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Epigenetic marks operate at multiple chromosomal levels to regulate gene expression, from 
direct covalent modification of DNA to three-dimensional chromosomal structure. Research 
has shown that 5-methylcytosine (5-mC) and its oxidized form, 5-hydroxymethylcytosine 
(5-hmC), are stable epigenetic marks with distinct genomic distributions and separate 
regulatory functions. In addition, recent data indicate that 5-hmC plays a critical regulatory 
role in the mammalian brain, emphasizing the importance of considering this alternative 
DNA modification in the context of neuroepigenetics. Traditional bisulfite (BS) treatment-
based methods to measure the methylome are not able to distinguish between 5-mC 
and 5-hmC, meaning much of the existing literature does not differentiate these two DNA 
modifications. Recently developed methods, including Tet-assisted bisulfite treatment 
and oxidative bisulfite treatment, allow for differentiation of 5-hmC and/or 5-mC levels 
at base-pair resolution when combined with next-generation sequencing or methylation 
arrays. Despite these technological advances, there remains a lack of clarity regarding 
the appropriate statistical methods for integration of 5-mC and 5-hmC data. As a result, 
it can be difficult to determine the effects of an experimental treatment on 5-mC and 
5-hmC dynamics. Here, we propose a statistical approach involving mixed effects to 
simultaneously model paired 5-mC and 5-hmC data as repeated measures. We tested 
this approach using publicly available BS/oxidative bisulfite-450K array data and showed 
that our new approach detected far more CpG probes with paired changes in 5-mC and 
5-hmC by Alzheimer’s disease status (n = 14,183 probes) compared with the overlapping 
differential probes generated from separate models for each epigenetic mark (n = 68). Of 
note, all 68 of the overlapping probe IDs from the separate models were also significant in 
our new modeling approach, supporting the sensitivity of our new analysis method. Using 
the proposed approach, it will be possible to determine the effects of an experimental 
treatment on both 5-mC and 5-hmC at the base-pair level.
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INTRODUCTION

Epigenetics
Epigenetic marks operate at four major levels—DNA 
modifications, histone modifications, noncoding RNAs, and 
three-dimensional chromatin structure (Chen et al., 2017b). The 
most studied DNA modification is 5-methylcytosine (5-mC), 
the addition of a methyl group at the C5 position of a cytosine 
in the DNA sequence (Moore et al., 2013). An abundance of 
research shows associations between 5-mC and gene expression 
and suggests that this epigenetic mark plays a key role in 
transcriptional control (Moore et al., 2013). In addition to 
5-mC, there are three further oxidized DNA modifications—5-
hydroxymethylcytosine (5-hmC), 5-formylcytosine (5-fC), and 
5-carboxylcytosine (5-caC) (Shen et al., 2014). These alternative 
DNA modifications are formed when 5-mC is successively 
oxidized by the ten-eleven translocase (Tet) family of proteins 
(Shen et al., 2014). The 5-fC and 5-caC modifications are rapidly 
removed by thymine-DNA glycosylase and base excision repair 
and are thought to be transient (He et al., 2011; Ito et al., 2011; 
Maiti and Drohat, 2011). In contrast, 5-hmC can be a stable 
epigenetic mark that regulates transcription (Hahn et al., 2014). 
In particular, 5-hmC appears to play an important role in the 
central nervous system, where it is present at much higher levels 
than embryonic stem cells and other somatic tissues (Globisch 
et al., 2010; Szwagierczak et al., 2010; Nestor et al., 2012; Cheng 
et al., 2015).

Neuroepigenetics: A Unique Role for 
5-Hydroxymethylcytosine
Given the relative enrichment of 5-hmC in nervous tissue, an 
abundance of new research has examined the potential regulatory 
role of 5-hmC in the brain. Studies show that 5-hmC is acquired 
during neuronal development (Hahn et al., 2013; Szulwach et al., 
2011) and maintained throughout adulthood (Chen et al., 2014). 
In the brain, 5-hmC has a specific distribution across the genome, 
with enrichment at genic regions, distal regulatory elements, 
and exon–intron boundaries (Khare et al., 2012; Lister et al., 
2013; Wen et al., 2014). At the level of specific genes, 5-hmC is 
enriched in gene bodies of genes that are transcriptionally active 
in neuronal tissue (Mellén et al., 2012). In addition, different 
anatomical regions of the brain show distinct 5-hmC patterning 
(Lunnon et al., 2016), suggesting a specific regulatory role for this 
epigenetic mark.

Recent work also highlights that 5-mC and 5-hmC differ 
in their genomic distribution in the nervous system (Chen 
et al., 2014; Cheng et al., 2015). During synaptogenesis, 5-hmC 
preferentially accumulates in euchromatin, whereas 5-mC 
gradually builds up in heterochromatic regions (Chen et al., 
2014). In addition, 5-mC and 5-hmC preferentially recruit 
distinct sets of DNA-binding proteins in brain tissue (Spruijt 
et al., 2013). For example, whereas Mbd1, Mbd4, and MeCP2 
bind 5-mC at higher affinity, Neil1, Thy28, and Wdr76 have a 
higher affinity for 5-hmC (Spruijt et al., 2013). 5-hmC is also 
preferentially bound by the DNA-binding protein Uhrf2 in 
neuronal progenitor cells (Spruijt et al., 2013), a process that 

may regulate spatial memory and learning (Chen et al., 2017a). 
The distinct sets of readers for 5-hmC and 5-mC indicate that 
these two epigenetic marks have separate regulatory functions 
in neuronal tissue.

Combined, the available data suggest that 5-hmC plays a 
critical regulatory role in the mammalian brain, emphasizing the 
importance of considering this alternative DNA modification 
in the context of neuroepigenetics. As such, it is critical that the 
field develops methods to accurately distinguish 5-hmC from 
5-mC in a genome-wide context. Here, we discuss the available 
methods for measuring 5-hmC, including their strengths 
and weaknesses, and then propose a statistical approach for 
co-analyzing the effects of an experimental treatment on paired 
5-mC and 5-hmC data.

Differentiation of Base-Pair 
Resolution 5-Methylcytosine and 
5-Hydroxymethylcytosine
Historically, the majority of neuroepigenetics studies investigating 
DNA modifications utilized bisulfite (BS) treatment-based 
methods to measure DNA methylation (Rein et al., 1998; Clark 
et  al., 2006; Beck and Rakyan, 2008). BS conversion utilizes 
sodium BS to convert all unmodified cytosines to uracil by 
deamination but does not deaminate 5-mC or 5-hmC. The 
converted cytosines (C, 5-fC, or 5-caC) are read as thymines 
during sequencing, while the unconverted cytosines (5-mC or 
5-hmC) are read as cytosines. From these data, the percent of 
methylation (beta value) at each cytosine can be calculated 
from the proportion of cytosines and thymines detected at each 
position (Figure 1).

Unfortunately, 5-mC and 5-hmC are both resistant to 
deamination during BS conversion, meaning BS-based methods 
are unable to differentiate between these two marks (Huang 
et al., 2010; Jin et al., 2010). As such, studies utilizing traditional 
BS treatment actually captured both 5-mC and 5-hmC, which 
may confound their identified associations between differential 
DNA methylation and transcriptional control. To address this 
issue, multiple technological advancements have allowed for 
specific profiling of 5-mC and 5-hmC at the base-pair level. 
Currently, there are two BS treatment-based methods used to 
measure 5-hmC levels—oxidative BS treatment (oxBS) and Tet-
assisted BS treatment (TAB). More recently, additional novel 
techniques have been developed to estimate true 5-mC and true 
5-hmC values, including APOBEC3A-mediated deamination 
sequencing, Tet-assisted pyridine borane sequencing, and AbaSI-
sequencing (Sun et al., 2013; Li et al., 2018; Liu et al., 2019). 
These alternate methods hold promise but have not yet been 
widely adopted by the field. As such, this article focuses on a new 
statistical approach to deal with paired 5-mC and 5-hmC data 
from BS treatment-based methods.

Bisulfite/Oxidative Bisulfite Treatment
Oxidative BS (oxBS) treatment involves chemically mediated 
selective oxidation of 5-hmC to 5-fC prior to BS conversion 
by potassium perruthenate (KuRO4). After this oxidation step, 

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Reconciling Base-Pair Resolution 5-methylcytosine and 5-hydroxymethylcytosineKochmanski et al.

3 September 2019 | Volume 10 | Article 801Frontiers in Genetics | www.frontiersin.org

5-hmC acts like 5-fC during BS conversion and is converted to 
uracil and read as thymine in subsequent sequencing reactions. 
5mC remains unaffected by KuRO4, is not deaminated by BS, 
and is read as cytosine. Thus, oxBS provides a measure of 5-mC 
only (“true 5-mC”) (Booth et al., 2013) (Table 1). This method 
must be paired with traditional BS conversion, which provides a 
combined measure of 5-mC and 5-hmC, and an estimation step 
must be performed to generate an estimate of 5hmC. Currently, 
paired BS/oxBS is the most commonly used method to generate 
paired 5-mC and 5-hmC data; it is standard practice to use a 
maximum likelihood estimate (MLE) method to estimate 5hmC 
levels from paired BS/oxBS data (Xu et al., 2016).

Tet-Assisted Bisulfite Treatment
TAB method is an enzyme-based method where 5-hmC is 
specifically protected from ten-eleven translocase (TET) enzyme-
mediated oxidation. In this method, a β-glucosyltransferase 
enzyme is used to add a glucose moiety to 5-hmC prior to 
treatment with recombinant TET enzyme. The TET enzyme 
oxidizes 5-mC but not glucosylated 5-hmC, to 5-caC, a DNA 
modification that can be BS converted (Yu et al., 2012).

In essence, this method selectively protects 5-mC, leaving 
5-hmC and the other modified cytosines available for BS 
conversion. As a result, TAB directly measures 5-hmC (“true 
5-hmC”) at the base-pair level and can be performed without 
paired BS conversion (Table 1). However, the TAB method only 

measures 5-hmC, and does not provide any information on 
5-mC. In addition, the enzymatic treatment required for TAB 
can be quite costly. Based on these considerations, use of the TAB 
method remains limited compared to BS/oxBS treatment.

Generation of 5-Methylcytosine and 
5-Hydroxymethylcytosine Beta Values
For genome-wide assessment of 5-mC and 5-hmC, each of the 
methods described previously can be paired with sequencing arrays 
(i.e., Illumina 450K/EPIC BeadChip), reduced representation 

TABLE 1 | Beta value estimation for each described method for measuring base-
pair resolution 5-hmC.

Beta value equation: βmC + βhmC + βC = 1

Method Measured Estimated by 
comparison to BS

BS βmC + βhmC N/A
oxBS βmC βhmC

TAB βhmC βmC

The various DNA treatment methods described in the text—BS, oxBS, and TAB—allow 
for specific tagging and measurement of different DNA modifications. By comparing 
beta values generated from these methods with those from BS treatment data, βhmC 
and βmC can be estimated. As indicated by the equation at the top of the table, the 
sum of beta values for all DNA modifications is always equal to 1. This is because beta 
values represent the proportions of each modification, not measures of magnitude. As 
a result of being proportions, βhmC and βmC will always have values between 0 and 1.

FIGURE 1 | Summary of two available methods for measuring genomic 5-hmC levels. There are two widely adopted methods used to measure 5-hmC levels 
at the base-pair level—paired BS/oxBS and TAB (Yu et al., 2012; Booth et al., 2013). These two methods differ in their chemistry and data interpretation. In the 
oxBS method, KRuO4 oxidation selectively converts 5-hmC to 5-fC, which is removed during BS conversion. By comparing oxBS data (5-mC) with traditional BS 
data, it is possible to infer 5-hmC levels. For the TAB treatment method, 5-hmC is selectively tagged with a β-glucosyl group, which makes it resistant to either BS 
conversion. On its own, TAB provides a true value for 5-hmC but does not measure 5-mC.
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sequencing, or whole-genome sequencing. Choosing between 
these available methods is not only a question of cost but also an 
experimental question, tissue type, and desired genomic coverage. 
Discussion of these specific issues is beyond the scope of this 
commentary; they are discussed in depth elsewhere (Sun et al., 
2015; Kurdyukov and Bullock, 2016; Yong et al., 2016). The issues 
related to co-analysis of 5-mC and 5-hmC exist for all three types 
of data generation.

Following conversion of DNA by any of these three 
methods and subsequent analysis by sequencing arrays (i.e., 
Illumina 450K/EPIC BeadChip), reduced representation 
sequencing, or whole-genome sequencing, beta values for 
each modification can be calculated at each assayed cytosine. 
Beta values are ratios of modified (5-mC or 5-hmC) and 
unmodified (C) alleles, with values between 0 (unmodified) 
and 1 (fully modified); added together, the sum of these beta 
values at each cytosine equals 1 (Table 1).

PROBLEMS IN 5-METHYLCYTOSINE AND 
5-HYDROXYMETHYLCYTOSINE DATA 
ANALYSIS

Despite the significant technological advances in differentiating 
5-mC and 5-hmC, standard statistical methods for co-analyzing 
5mC and 5hmC do not yet exist. At an individual CpG site, 
both 5-mC and 5-hmC can contribute to gene regulation, but 
none of the available bioinformatics tools provide a function 
for co-analyzing 5-mC and 5-hmC β values. As a result, existing 
studies have focused on either examining the distribution 
of 5-hmC across the genome in isolation (Green et al., 2016; 
Johnson et al., 2016; Hernandez Mora et al., 2018) or treating 
5-mC and 5-hmC β values as independent variables, analyzing 
each epigenetic mark as a separate dataset to identify differentially 
methylated and hydroxymethylated regions (Glowacka et al., 
2018; Zhang et al., 2018). While there is utility to both of these 
approaches, the results are difficult to reconcile into a clear 
picture of the underlying biology for two main reasons: 1) the 
methodological and biological interdependence of 5-mC and 
5-hmC and 2) the different distributions of βmC and βhmC. This 
uncertainty complicates functional interpretation of BS-based 
DNA modification data, since 5-mC and 5-hmC have distinct 
genomic distributions and regulatory functions (Shen and 
Zhang, 2013; Skvortsova et al., 2017). Furthermore, this type of 
differential DNA modification misclassification is particularly 
relevant in nervous system tissue, where 5-hmC is present at high 
levels (Globisch et al., 2010; Szwagierczak et al., 2010; Nestor 
et al., 2012; Cheng et al., 2015). Later, we run through these 
concerns in greater detail and, then, propose a statistical method 
for co-analyzing paired 5-mC and 5-hmC levels.

Interdependence of 5-Methylcytosine and 
5-Hydroxymethylcytosine
After measuring genome-wide 5-mC and 5-hmC at the base-pair 
level, a simple approach would be to split these two epigenetic marks 
into separate datasets for analysis. While this method is attractive, 

it fails to account for the interdependence of 5-mC and 5-hmC 
data. These two epigenetic marks are often related to each other 
biologically and methodologically. Biologically, 5-hmC is produced 
through direct oxidation of 5-mC (Shen et al., 2014), meaning 
5-hmC β values are directly dependent on 5-mC β values. In addition 
to their biological relationship, 5-mC and 5-hmC β values generated 
from BS/oxBS experiments are also methodologically related, 
since calculation of 5-hmC is dependent upon either subtraction 
or a maximum likelihood estimation step (Booth et  al., 2013; 
Houseman et al., 2016; Xu et al., 2016). Unless one was to measure 
5-mC and 5-hmC directly through an alternative combination of 
the presented techniques, this methodological interdependence is 
unavoidable. Modeling approaches that treat 5-mC and 5-hmC β 
values as independent variables do not account for this inherent 
interdependence and limit one’s ability to comprehensively identify 
regions where 5-mC and 5-hmC have differential responses to an 
experimental condition.

Differential Distributions of βmC and βhmC
Even in the brain, where 5-hmC is present at comparatively high 
levels, it is still a rare event. Thus, many CpG sites have appreciable 
5-mC but no 5-hmC, which means that estimated 5-hmC β 
values are zero-enriched (Figure 2). On a genome-wide scale, 
5-mC has a beta distribution, and 5-hmC has a zero-inflated beta 
distribution. Given these divergent distributions, independent 
tests for differential 5-mC and 5-hmC need to utilize specific 
statistical approaches that include appropriate assumptions 
for their distributions. When different statistical tests are used 
for 5-mC and 5-hmC, the results from differential testing are 
difficult to reconcile. Furthermore, zero values for 5-hmC 
are typically estimated from paired BS/oxBS data, so it can be 
difficult to determine whether 5-hmC β values are true biological 
zeroes or technical artifacts of the data generation method. This 
complicates the downstream identification of treatment-induced 
active demethylation at specific genomic regions.

FIGURE 2 | Beta value distributions for 5-mC and 5-hmC from example 
BS-EPIC/oxBS-EPIC array data. Beta values for 5-mC and 5-hmC were 
estimated from in-house example BS/oxBS-EPIC data using the oxBS.MLE 
function with default parameters in the ENmix R package. Since many CpG 
sites have appreciable 5-mC, but no 5-hmC, estimated 5-hmC beta values 
are zero-enriched after maximum likelihood estimation from BS/oxBS data.
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Scenarios Where Independent Analysis 
Breaks Down
Modeling 5-mC and 5-hmC data separately requires a larger 
number of statistical tests than analyzing a single dataset. This 
increases the risk for false positives and may impede accurate 
interpretation of the data. While multiple testing correction 
methods can be used to address this concern, these statistical 
techniques can drastically limit one’s ability to detect true 
positives, especially in studies with a small sample size. As a 
result, analyzing 5-mC and 5-hmC data using separate models 
could negatively impact the ability of a project to identify regions 
of differential methylation and hydroxymethylation.

In addition to potential statistical errors, there are multiple 
scenarios in which independent analysis of 5-mC and/or 
5-hmC could fail to capture a complete picture of differential 
DNA modifications (Figure 3). Here, we present two potential 
scenarios in which independent analysis of 5-mC and 5-hmC 
presents limitations to the biological interpretation of the results.

In a first hypothetical scenario, the total proportion of 
modified cytosines decreases at a given CpG site, but only one 
modification is identified as statistically significant, leading to an 
incomplete view of the underlying biology (Figure 3A). In the 
specific example provided, the proportion of 5-mC significant 
decreases, and the proportion of 5-hmC shows a nonsignificant 
increase. These example data suggest oxidation of 5-mC to 
5-hmC at the measured CpG site. This oxidative processing may 
be part of active demethylation, which would lead to the observed 
decrease in total DNA modifications. However, downstream 
statistical analysis that treats 5-mC and 5-hmC as independent 

measures would only pick up the significant changes in 5-mC 
and would likely not identify the corresponding directional shift 
in 5-hmC. As a result, the selected analysis approach could lead 
to improper biological interpretation of the results.

In a second scenario, 5-mC shows a nonsignificant decrease, 
and 5-hmC shows a nonsignificant increase; meanwhile, 
combined DNA modifications remain the same by experimental 
group (Figure 3B). These data suggest a region with subtle 
oxidative processing of 5-mC to 5-hmC, but this shift in DNA 
modifications would not be detected in downstream statistical 
analysis that treats 5-mC and 5-hmC as independent measures.

For the described hypothetical scenarios, changes in the 
balance between 5-mC and 5-hmC at a measured CpG site may 
not be detected if the individual DNA modifications were analyzed 
as independent datasets. These dynamic regions of active DNA 
modification cycling may play an important biological role and 
should not be ignored. To address these concerns, researchers 
need a method to simultaneously analyze 5-mC and 5-hmC 
levels; unfortunately, no such statistical method currently exists 
in the literature.

POTENTIAL SOLUTIONS

Measuring True 5-Methylcytosine and 
5-Hydroxymethylcytosine
One way to address some of the statistical concerns brought up 
in the previous section would be to measure true levels of 5-mC 
and 5-hmC. For example, given that TAB and oxBS treatment 

FIGURE 3 | Examples of simultaneous, treatment-related changes in 5-mC and 5-hmC. Here, we use mock data to present two hypothetical scenarios in which 
experimental condition alters levels of 5-mC and/or 5-hmC in brain tissue. (A) In the first example, 5-mC significantly decreases, and 5-hmC shows a nonsignificant 
increase at a CpG site, while combined levels of DNA modifications decrease in exposed compared with those in control. Using a “traditional” modeling approach 
with separate models for each DNA modification, only the significant change in 5-mC would be identified (as indicated by asterisk), whereas the corresponding shift 
in 5-hmC at this CpG would not be identified. Our proposed interaction term model would identify this CpG as a site where there is a shift in the balance between 
5-mC and 5-hmC. As such, our proposed analysis would supplement the information produced by the traditional model. (B) In the second example, 5-mC shows 
a nonsignificant decrease, and 5-hmC shows a nonsignificant increase at a CpG site; meanwhile, combined DNA modifications remain the same by experimental 
group. Using a “traditional” modeling approach with separate models for each DNA modification, this CpG would not be identified as significant for either epigenetic 
mark. However, depending on the statistical power of our test, our proposed interaction term model could identify this CpG as a site where there is a shift in the 
balance between 5-mC and 5-hmC. As a result, our proposed analysis would provide additional information about the subtle shifts in these epigenetic marks at this 
CpG site. The asterisk indicates a significant change by experimental condition that would be identified using separate models for each DNA modification.
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selectively measure 5-hmC and 5-mC, these methods could 
be combined to measure true values for 5-hmC and 5-mC. 
This approach would bypass the required estimation step used 
to calculate 5-hmC levels in BS/oxBS experiments, thereby 
reducing the methodological interdependence of 5-mC and 
5-hmC. However, this type of combined approach does not 
address the statistical concerns laid out previously. Furthermore, 
the TAB and oxBS method are reliant upon BS conversion, which 
negatively impacts DNA quality. This loss of sample integrity 
could complicate integration of data generated from TAB and 
oxBS experiments. Ideally, further work in the field will lead to 
development of reliable methods to measure 5-mC and 5-hmC 
directly and independently without a harsh BS conversion step to 
allow for consistent genomic coverage.

Statistical Methods to 
Analyze 5-Methylcytosine and 
5-Hydroxymethylcytosine as  
Related Measures
Here, we propose a new approach for modeling paired 5-mC 
and 5-hmC data (Figure 4). Rather than treating βmC and βhmC 
as independent variables, we propose treating these two data 
points as “repeated” measures of a single outcome variable—
”DNA modification.” It is important to note that 5-mC and 
5-hmC levels are separate epigenetic marks and do not represent 
true biological repeats. However, as outlined previously, 5-mC 
and 5-hmC are both measured at each CpG site, and the beta 
values for these two marks are dependent upon each other both 
biologically and statistically. To account for this relationship 
in statistical terms, we propose a mixed effects (ME) modeling 

approach (Laird and Ware, 1982). Under this approach, each 
model would include a fixed effect for experimental condition/
group and random effects for CpG probe ID and batch to account 
for within-site and within-batch variability. Given that only two 
data points (5-mC and 5-hmC beta values) are included in each 
model per sample, inclusion of a random effect for CpG probe 
ID also accounts for within-sample variability. To determine the 
differential effects of an experimental condition on 5-mC and 
5-hmC, an interaction term between experimental condition 
and a categorical DNA modification variable (DNA_mod_cat: 
“5-mC” or “5-hmC”) would also be included in the ME model. 
This interaction term determines whether the direction of the 
relationship between β values and experimental condition varies 
by DNA modification category (5-mC/5-hmC).

Mixed models could be fit using a model in the following 
form:

y = β0 + β1x1x2 + β2x3 +…+ b1xi + b2xj + ε
y = 5-mC or 5-hmC beta value
β0 = Intercept
x1 = Experimental condition (e.g., disease status, exposure)
x2 = DNA modification (5-mC or 5-hmC) categorical 

variable
x3 = Sex
xi = ID
xj = Batch
ε = error term

In this model, β is used for fixed effect term coefficients, 
whereas b is used for random effect coefficients. The ellipses refer 
to the fact that additional covariates could be added to the model.

FIGURE 4 | Conceptual framework for reconciling 5-mC and 5-hmC data using a mixed effects modeling approach. Upon generating base-pair resolution 5-mC and 
5-hmC data, the current analysis approach is to run separate regression models on the beta values for 5-mC and 5-hmC. However, this approach fails to account for 
the inherent dependence of 5-hmC on 5-mC and limits a researcher’s ability to quickly and comprehensively identify regions where 5-mC and 5-hmC have differential 
responses to an experimental condition. Here, we propose an alternative ME modeling approach in which the 5-mC and 5-hmC beta values are treated as repeated 
measures. Using an interaction term in our proposed model, it will be possible to identify regions where the directionality of response to experimental condition 
changes by DNA modification (5-mC vs. 5-hmC). This approach is not necessarily a replacement for separate regression models but rather a supplement.
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Alternatively, the main effect of experimental condition 
on DNA modifications could be tested using a model in the 
following form:

y = β0 + β1x1 + β2x2 +…+ b1xi + b2xj + ε
y = 5-mC or 5-hmC beta value
β0 = Intercept
x1 = Experimental condition (e.g., disease status, exposure)
x2 = Sex
xi = ID
xj = Batch
ε = error term

Once again, β is used for fixed effect term coefficients, whereas 
b is used for random effect coefficients. The ellipses refer to the 
fact that additional covariates could be added to the model.

The modeling approach outlined earlier should be applicable 
to all types of paired 5-hmC and 5-mC data, provided the data 
structure is quantitative and at base-pair resolution. In addition, 
this approach should be appropriate for various analysis methods, 
provided they allow for a ME design. Previous work has shown 
that beta regression (BR) and ratio of correlated gammas (RCG) 
modeling approaches are appropriate for detecting methylation 
differences on a genome-wide scale and have greater specificity 
than linear models fitted to raw or normalized beta values, 
especially for group sizes less than 500 (Triche et al., 2016; 
Weinhold et al., 2016; Mansell et al., 2019). As such, fitting these 
types of models according to the repeated measures design 
outlined earlier should allow for simultaneous analysis of paired 
5-mC and 5-hmC data, despite their potential differences in 
beta value distributions. Inclusion of an interaction term in the 
proposed model captures the potential transition from 5-mC to 
5-hmC, allowing researchers to investigate whether experimental 
variables have distinct effects on 5-mC and 5-hmC dynamics at 
specific CpG sites/regions in neuronal tissue (see example in 
Figure 5). However, inclusion of an interaction term complicates 
interpretation of the main effect of experimental condition on 
the outcome of interest (i.e., DNA modification beta value). As 
a result, ME models with an individual term for experimental 
condition, but no interaction term, can be used to model the 
response of either 5-mC or 5-hmC to experimental treatment. 
As the number of individual CpGs being tested increases, 
researchers must also consider instituting corrections for 
multiple testing—e.g., Benjamini–Hochberg false discovery rate 
(Benjamini and Hochberg, 1995). Future bioinformatics tools 
that aim to co-analyze paired 5-mC and 5-hmC data should 
implement this type of statistical approach on a genome-wide 
scale. This is particularly critical for epigenetics studies in brain 
tissue, where 5-hmC is both abundant and functionally relevant.

IMPLEMENTATION OF PROPOSED 
MODELING APPROACH

To test our proposed approach, we sourced recently published 
data from an Alzheimer’s disease (AD) study to test our proposed 
statistical analysis method on real data (Smith et al., 2019). At 

the same time, we also analyzed the data using the “traditional” 
approach—modeling the effect of disease status on 5-mC and 
5-hmC using separate BR models and, then, checking for overlap 
between the lists of differentially methylated and differentially 
hydroxymethylated probes. By comparing the outputs from 
our new approach and the traditional approach, we aimed to 
provide a proof of concept that our new approach is able to 
detect additional regions of both differential DNA methylation 
and hydroxymethylation.

Methods
In the selected study, Illumina 450K DNA methylation array 
data were generated from human brain tissue (Smith et al., 2019) 
(Gene Expression Omnibus accession: GSE105109). Given that 
this was a proof of concept, we limited our analysis to only one 
tissue (entorhinal cortex), one sex (male), and only control or 
Braak stage VI brains to limit covariates in this preliminary test 
of our modeling approach. In total, we analyzed BS/oxBS-450K 
data from 14 control and 22 AD entorhinal cortex samples.

A custom bioinformatics pipeline was developed in R to 
estimate proportions of 5-mC and 5-hmC in each sample 
(Supplementary File 1). This pipeline combined the minfi 
(version 1.22.1), ChAMP (version 2.14.0), and ENmix (version 
1.12.4) packages in R (Figure 6). Quality control was assessed 
for internal control probes using the ENmix plotCtrl function. 
Probes were first filtered based on a detection p-value > 0.05 in 
any sample. Out of 485,512 probes included on the Illumina 450k 
array, the detection p-value cutoff filtered out 21,375 probes. 
In addition, one control sample was excluded due to a high 
percentage (>10%) of failed probes, leaving the control group with 
a sample size of 13. Cross-reactive probes and probes containing 
single-nucleotide polymorphisms were removed based upon 
previous identification (Chen et al., 2013). This process removed 
an additional 77,892 probes from the samples. A comparison of 
technical replicates revealed consistent results across arrays. After 
removal of technical artifacts, dye-bias correction was performed 
with ssNoob within minfi (Fortin et al., 2017). The proportion of 
neuronal vs. glial cells in each sample was estimated with CETS 
(Guintivano et al., 2013). The oxBS.MLE function in the ENmix 
package was used to calculate MLEs of 5-mC and 5-hmC beta 
values for each probe (Xu et al., 2016), and batch effects were 
assessed using the ChAMP package (Tian et al., 2017). After beta 
value estimation, we filtered out samples where mean 5-mC or 
5-hmC beta value < 0.1; this step removed an additional 241,173 
probes. The beta value > 0.1 cutoff was selected based on its use 
in the data’s original study (Smith et al., 2019) and removes the 
issue of zero-inflation for 5-hmC beta values in the dataset. As 
a final step, we removed probes that had any missing 5-mC or 
5-hmC values to ensure appropriate modeling; this removed an 
additional 4,533 probes, leaving us with 140,539 probes in the 
final analysis.

For differential DNA modification analyses, we utilized two 
approaches to model the effect of AD on 5-mC and 5-hmC data 
(Figure 6). In the first, “traditional” modeling approach, 5-mC 
and 5-hmC beta values were treated as independent variables 
and analyzed separately using BR in the gamlss R package 
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(Rigby and Stasinopoulos, 2005). This is similar to the method 
employed by Smith et al. (2019) in their original publication, 
except they used linear regression models that corrected for 
age, sex, and neuron/glia proportion. We elected to run our 
own separate analyses here, rather than use the published 
analysis performed by Smith et al., because our paired analysis 
uses a specific R package (gamlss) that allows for the use of BR. 
Furthermore, we selected only a subset of the publicly available 
data to analyze, which meant that our models had fewer covariates 
than the original publication. Separate models were fit for each 
processed probe according to the following formulas in R:

 

gamlss mC beta value Disease status Glial pro( ~5 − + pportion
Age data mC data family BE trace F

+
= = =, . , , )5

ggamlss hmC beta value Disease status Glial p( ~5 − + rroportion
Age data mC data family BE trace

+
= =, . , ,5 == F)

In the second, novel modeling approach, we treated the 5-mC 
and 5hmC beta values as “repeated” measures of a single 
outcome variable—“DNA modification.” To achieve this in 
statistical terms, we used BR combined with an ME modeling 

approach (Laird and Ware, 1982). The ME models included a 
fixed effect for AD status and a random effect for probe ID to 
account for within-probe variability. Based on a lack of batch 
effects in CHAMP R package QC, batch was not included 
as a random effect in the mixed models. To determine the 
differential effects of AD status on paired 5-mC and 5-hmC, 
we included an interaction term between disease status and 
categorical DNA modification variable (two values: “5-mC” 
or “5-hmC”). Mixed models were fit according to the 
following formula:

 

gamlss mC and hMC beta value Disease status( ~5 5- - **

DNA modification category Glial proportion Ag+ + ee ID

data mC hmC data family BE trace

+

= =

[ ]1| ,

. . , ,5 5 == F)

Correction for multiple testing was performed on p-values from 
all BR modeling using the p.adjust function in the R stats package. 
Within the p.adjust function, we selected “fdr,” which utilizes the 
Benjamini–Hochberg false discovery rate (FDR) method for 
multiple testing correction (Benjamini and Hochberg, 1995). All 

FIGURE 5 | Visualization of interaction term from example repeated measures model for single CpG site from mock BS/oxBS data. In the proposed ME model 
treating 5-mC and 5-hmC as repeated measures, a random effect for ID will account for the correlation between 5-mC and 5-hmC at a CpG site. Meanwhile, a 
“DNA modification*Experimental Condition” interaction term will be used to determine whether 5-mC and 5-hmC differ in their response to experimental condition. 
In the visualized mock data, brain samples from exposed animals have an increased slope compared with those from control animals, indicating that experimental 
treatment is shifting the CpG site toward 5-hmC in the brain. As indicated in the figure, this difference in slope is modeled by the “DNA modification*Experimental 
Condition” (β1x1x2) interaction term. The proposed statistical approach can pick up regions where trajectories of 5-mC/5-hmC change while also accounting for the 
fact that 5-mC and 5-hmC are dependent measures. Furthermore, fixed effect terms for 5-hmC and 5-mC could also be included to model the response of either 
5-mC or 5-hmC to experimental treatment.
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statistical models were run using R statistical software (version 
3.5.3). Annotation of detected differential probes was performed 
using the Illumina 450K array manifest. QC plots, lists of 
differential probes, and code for raw data processing, filtering, 
and modeling are available as Supplementary Material.

Results
In the first, “traditional” modeling approach, genome-
wide differential methylation and hydroxymethylation by 
AD were assessed using separate BR models for 5-mC and 
5-hmC data. In the separate models, we identified only two 

CpG probes—cg24998879 and cg05272827—that showed a 
significant increase in 5-mC in Alzheimer’s cortex compared 
to control (FDR < 0.10). We also identified a single CpG 
probe—cg02253760—that showed a significant increase in 
5-hmC in Alzheimer’s cortex compared with that in control 
(FDR < 0.10). These data were similar to the results reported 
in the dataset’s original publication, where the authors 
identified only one differentially methylated probe (DMP) 
2 differentially methylated regions, and one differentially 
hydroxymethylated region (Smith et al., 2019). Since there was 
so little significance in the separate models, it was difficult to 

FIGURE 6 | Bioinformatics pipeline for oxBS-450k analyses. The described bioinformatics pipeline was used to perform both paired and parallel modeling of 
5-mC/5hmC by AD status. Publicly available Illumina 450K array IDAT files were sourced from Gene Expression Omnibus accession GSE105109 (Smith et al., 
2019). All data processing and analysis were performed using R statistical software (version 3.5.3).
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compare the traditional method with our novel approach, so we 
repeated the separate modeling approach with a more lenient 
p-value < 0.001 cutoff. Using this new cutoff, we identified 
232 DMPs and 568 differentially hydroxymethylated probes 
(DHMPs) (Table 2). In the DMPs, 214 were hypermethylated 
(91.8%), and 19 were hypomethylated (8.2%). In the DHMPs, 
461 probes were hypo-hydroxymethylated (81.2%), and 107 
were hyper-hydroxymethylated (18.8%). The DMPs annotated 
to 183 genes, and the DHMPs annotated to 373 genes 
(Table 2). Comparing the significant DMPs and DHMPs by 
chromosomal position, 68 probes showed both significant 
differential DNA methylation and hydroxymethylation 
with AD.

In the second, novel modeling approach, genome-wide 
differential methylation, and hydroxymethylation by AD were 
simultaneously assessed using an ME BR model for paired 5-mC 
and 5-hmC data. An interaction term between disease status 
and DNA modification category was used to co-analyze changes 
in 5-mC and 5-hmC by disease status. In this paired model, we 
identified 14,183 probes that showed a significant interaction 
between AD status and DNA modification category (FDR < 
0.05), suggesting widespread shifts in the balance between 5-mC 
and 5-hmC by AD (Table 2). For the remainder of this paper, 
we will refer to these probes as differential interaction probes 
(DIPs). Within the DIPs, 13,270 had a negative interaction term 
beta coefficient (93.6%), and 913 had a positive interaction term 
beta coefficient (6.4%). A positive interaction term indicates an 

increase in the slope between 5-mC and 5-hmC in AD brains 
compared with that in control, which represents a shift toward 
a greater proportion of 5-hmC at a given CpG (see Figure 5 for 
example). A negative interaction term indicates a decrease in the 
slope between 5-mC and 5-hmC in AD brains compared with that 
in control, which represents a shift toward a greater proportion 
of 5-mC at a given CpG. The DIPs annotated to 6,301 genes 
(Table  2). This large number of annotated genes suggests that 
an even more stringent FDR cutoff may be appropriate for this 
novel modeling approach. Furthermore, additional verification 
and biological confirmation of the proposed method is warranted.

Comparison of Proposed Method With 
“Traditional” Analysis
Of note, all 68 of the overlapping probe IDs from the separate 
models were also significant in our interaction term modeling, 
indicating that the interaction term modeling was able to identify 
all regions of overlap from the separate modeling approach. In 
addition, of the 664 probes that were identified as significant in 
only one DNA modification (5-mC: n = 164; 5-hmC: n = 500), 
610 (91.9%) were also identified in our interaction term modeling 
(5-mC: n = 127; 5-hmC: n = 483). After taking this overlap between 
statistical methods into account, 13,505 probes were only identified 
in the interaction term modeling, and 54 probes were only 
identified in the traditional analysis. These results indicate that our 
proposed model supplements the traditional approach. Using only 

TABLE 2 | Significant probes in parallel and paired modeling approaches. In the paired modeling approach, genome-wide differential methylation and hydroxymethylation 
by Alzheimer’s disease were simultaneously assessed using a mixed effects beta regression model for paired 5-mC and 5-hmC data. An interaction term between disease 
status and DNA modification category was used to co-analyze changes in 5-mC and 5-hmC by disease status. In this paired model, we identified 14,183 probes showed 
a significant interaction between Alzheimer’s disease status and DNA modification category (FDR < 0.05). In the second, parallel modeling approach, we assessed 
differential 5-mC and 5-hmC by Alzheimer’s disease using separate beta regression models. In this second approach, we instituted a more lenient p-value cutoff < 0.001 
for significance calling. Using this cutoff, we identified 232 probes that showed differential methylation and 568 probes that showed differential hydroxymethylation by 
Alzheimer’s disease status. “Negative” and “positive” beta coefficients refer to the directionality of the effect estimate for beta regression modeling terms. Genes were 
annotated using the Illumina 450k DNA methylation array manifest; total annotations for significant probes are shown in the tables on the right.

AD-related 450K probes Annotated Gene IDs

Separate Modeling Separate Modeling

Disease Status Beta Coefficient 5-mC 5-hmC Disease Status Beta Coefficient 5-mC 5-hmC
Negative 19 461 Negative 14 305
Positive 213 107 Positive 169 75
Total 232 568

Both 0 7
*Beta coefficients for AD vs. control samples; adjusted for neuron/glial proportion and 
age; p-value < 0.001

Total unique IDs 183 373

*Beta coefficients for AD vs. control samples; adjusted for neuron/glial proportion and 
age; p-value < 0.001

AD-related 450K probes Annotated Gene IDs

Paired Modeling Paired Modeling

Interaction Term Beta Coefficient 5-mC + 5-hmC Interaction Term Beta Coefficient 5-mC + 5-hmC
Negative 13,270 Negative 6,009
Positive 913 Positive 607
Total 14,183

Both 315
*Beta coefficients for Disease*DNA modification category term; adjusted for neuron/glial 
proportion and age; FDR< 0.05

Total unique IDs 6,301

*Beta coefficients for Disease*DNA modification category term; adjusted for neuron/glial 
proportion and age; FDR < 0.05
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separate models, we would have missed 13,505 probes that showed 
a significant shift in the balance between 5-mC and 5-hmC with 
AD. Furthermore, 610 probes that were only significant at a single 
DNA modification in the traditional analysis were also detected by 
our proposed analysis approach. As such, using only traditional 
modeling, we would have had an incomplete understanding of the 
changes occurring at these probes. These types of gaps in data could 
have profound effects on the conclusions drawn about the specific 
epigenetic changes occurring at each cytosine. In particular, the 
separate analysis seems to underestimate shifts between 5-mC 
and 5-hmC, instead focusing on differences between each of these 
marks and unmodified cytosines. In contrast, the paired analysis 
suggests that there are widespread, subtle shifts in the balance 
between 5-mC and 5-hmC in AD brain. By expanding on the 
traditional statistics used in neuroepigenetics, our novel modeling 
approach may improve the field’s understanding of how 5-mC and 
5-hmC are altered in disease states.

To illustrate potential advantages of this approach, we 
visualized two DIPs that illustrate the scenarios outlined in 
Figure 3; these probes are in the TMEM151B (cg17044843) and 
PTPRN (cg23367089) genes (Figure 7). For these two probes, 
beta values from raw BS converted DNA (BS beta), 5-mC, and 
5-hmC, as calculated using maximum likelihood estimation are 
represented in two ways—with either DNA modification category 

(Figures 7A, B) or disease status (Figures 7C, D) on the x-axis. 
We visualized beta values for raw BS converted DNA (BS beta), 
5-mC, and 5-hmC, as calculated using maximum likelihood 
estimation. At the cg17044843 probe, we found a significant 
negative interaction between DNA modification category and 
disease status, but only 5-mC levels showed a significant effect 
of AD in traditional modeling. Meanwhile, at the cg23367089 
probe, we again found a significant negative interaction between 
DNA modification category and disease status, but neither 5-mC 
nor 5-hmC was significantly changed with AD in the traditional 
modeling approach. At both of these DIPs, traditional modeling 
failed to capture subtle changes in the balance between 5-mC and 
5-hmC that occur with AD. While it is difficult to determine the 
biological significance of the detected low-magnitude changes, it 
could be that our method is identifying shifts between epigenetic 
marks in a particular cell type. The data sourced for this pilot 
project were not cell type-specific, so we may see a magnified 
effect of disease status at the identified DIPs in sorted or isolated 
cell populations. These considerations highlight the additional 
biological information that our proposed statistical approach 
provides compared with a traditional analysis and emphasize the 
importance of applying this approach to specific cell populations.

While our results suggest that our interaction model has 
increased sensitivity compared with separate models, there are 

FIGURE 7 | 5-mC and 5-hmC levels at two example DIPs. To illustrate the value of our statistical approach, we visualized two DIPs at probes in the TMEM151B 
(cg17044843) and PTPRN (cg23367089) genes. Beta values for these two probes are represented in two ways—with either DNA modification category (A, B) or disease 
status (C, D) on the x-axis. Beta values are presented for raw BS converted DNA (BS beta), as well as 5-mC and 5-hmC, as calculated using maximum likelihood 
estimation. These two probes were selected to represent two scenarios in which traditional modeling misses information about 5-mC and/or 5-hmC, as previously outlined 
in Figure 3. At the cg17044843 probe, we found a significant negative interaction between DNA modification category and disease status (A), but only 5-mC levels were 
identified as significant in traditional modeling (C). Meanwhile, at the cg23367089 probe, we found a significant negative interaction between DNA modification category 
and disease status (B), but neither 5-mC nor 5-hmC were significantly changed with AD in the traditional modeling approach (D). At both of these sites, traditional modeling 
failed to capture subtle changes in 5-mC and/or 5-hmC levels with AD. In A and B, thin lines represent a slope between 5-mC and 5-hmC within individuals, and thicker 
lines represent smoothed means for the two disease status groups. In B and C, dots represent individuals, and lines represent magnitude and direction of changes between 
disease groups, not slope within individuals. The asterisk indicates a significant effect of AD on mean DNA modification beta value in traditional, separate modeling.
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still some limitations to this new method. First, interaction terms 
complicate interpretation of the coefficients for other terms in 
the model, making it difficult to quickly understand how disease 
is affecting 5-mC/5-hmC beta values. Second, interaction terms 
require a larger sample size than normal fixed effect terms, 
which means this approach may not be appropriate for smaller 
datasets. Third, the biological significance of subtle shifts in 5-mC 
and 5-hmC trajectories by disease status remains to be seen and 
requires further study. However, given the existence of unique 
“readers” and “writers” for each mark, it is plausible that subtle 
changes could have profound effects on gene expression and 
cellular function (Cheng et al., 2015). Finally, the interaction term 
model that we used only provides information on how the balance 
between 5-mC and 5-hmC shifts with AD, not the main effect of 
disease on each individual epigenetic mark. To understand how 
AD affects either 5-mC or 5-hmC on their own, it would be more 
appropriate to analyze the marks as independent data (see section 
4). Despite these limitations, the analysis described in this paper 
may be useful for researchers interested in understanding how 
disease affects the interplay between 5-mC and 5-hmC in the brain.

CONCLUSIONS AND NEXT STEPS

Recent research has developed a number of methods for measuring 
genome-wide 5-hmC. These methods continue to improve 
and provide exciting new opportunities for understanding 
the biological role of DNA modifications. However, despite an 
abundance of available technical methods, it remains unclear 
how to best reconcile paired, base-pair resolution 5-mC and 
5-hmC data. Here, we proposed a statistical approach to handle 
5-mC and 5-hmC as repeated measures using ME models with 
an interaction term between experimental condition and DNA 
modification category. As a proof of concept, we piloted this 
method using publicly available data. In our pilot analysis, we 
showed that the proposed statistical method would allow for a 
more complete understanding of the interplay between 5-mC 
and 5-hmC in nervous system tissue, a necessary step on the road 
to designing targeted epigenetic therapeutics for neurological 
diseases. Moving forward, the proposed statistical approach 
should be further verified in datasets with much larger sample 
sizes. In addition, future studies should test goodness of fit for the 
proposed interaction term modeling approach on these larger 
cohorts using established statistical tests. Finally, the changes in 

5-mC and 5-hmC identified using the proposed method should 
be verified using targeted assays such as pyrosequencing. Using 
larger sample sizes and verifying specific CpGs will help to 
resolve the question discussed earlier concerning the appropriate 
FDR cutoff in this type of analysis. With these additional 
verifications, we hope that this method will allow researchers to 
better understand the interplay of 5-mC and 5-hmC in the brain.
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