0.00362
GO:0010114 Response to red light 0.00857
GO:0009404 Toxin metabolic process 0.0108
GO:0031667 Response to nutrient levels 0.0192
GO:0006551 Leucine metabolic process 0.0220
GO:0071555 Cell wall organization 0.0276
GO:1901606 Alpha-amino acid catabolic process 0.0320
GO:0051181 Cofactor transport 0.0329
GO:0007169 Transmembrane receptor protein tyrosine 

kinase signaling pathway
0.0343

GO:0098754 Detoxification 0.0345
GO:0010038 Response to metal ion 0.0389
GO:0031668 Cellular response to extracellular stimulus 0.0391
GO:0019253 Reductive pentose-phosphate cycle 0.0407
GO:0010118 Stomatal movement 0.0441

FIGURE 3 | Correlations between candidate gene expression and insect abundance in the field. (A) Relationship between the number of specialist mustard aphids 
(L. erysimi) and the expression of AOP3 in Ler-1 (an accession with constitutive expression) and Col(gl1-2) (an accession with potentially induced expression). 
(B) Relationship between the number of Phyllotreta beetles and expression of CYP81D11; residuals unexplained by plant accessions are shown in the Y-axis.
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(Martinez-Ballesta et al., 2015; Zhang et al., 2017). Overall, 
our genome-wide analysis using RNA-Seq indicated that GSL 
biosynthesis and anti-herbivore functions were among the most 
genetically variable functions in field-grown A. thaliana.

Among the GSL biosynthetic genes, AOPs showed remarkably 
high variation in expression among natural accessions. More 
specifically, the Ler-1 accession expressed AOP3 and not AOP2, 
whereas Cvi expressed AOP2 and not AOP3 (Figures 2C, D). 
These findings are similar to those of Kliebenstein et al. (2001a). 
In the Col accession, AOP2 encodes non-functional proteins 
(Kliebenstein et al., 2001a), and AOP3 is not expressed in intact 
leaves (Schmid et al., 2005). Strong genome-wide associations 
between the AOP loci and GSL profiles have been repeatedly 
detected among natural accessions cultivated under laboratory 
(Chan et al., 2010) or controlled greenhouse (Brachi et al., 
2015) conditions. Based on a genome scan, Brachi et al. (2015) 
also detected an adaptive differentiation in the AOP loci within 
European A. thaliana. In an evolutionary context, the present 
study provided observational evidence for a link between 
genomic and functional variations in AOPs in the field.

Genes Possessing Inducible Responses 
to Herbivory
Consistent with the field RNA-Seq data, our laboratory bioassay 
revealed that the Col-0 accession had an induced response of AOP3 
to mustard aphids (L. erysimi). Besides L. erysimi, the generalist 
aphid Myzus persicae and the specialist aphid Brevicoryne 

brassicae are major natural enemies of A. thaliana (Züst et al., 
2012). In an ecological context, previous studies reported unclear 
geographical associations between these three aphid species and 
AOP-related chemotypes in Europe, though the geographical 
distribution of the aphids was linked to that of MAM-related 
chemotypes (Züst et al., 2012). Our previous study also reported 
no significant correlations between laboratory-measured profiles 
of aliphatic GSL and the abundance of L. erysimi in the field (Sato 
et al., 2019a). Results of this study, and from microarray analyses 
(Kempema et al., 2007; Kuśnierczyk et  al., 2008), showed that 
the aphid species differentially induced AOP3. This gene may be 
up-regulated in Col-0 by L. erysimi, down-regulated in Ler by B. 
brassicae (Kuśnierczyk et al., 2008), and not induced in Col by M. 
persicae (Kempema et al., 2007). Given this variation in response 
to different aphid species, the inducible response of AOPs help to 
explain why AOP loci are not tightly linked to higher phenotypes 
such as aphid resistance in wild populations.

Of the genes with the GO annotation of “response to insects,” 
CYP81D11 exhibited a significant positive correlation between 
its expression and the abundance of flea beetles. CYP81D11 is 
known to be up-regulated by cis-jasmone, a plant volatile emitted 
via wounds from insect attack or pathogen infection (Bruce 
et al., 2008; Matthes et al., 2010; Matthes et al., 2011). Matthes 
et al. (2011) used Col background A. thaliana as their standard 
accession, while in the present study, we included multiple 
natural accessions and found a positive correlation between 
flea beetle abundance and CYP81D11 expression (Figure 3B). 
However, there was no significant correlation between CYP81D11 

FIGURE 4 | Inducible response of AOP3 to the specialist mustard aphid L. erysimi in the laboratory-grown A. thaliana Col-0 accession. (A) Photograph of a 
laboratory-reared colony of L. erysimi. (B) Aphid-infested seedlings on Col-0 accession plants. (C) Relative expression of AOP3 in RT-qPCR analysis of aphid-
infested and control plants; seedlings were infested by aphids for 7 days (Aphid) or not infested (Cont.).
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expression and the number of leaf holes made by these beetles. 
This result was probably because the leaf holes remained on the 
leaves for a few weeks and accumulated without reflecting the 
timing of wounding. Our results on CYP81D11 indicated that data 
on both herbivory and insect abundance were needed to detect 
the induced response to flea beetles, exemplifying the importance 
of detailed ecological observations during in natura studies.

CONCLUSION

A combination of insect surveys with field transcriptome 
analyses allowed us to detect an inducible defense against insect 
herbivores in A. thaliana. These results suggest that the molecular 
machinery of Arabidopsis defense can function accurately in 
complex environments. Whereas previous field studies on a 
Brassicaceae crops reported significant transcriptional changes 
in response to entire herbivore communities (Broekgaarden 
et al., 2010), our large-scale RNA-Seq and insect monitoring data 
allowed for assessment of transcriptional responses specific to 
individual herbivore species. Since the insect species studied here 
are also known as herbivores of cultivated and wild Brassicaceae 
worldwide (Yano, 1994; Ahuja et al., 2010; Sato and Kudoh, 2017; 
Sato, 2018), our findings may provide general molecular insights 
into Brassicaceae-herbivore interactions in natura. Further 
studies are needed to reveal how the inducible responses at the 
transcription level modulate defense metabolism and insect 
resistance under complex field conditions.

DATA AVAILABILITY

The datasets generated for this study can be found in NCBI 
Sequence Read Archive repository, under the BioProject number, 
PRJNA488315.

AUTHOR CONTRIBUTIONS

YS conducted plant sampling, insect monitoring, and statistical 
analyses. YS and AT conducted the bioassay and RT-qPCR analysis. 
AT, MK, and AD performed RNA-Seq experiments. YS, RS-I, and 
MY designed the field experiments. YS, KS, and AN conceived the 
study and wrote the paper with inputs from all co-authors.

FUNDING

This study was funded by the Japan Society for the Promotion 
of Science (JSPS) Postdoctoral Fellowship (grant number, 
16J30005) and Japan Science and Technology Agency (JST) 
PRESTO (JPMJPR17Q4) to YS, JST CREST (JPMJCR15O2) 
to AN, and JST CREST (JPMJCR16O3), MEXT KAKENHI 
(18H04785), and the Swiss National Science Foundation to KS. 
The field experiment was supported by the University Research 
Priority Program of Global Change and Biodiversity at the 
University of Zurich.

ACKNOWLEDGMENTS

The authors thank F. Kobayashi for assistance in RNA extraction 
and Dynacom Co. Ltd. for help with the RNA-Seq data analyses. 
This manuscript has been released as a bioRxiv Pre-Print at https://
www.biorxiv.org/content/10.1101/563486v1 (Sato et al., 2019b).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: 
https://www.frontiersin.org/articles/10.3389/fgene.2019.00787/
full#supplementary-material

REFERENCES

Agrawal, A. A. (2001). Phenotypic plasticity in the interactions and evolution of 
species. Science 294, 321–326. doi: 10.1126/science.1060701

Agrawal, A. A., Conner, J. K., Johnson, M. T., Wallsgrove, R., and Poulin, R. (2002). 
Ecological genetics of an induced plant defense against herbivores: additive 
genetic variance and costs of phenotypic plasticity. Evolution 56, 2206–2213. 
doi: 10.1554/0014-3820(2002)056[2206:EGOAIP]2.0.CO;2

Ahuja, I., Rohloff, J., and Bones, A. M. (2010). Defence mechanisms of Brassicaceae: 
implications for plant-insect interactions and potential for integrated pest 
management: a review. Agron. Sustain. Dev. 30, 311–348. doi: 10.1051/
agro/2009025

Arany, A. M., de Jong, T. J., and van der Meijden, E. (2005). Herbivory and abiotic 
factors affect population dynamics of Arabidopsis thaliana in a sand dune area. 
Plant Biol. 7, 549–556. doi: 10.1055/s-2005-865831

Atwell, S., Huang, Y. S., Vilhjálmsson, B. J., Willems, G., Horton, M., Li, Y., et al. 
(2010). Genome-wide association study of 107 phenotypes in Arabidopsis 
thaliana inbred lines. Nature 465, 627–631. doi: 10.1038/nature08800

Barth, C., and Jander, G. (2006). Arabidopsis myrosinases TGG1 and TGG2 have 
redundant function in glucosinolate breakdown and insect defense. Plant J. 46, 
549–562. doi: 10.1111/j.1365-313X.2006.02716.x

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: 
a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 
289–300. doi: 10.2307/2346101

Bloomer, R. H., Juenger, T. E., and Symonds, V. V. (2012). Natural variation in 
GL1 and its effects on trichome density in Arabidopsis thaliana. Mol. Ecol. 21, 
3501–3515. doi: 10.1111/j.1365-294X.2012.05630.x

Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer 
for Illumina sequence data. Bioinformatics 30, 2114–2120. doi: 10.1093/
bioinformatics/btu170

Brachi, B., Meyer, C. G., Villoutreix, R., Platt, A., Morton, T. C., Roux, F., et al. 
(2015). Coselected genes determine adaptive variation in herbivore resistance 
throughout the native range of Arabidopsis thaliana. Proc. Natl. Acad. Sci. 
U.S.A. 112, 4032–4037. doi: 10.1073/pnas.1421416112

Broekgaarden, C., Poelman, E. H., Voorrips, R. E., Dicke, M., and Vosman, B. 
(2010). Intraspecific variation in herbivore community composition and 
transcriptional profiles in field-grown Brassica oleracea cultivars. J. Exp. Bot. 
61, 807–819. doi: 10.1093/jxb/erp347

Bruce, T. J., Matthes, M. C., Chamberlain, K., Woodcock, C. M., Mohib, A., 
Webster, B., et al. (2008). cis-Jasmone induces Arabidopsis genes that affect the 
chemical ecology of multitrophic interactions with aphids and their parasitoids. 
Proc. Natl. Acad. Sci. U.S.A. 105, 4553–4558. doi: 10.1073/pnas.0710305105

Carlson, M. (2017). GO.db: a set of annotation maps describing the entire gene 
ontology. R package version 3.5.0. doi: 10.18129/B9.bioc.GO.db

Carrera, D.Á., Oddsson, S., Grossmann, J., Trachsel, C., and Streb, S. (2017). 
Comparative proteomic analysis of plant acclimation to six different long-term 
environmental changes. Plant Cell Physiol. 59, 510–526. doi: 10.1371/journal.
pone.0075705

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.biorxiv.org/content/10.1101/563486v1
https://www.biorxiv.org/content/10.1101/563486v1
https://www.frontiersin.org/articles/10.3389/fgene.2019.00787/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2019.00787/full#supplementary-material
https://doi.org/10.1126/science.1060701
https://doi.org/10.1554/0014-3820(2002)056[2206:EGOAIP]2.0.CO;2
https://doi.org/10.1051/agro/2009025
https://doi.org/10.1051/agro/2009025
https://doi.org/10.1055/s-2005-865831
https://doi.org/10.1038/nature08800
https://doi.org/10.1111/j.1365-313X.2006.02716.x
https://doi.org/10.2307/2346101
https://doi.org/10.1111/j.1365-294X.2012.05630.x
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1073/pnas.1421416112
https://doi.org/10.1093/jxb/erp347
https://doi.org/10.1073/pnas.0710305105
https://doi.org/10.18129/B9.bioc.GO.db
https://doi.org/10.1371/journal.pone.0075705
https://doi.org/10.1371/journal.pone.0075705


Field Transcriptomics of Arabidopsis HerbivorySato et al.

11 September 2019 | Volume 10 | Article 787Frontiers in Genetics | www.frontiersin.org

Chan, E. K. F., Rowe, H. C., and Kliebenstein, D. J. (2010). Understanding the 
evolution of defense metabolites in Arabidopsis thaliana using genome-wide 
association mapping. Genetics 185, 991–1007. doi: 10.1534/genetics.109.108522

Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K., and Scheible, W. (2005). 
Genome-wide identification and testing of superior reference genes for 
transcript normalization in Arabidopsis. Plant Physiol. 139, 5–17. doi: 10.1104/
pp.105.063743

Escobar-Bravo, R., Klinkhamer, P. G., and Leiss, K. A. (2017). Induction of jasmonic 
acid-associated defenses by thrips alters host suitability for conspecifics and 
correlates with increased trichome densities in tomato. Plant Cell Physiol. 
58, 622–634. doi: 10.1093/pcp/pcx014

Escobar-Bravo, R., Ruijgrok, J., Kim, H. K., Grosser, K., Van Dam, N. M., 
Klinkhamer, P. G., et al. (2018). Light intensity-mediated induction of 
trichome-associated allelochemicals increases resistance against thrips in 
tomato. Plant Cell Physiol. 59, 2462–2475. doi: 10.1093/pcp/pcy166

Gonzalez, A., Zhao, M., Leavitt, J. M., and Lloyd, A. M. (2008). Regulation 
of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb 
transcriptional complex in Arabidopsis seedlings. Plant J. 53, 814–827. doi: 
10.1111/j.1365-313X.2007.03373.x

Gudiño, M. E., Blanco-Touriñán, N., Arbona, V., Gómez-Cadenas, A., Blázquez, M. A., 
and Navarro-García, F. (2018). β-Lactam antibiotics modify root architecture 
and indole glucosinolate metabolism in Arabidopsis thaliana. Plant Cell Physiol. 
59, 2086–2098. doi: 10.1093/pcp/pcy128

Harvey, J. A., Witjes, L. M. A., Benkirane, M., Duyts, H., and Wagenaar, R. (2007). 
Nutritional suitability and ecological relevance of Arabidopsis thaliana and 
Brassica oleracea as foodplants for the cabbage butterfly, Pieris rapae. Plant 
Ecol. 189, 117–126. doi: 10.1007/s11258-006-9204-6

Hansen, B. G., Kliebenstein, D. J., and Halkier, B. A. (2007). Identification 
of a flavin-monooxygenase as the S-oxygenating enzyme in aliphatic 
glucosinolate biosynthesis in Arabidopsis. Plant J. 50, 902–910. doi: 
10.1111/j.1365-313X.2007.03101.x

Hauser, M.-T., Harr, B., and Schlötterer, C. (2001). Trichome distribution in 
Arabidopsis thaliana and its close relative Arabidopsis lyrata: molecular analysis 
of the candidate gene GLABROUS1. Mol. Biol. Evol. 18, 1754–1763. doi: 
10.1093/oxfordjournals.molbev.a003963

Hirai, M. Y., Sugiyama, K., Sawada, Y., Tohge, T., Obayashi, T., Suzuki, A., et al. 
(2007). Omics-based identification of Arabidopsis Myb transcription factors 
regulating aliphatic glucosinolate biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 104, 
6478–6483. doi: 10.1073/pnas.0611629104

Hiraki, H., Uemura, M., and Kawamura, Y. (2018). Calcium signaling-linked 
CBF/DREB1 gene expression was induced depending on the temperature 
fluctuation in the field: views from the natural condition of cold acclimation. 
Plant Cell Physiol. 60, 303–317. doi: 10.1093/pcp/pcy210

Ishikawa, T., Kashima, M., Nagano, A. J., Ishikawa-Fujiwara, T., Kamei, Y., 
Todo, T., et al. (2017). Unfolded protein response transducer IRE1-mediated 
signaling independent of XBP1 mRNA splicing is not required for growth and 
development of medaka fish. eLife 6, e26845. doi: 10.7554/eLife.26845

Jander, G., Cui, J., Nhan, B., Pierce, N. E., and Ausubel, F. M. (2001). The TASTY 
locus on chromosome 1 of Arabidopsis affects feeding of the insect herbivore 
Trichoplusia ni. Plant Physiol. 126, 890–898. doi: 10.1104/pp.126.2.890

Kamitani, M., Nagano, A. J., Honjo, M. N., and Kudoh, H. (2016). RNA-Seq reveals 
virus–virus and virus–plant interactions in nature. FEMS Microbiol. Ecol. 
92, fiw176. doi: 10.1093/femsec/fiw176

Kempema, L. A., Cui, X., Holzer, F. M., and Walling, L. L. (2007). Arabidopsis 
transcriptome changes in response to phloem-feeding silverleaf whitefly 
nymphs: similarities and distinctions in responses to aphids. Plant Physiol. 143, 
849–865. doi: 10.1104/pp.106.090662

Kerwin, R. E., Feusier, J., Corwin, J., Rubin, M., Lin, C., Muok, A., et al. (2015). 
Natural genetic variation in Arabidopsis thaliana defense metabolism genes 
modulates field fitness. eLife 4, e05604. doi: 10.7554/eLife.05604.001

Kerwin, R. E., Feusier, J., Muok, A., Lin, C., Larson, B., Copeland, D., et al. (2017). 
Epistasis × environment interactions among Arabidopsis thaliana glucosinolate 
genes impact complex traits and fitness in the field. New Phytol. 215, 1249–1263. 
doi: 10.1111/nph.14646

Kliebenstein, D. J., Lambrix, V. M., Reichelt, M., Gershenzon, J., and Mitchell-Olds, T. 
(2001a). Gene duplication in the diversification of secondary metabolism: 
tandem 2-oxoglutarate-dependent dioxygenases control glucosinolate 
biosynthesis in Arabidopsis. Plant Cell 13, 681–693. doi: 10.1105/tpc.13.3.681

Kliebenstein, D. J., Kroymann, J., Brown, P., Figuth, A., Pedersen, D., Gershenzon, J., 
et al. (2001b). Genetic control of natural variation in Arabidopsis glucosinolate 
accumulation. Plant Physiol. 126, 811–825. doi: 10.1104/pp.126.2.811

Kliebenstein, D., Pedersen, D., Barker, B., and Mitchell-Olds, T. (2002). Comparative 
analysis of quantitative trait loci controlling glucosinolates, myrosinase and 
insect resistance in Arabidopsis thaliana. Genetics 161, 325–332.

Kliebenstein, D. J., Rowe, H. C., and Denby, K. J. (2005). Secondary metabolites 
influence Arabidopsis/Botrytis interactions: variation in host production and 
pathogen sensitivity. Plant J. 44, 25–36. doi: 10.1111/j.1365-313X.2005.02508.x

Kroymann, J., Donnerhacke, S., Schnabelrauch, D., and Mitchell-Olds, T. (2003). 
Evolutionary dynamics of an Arabidopsis insect resistance quantitative trait locus. 
Proc. Natl. Acad. Sci. U.S.A. 100, 14587–14592. doi: 10.1073/pnas.1734046100

Kono, M., Yamori, W., Suzuki, Y., and Terashima, I. (2017). Photoprotection of 
PSI by far-red light against the fluctuating light-induced photoinhibition in 
Arabidopsis thaliana and field-grown plants. Plant Cell Physiol. 58, 35–45. doi: 
10.1093/pcp/pcw215

Kudoh, H. (2016). Molecular phenology in plants: in natura systems biology 
for the comprehensive understanding of seasonal responses under natural 
environments. New Phytol. 210, 399–412. doi: 10.1111/nph.13733

Kuśnierczyk, A., Winge, P., Jrstad, T. S., Troczyska, J., Rossiter, J. T., and Bones, A. M. 
(2008). Towards global understanding of plant defence against aphids 
timing and dynamics of early Arabidopsis defence responses to cabbage 
aphid (Brevicoryne brassicae) attack. Plant Cell Environ. 31, 1097–1115. doi: 
10.1111/j.1365-3040.2008.01823.x

Langmead, B., Trapnell, C., Pop, M., and Salzberg, S. L. (2009). Ultrafast and 
memory-efficient alignment of short DNA sequences to the human genome. 
Genome Biol. 10, R25. doi: 10.1186/gb-2009-10-3-r25

Lambrix, V., Reichelt, M., Mitchell-Olds, T., Kliebenstein, D. J., and Gershenzon, J. 
(2001). The Arabidopsis epithiospecifier protein promotes the hydrolysis of 
glucosinolates to nitriles and influences Trichoplusia ni herbivory. Plant Cell 
13, 2793–2807. doi: 10.1105/tpc.13.12.2793

Larkin, J. C., Walker, J. D., Bolognesi-Winfield, A. C., Gray, J. C., and Walker, A. R. 
(1999). Allele-specific interactions between ttg and gl1 during trichome 
development in Arabidopsis thaliana. Genetics 151, 1591–1604.

Li, B., and Dewey, C. N. (2011). RSEM: accurate transcript quantification from 
RNA-Seq data with or without a reference genome. BMC Bioinformatics 
12, 323. doi: 10.1186/1471-2105-12-323

Lin, C. W., Huang, L. Y., Huang, C. L., Wang, Y. C., Lai, P. H., Wang, H. V., et al. 
(2017). Common stress transcriptome analysis reveals functional and genomic 
architecture differences between early and delayed response genes. Plant Cell 
Physiol. 58, 546–559. doi: 10.1093/pcp/pcx002

Lin, Y., Jiang, L., Chen, Q., Li, Y., Zhang, Y., Luo, Y., et al. (2018). Comparative 
transcriptome profiling analysis of red-and white-fleshed strawberry (Fragaria 
× ananassa) provides new insight into the regulation of anthocyanins pathway. 
Plant Cell Physiol. 59, 1844–1859. doi: 10.1093/pcp/pcy098

Martínez-Ballesta, M., Moreno-Fernández, D. A., Castejón, D., Ochando, C., 
Morandini, P. A., and Carvajal, M. (2015). The impact of the absence of 
aliphatic glucosinolates on water transport under salt stress in Arabidopsis 
thaliana. Front. Plant Sci. 6, 524. doi: 10.3389/fpls.2015.00524

Martinoia, E., Mimura, T., Hara-Nishimura, I., and Shiratake, K. (2018). The 
multifaceted roles of plant vacuoles. Plant Cell Physiol. 59, 1285–1287. doi: 
10.1093/pcp/pcy113

Matthes, M. C., Bruce, T. J., Ton, J., Verrier, P. J., Pickett, J. A., and Napier, J. A. (2010). 
The transcriptome of cis-jasmone-induced resistance in Arabidopsis thaliana and 
its role in indirect defence. Planta 232, 1163–1180. doi: 10.1007/s00425-010-1244-4

Matthes, M. C., Bruce, T. J., Chamberlain, K., Pickett, J. A., and Napier, J. A. (2011). 
Emerging roles in plant defense for cis-jasmone-induced cytochrome P450 
CYP81D11. Plant Signal. Behav. 6, 563–565. doi: 10.4161/psb.6.4.14915

Mewis, I., Appel, H. M., Hom, A., Raina., R., and Schultz, J. C. (2005). Major 
signaling pathways modulate Arabidopsis glucosinolate accumulation and 
response to both phloem-feeding and chewing insects. Plant Physiol. 138, 
1149–1162. doi: 10.1104/pp.104.053389

Mewis, I., Khan, M. A. M., Glawischnig, E., Schreiner, M., and Ulrichs, C. (2012). 
Water stress and aphid feeding differentially influence metabolite composition 
in Arabidopsis thaliana (L.). PLoS ONE 7, e48661. doi: 10.1371/journal.
pone.0048661

Mishra, N., Sun, L., Zhu, X., Smith, J., Prakash Srivastava, A., Yang, X., et al. (2017). 
Overexpression of the rice SUMO E3 ligase gene OsSIZ1 in cotton enhances 

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://doi.org/10.1534/genetics.109.108522
https://doi.org/10.1104/pp.105.063743
https://doi.org/10.1104/pp.105.063743
https://doi.org/10.1093/pcp/pcx014
https://doi.org/10.1093/pcp/pcy166
https://doi.org/10.1111/j.1365-313X.2007.03373.x
https://doi.org/10.1093/pcp/pcy128
https://doi.org/10.1007/s11258-006-9204-6
https://doi.org/10.1111/j.1365-313X.2007.03101.x
https://doi.org/10.1093/oxfordjournals.molbev.a003963
https://doi.org/10.1073/pnas.0611629104
https://doi.org/10.1093/pcp/pcy210
https://doi.org/10.7554/eLife.26845
https://doi.org/10.1104/pp.126.2.890
https://doi.org/10.1093/femsec/fiw176
https://doi.org/10.1104/pp.106.090662
https://doi.org/10.7554/eLife.05604.001
https://doi.org/10.1111/nph.14646
https://doi.org/10.1105/tpc.13.3.681
https://doi.org/10.1104/pp.126.2.811
https://doi.org/10.1111/j.1365-313X.2005.02508.x
https://doi.org/10.1073/pnas.1734046100
https://doi.org/10.1093/pcp/pcw215
https://doi.org/10.1111/nph.13733
https://doi.org/10.1186/gb-2009-10-3-r25
https://doi.org/10.1105/tpc.13.12.2793
https://doi.org/10.1186/1471-2105-12-323
https://doi.org/10.1093/pcp/pcx002
https://doi.org/10.1093/pcp/pcy098
https://doi.org/10.3389/fpls.2015.00524
https://doi.org/10.1093/pcp/pcy113
https://doi.org/10.1007/s00425-010-1244-4
https://doi.org/10.4161/psb.6.4.14915
https://doi.org/10.1104/pp.104.053389
https://doi.org/10.1371/journal.pone.0048661
https://doi.org/10.1371/journal.pone.0048661


Field Transcriptomics of Arabidopsis HerbivorySato et al.

12 September 2019 | Volume 10 | Article 787Frontiers in Genetics | www.frontiersin.org

drought and heat tolerance, and substantially improves fiber yields in the field 
under reduced irrigation and rainfed conditions. Plant Cell Physiol. 58, 735–
746. doi: 10.1093/pcp/pcx032

Nagano, A. J., Honjo, M. N., Mihara, M., Sato, M., and Kudoh, H., (2015). “Detection of 
plant viruses in natural environments by using RNA-Seq,” in Plant Virology Protocols 
(New York, NY: Humana Press), 89–98. doi: 10.1007/978-1-4939-1743-3_8

Nagano, A. J., Kawagoe, T., Sugisaka, J., Honjo, M. N., Iwayama, K., and Kudoh, H. 
(2019). Annual transcriptome dynamics in natural environments reveals plant 
seasonal adaptation. Nat. Plants. 5, 74–83. doi: 10.1038/s41477-018-0338-z

Nakano, M., and Mukaihara, T. (2018). Ralstonia solanacearum type III effector 
RipAL targets chloroplasts and induces jasmonic acid production to suppress 
salicylic acid-mediated defense responses in plants. Plant Cell Physiol. 
59, 2576–2589. doi: 10.1093/pcp/pcy177

R Core Team. (2015). R: a language and environment for statistical computing. 
R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-
project.org/.

Ratzka, A., Vogel, H., Kliebenstein, D. J., Mitchell-Olds, T., and Kroymann,  J. 
(2002). Disarming the mustard oil bomb. Proc. Natl. Acad. Sci. U.S.A. 
99, 11223–11228. doi: 10.1073/pnas.172112899

Renwick, J. A. A., Haribal, M., Gouinguené, S., and Städler, E. (2006). 
Isothiocyanates stimulating oviposition by the diamondback moth, Plutella 
xylostella. J. Chem. Ecol. 32, 755–766. doi: 10.1007/s10886-006-9036-9

Sato, Y. (2018). Associational effects and the maintenance of polymorphism in 
plant defense against herbivores: review and evidence. Plant Spec. Biol. 33, 
91–108. doi: 10.1111/1442-1984.12201

Sato, Y., and Kudoh, H. (2017). Fine-scale frequency differentiation along a 
herbivory gradient in the trichome dimorphism of a wild Arabidopsis. Ecol. 
Evol. 7, 2133–2141. doi: 10.1002/ece3.2830

Sato, Y., Shimizu-Inatsugi, R., Yamazaki, M., Shimizu, K. K., and Nagano, A. J. 
(2019a). Plant trichomes and a single gene GLABRA1 contribute to insect 
community composition on field-grown Arabidopsis thaliana. BMC Plant Biol. 
19, 163. doi: 10.1186/s12870-019-1705-2

Sato, Y., Tezuka, A., Kashima, M., Deguchi, A., Shimizu-Inatsugi, R., Yamazaki, M., 
et al. (2019b). Transcriptional variation in glucosinolate biosynthetic genes and 
inducible responses to aphid herbivory on field-grown Arabidopsis thaliana. 
bioRxiv 563486. doi: 10.1101/563486

Schoonhoven, L. M., van Loon, J. J. A., and Dicke, M., (2005). Insect-plant biology. 
2nd ed. Oxford, UK: Oxford University Press.

Schmid, M., Davison, T. S., Henz, S. R., Pape, U. J., Demar, M., Vingron, M., et al. 
(2005). A gene expression map of Arabidopsis thaliana development. Nat. 
Genet. 37, 501–506. doi: 10.1038/ng1543

Shimizu, K. K., Kudoh, H., and Kobayashi, M. J. (2011). Plant sexual reproduction 
during climate change: gene function in natura studied by ecological and 
evolutionary systems biology. Ann. Bot. 108, 777–787. doi: 10.1093/aob/mcr180

Shirakawa, M., and Hara-Nishimura, I. (2018). Specialized vacuoles of myrosin 
cells: chemical defense strategy in Brassicales plants. Plant Cell Physiol. 59, 
1309–1316. doi: 10.1093/pcp/pcy082

Snoeren, T. A. L., Kappers, I. F., Broekgaarden, C., Mumm, R., Dicke, M., and 
Bouwmeester, H. J. (2010). Natural variation in herbivore-induced volatiles in 
Arabidopsis thaliana. J. Exp. Bot. 61, 3041–3056. doi: 10.1093/jxb/erq127

Sokal, R. R., and Rohlf, F. J. (2012). Biometry. 4th edn. New York: WH Freeman 
and Company.

Sønderby, I. E., Hansen, B. G., Bjarnholt, N., Ticconi, C., Halkier, B. A., and 
Kliebenstein, D. J. (2007). A systems biology approach identifies a R2R3 MYB 
gene subfamily with distinct and overlapping functions in regulation of aliphatic 
glucosinolates. PLoS ONE 2, e1322. doi: 10.1371/journal.pone.0001322

Sugiyama, A., Yamazaki, Y., Hamamoto, S., Takase, H., and Yazaki, K. (2017). 
Synthesis and secretion of isoflavones by field-grown soybean. Plant Cell 
Physiol. 58, 1594–1600. doi: 10.1093/pcp/pcx084

Sun, H., Chen, L., Li, J., Hu, M., Ullah, A., He, X., et al. (2017). The JASMONATE 
ZIM-Domain gene family mediates JA signaling and stress response in cotton. 
Plant Cell Physiol. 58, 2139–2154. doi: 10.1093/pcp/pcx148

Taylor, M. A., Cooper, M. D., Sellamuthu, R., Braun, P., Migneault, A., Browning, A., 
et al. (2017). Interacting effects of genetic variation for seed dormancy 
and flowering time on phenology, life history, and fitness of experimental 
Arabidopsis thaliana populations over multiple generations in the field. New 
Phytol. 216, 291–302. doi: 10.1111/nph.14712

Thompson, L. (1994). The spatiotemporal effects of nitrogen and litter on the population 
dynamics of Arabidopsis thaliana. J. Ecol. 82, 63–88. doi: 10.2307/2261386

Tsuda, K. (2017). Division of tasks: defense by the spatial separation of antagonistic 
hormone activities. Plant Cell Physiol. 59, 3–4. doi: 10.1093/pcp/pcx208

Wang, M., Gu, Z., Wang, R., Guo, J., Ling, N., Firbank, L. G., et al. (2018). Plant 
primary metabolism regulated by nitrogen contributes to plant–pathogen 
interactions. Plant Cell Physiol. 60, 329–342. doi: 10.1093/pcp/pcy211

Wentzell, A. M., Rowe, H. C., Hansen, B. G., Ticconi, C., Halkier, B. A., and Kliebenstein, 
D. J. (2007). Linking metabolic QTLs with network and cis-eQTLs controlling 
biosynthetic pathways. PLoS Genet. 3, e162. doi: 10.1371/journal.pgen.0030162

Wilczek, A. M., Roe, J. L., Knapp, M. C., Cooper, M. D., Lopez-Gallego, C., Martin, 
L. J., et al. (2009). Effects of genetic perturbation on seasonal life history 
plasticity. Science 323, 930–934. doi: 10.1126/science.1165826

Wu, S., Tohge, T., Cuadros-Inostroza, Á., Tong, H., Tenenboim, H., Kooke, R., 
et al. (2018). Mapping the Arabidopsis metabolic landscape by untargeted 
metabolomics at different environmental conditions. Mol. Plant 11, 118–134. 
doi: 10.1016/j.molp.2017.08.012

Xu, B., Yu, G., Li, H., Xie, Z., Wen, W., Zhang, J., et al. (2018). Knockdown of 
STAYGREEN in perennial ryegrass (Lolium perenne L.) leads to transcriptomic 
alterations related to suppressed leaf senescence and improved forage quality. 
Plant Cell Physiol. 60, 202–212. doi: 10.1093/pcp/pcy203

Yamaji, Y., Maejima, K., Komatsu, K., Shiraishi, T., Okano, Y., Himeno, M., et al. 
(2012). Lectin-mediated resistance impairs plant virus infection at the cellular 
level. Plant Cell 24, 778–793. doi: 10.1105/tpc.111.093658

Yamasaki, E., Altermatt, F., Cavender-Bares, J., Schuman, M. C., Zuppinger-Dingley, 
D., Garonna, I., et al. (2018). Genomics meets remote sensing in global change 
studies: monitoring and predicting phenology, evolution and biodiversity. Curr. 
Opin. Environ. Sustain. 29, 177–186. doi: 10.1016/j.cosust.2018.03.005

Yano, S. (1994). Ecological and evolutionary interactions between wild crucifers 
and their herbivorous insects. Plant Spec. Biol. 9, 137–143. doi: 10.1111/j.1442-
1984.1994.tb00094.x

Yazaki, K., Arimura, G. I., and Ohnishi, T. (2017). ‘Hidden’ terpenoids in plants: 
their biosynthesis, localization and ecological roles. Plant Cell Physiol. 58, 
1615–1621. doi: 10.1093/pcp/pcx123

Yoshida, Y., Sano, R., Wada, T., Takabayashi, J., and Okada, K. (2009). Jasmonic 
acid control of GLABRA3 links inducible defense and trichome patterning in 
Arabidopsis. Development 136, 1039–1048. doi: 10.1242/dev.030585

Zaidem, M., Groen, S. C., and Purugganan, M. D. (2019). Evolutionary and ecological 
functional genomics, from lab to the wild. Plant J. 97, 40–55. doi: 10.1111/tpj.14167

Zhang, Z., Ober, J. A., and Kliebenstein, D. J. (2006). The gene controlling the 
quantitative trait locus EPITHIOSPECIFIER MODIFIER1 alters glucosinolate 
hydrolysis and insect resistance in Arabidopsis. Plant Cell 18, 1524–1536. doi: 
10.1105/tpc.105.039602

Zhang, X., Ivanova, A., Vandepoele, K., Radomiljac, J., Van de Velde, J., Berkowitz,  O., 
et al. (2017). The transcription factor MYB29 is a regulator of ALTERNATIVE 
OXIDASE1a. Plant Physiol. 173, 1824–1843. doi: 10.1104/pp.16.01494

Zhou, S., Richter, A., and Jander, G. (2018). Beyond defense: multiple functions of 
benzoxazinoids in maize metabolism. Plant Cell Physiol. 59, 1528–1537. doi: 
10.1093/pcp/pcy064

Zhu, J., Wang, X., Guo, L., Xu, Q., Zhao, S., Li, F., et al. (2018). Characterization 
and alternative splicing profiles of the lipoxygenase gene family in tea plant 
(Camellia sinensis). Plant Cell Physiol. 59, 1765–1781. doi: 10.1093/pcp/pcy091

Züst, T., Heichinger, C., Grossniklaus, U., Harrington, R., Kliebenstein, D. J., and 
Turnbull, L. A. (2012). Natural enemies drive geographic variation in plant 
defenses. Science 338, 116–119. doi: 10.1126/science.1226397

Conflict of Interest Statement: The authors declare that the research was 
conducted in the absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Copyright © 2019 Sato, Tezuka, Kashima, Deguchi, Shimizu-Inatsugi, Yamazaki, 
Shimizu and Nagano. This is an open-access article distributed under the terms of the 
Creative Commons Attribution License (CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the original author(s) and the copyright owner(s) 
are credited and that the original publication in this journal is cited, in accordance with 
accepted academic practice. No use, distribution or reproduction is permitted which does 
not comply with these terms.

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://doi.org/10.1093/pcp/pcx032
https://doi.org/10.1007/978-1-4939-1743-3_8
https://doi.org/10.1038/s41477-018-0338-z
https://doi.org/10.1093/pcp/pcy177
https://doi.org/10.1073/pnas.172112899
https://doi.org/10.1007/s10886-006-9036-9
https://doi.org/10.1111/1442-1984.12201
https://doi.org/10.1002/ece3.2830
https://doi.org/10.1186/s12870-019-1705-2
https://doi.org/10.1101/563486
https://doi.org/10.1038/ng1543
https://doi.org/10.1093/aob/mcr180
https://doi.org/10.1093/pcp/pcy082
https://doi.org/10.1093/jxb/erq127
https://doi.org/10.1371/journal.pone.0001322
https://doi.org/10.1093/pcp/pcx084
https://doi.org/10.1093/pcp/pcx148
https://doi.org/10.1111/nph.14712
https://doi.org/10.2307/2261386
https://doi.org/10.1093/pcp/pcx208
https://doi.org/10.1093/pcp/pcy211
https://doi.org/10.1371/journal.pgen.0030162
https://doi.org/10.1126/science.1165826
https://doi.org/10.1016/j.molp.2017.08.012
https://doi.org/10.1093/pcp/pcy203
https://doi.org/10.1105/tpc.111.093658
https://doi.org/10.1016/j.cosust.2018.03.005
https://doi.org/10.1111/j.1442-1984.1994.tb00094.x
https://doi.org/10.1111/j.1442-1984.1994.tb00094.x
https://doi.org/10.1093/pcp/pcx123
https://doi.org/10.1242/dev.030585
https://doi.org/10.1111/tpj.14167
https://doi.org/10.1105/tpc.105.039602
https://doi.org/10.1104/pp.16.01494
https://doi.org/10.1093/pcp/pcy064
https://doi.org/10.1093/pcp/pcy091
https://doi.org/10.1126/science.1226397
http://creativecommons.org/licenses/by/4.0/

	Transcriptional Variation in Glucosinolate Biosynthetic Genes and Inducible Responses to Aphid Herbivory on Field-Grown Arabidopsis thaliana

	Introduction

	Materials and Methods

	Field Experiment

	RNA-Seq Experiments and Data Filtering

	Statistical Analysis

	Laboratory Bioassay and RT-qPCR


	Results

	Insect Herbivores Observed on 
Field-Grown A. thaliana

	Gene Expression Variation Among A. thaliana Accessions

	Inducible Responses to Leaf-Chewing and Sap-Sucking Herbivores

	Laboratory Bioassay Using the 
Specialist Aphids


	Discussion

	Expression Variation in Glucosinolate Biosynthetic Genes

	Genes Possessing Inducible Responses to Herbivory


	Conclusion

	Data Availability

	Author Contributions

	Funding

	Acknowledgments

	Supplementary Material

	References



