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Recombinant Inbred Lines (RILs) are obtained through successive generations of 
inbreeding. In 1931 Haldane and Waddington published a landmark paper where they 
provided the probabilities of achieving any combination of alleles in 2-way RILs for 2 and 3 
loci. In the case of sibling RILs where sisters and brothers are crossed at each generation, 
there has been no progress in treating 4 or more loci, a limitation we overcome here 
without much increase in complexity. In the general situation of L loci, the task is to 
determine 2L probabilities, but we find that it is necessary to first calculate the 4L “identical 
by descent” (IBD) probabilities that a RIL inherits at each locus its DNA from one of the 
four originating chromosomes. We show that these 4L probabilities satisfy a system of 
linear equations that follow from self-consistency. In the absence of genetic interference—
crossovers arising independently—the associated matrix can be written explicitly in terms 
of the recombination rates between the different loci. We provide the matrices for L up to 
4 and also include a computer program to automatically generate the matrices for higher 
values of L. Furthermore, our framework can be generalized to recombination rates that 
are different in female and male meiosis which allows us to show that the Haldane and 
Waddington 2-locus formula is valid in that more subtle case if the meiotic recombination 
rate is taken as the average rate across female and male. Once the 4L IBD probabilities 
are determined, the 2L probabilities of RIL genotypes are obtained via summations of 
these quantities. In fine, our computer program allows to determine the probabilities of 
all the multilocus genotypes produced in such sibling-based RILs for L<=10, a huge leap 
beyond the L = 3 restriction of Haldane and Waddington.
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INTRODUCTION

There are numerous inference problems in population and quantitative genetics that require 
comparing experimental frequencies of genotypes to those expected “theoretically.” Examples include 
genetic mapping of genomic markers, localizing causal factors of diseases and quantitative traits, 
performing marker assisted selection etc. (Lander and Schork, 1994; Weir, 1996; Walsh and Lynch, 
2018). The expected frequencies of genotypes, hereafter referred to as probabilities, of interest in such 
studies often involve multiple loci (Buckler et al., 2009) and are strongly dependent on population 
structure. In population genetics studies, the structure of natural populations is rarely perfectly 
known. That partly explains why, in both animal and plant genetics, controlled crosses are widely 
produced to ensure a specific population structure. Arranging the crosses to lead to homozygous lines 
is greatly advantageous as such lines can be reproduced “identically and indefinitely.” The simplest 

Edited by: 
Chaeyoung Lee,  

Soongsil University,  
South Korea

Reviewed by: 
Christophe Lambing,  

University of Cambridge,  
United Kingdom 

Xuehui Huang,  
Shanghai Normal University,  

China

*Correspondence: 
Olivier C. Martin 

olivier.c.martin@inra.fr

†These authors have contributed 
equally to this work

Specialty section: 
This article was submitted to 

Statistical Genetics and Methodology, 
a section of the journal  

Frontiers in Genetics

Received: 21 June 2019
Accepted: 13 August 2019

Published: 01 October 2019

Citation: 
Jebreen K, Petrizzelli M and 

Martin OC (2019) Probabilities 
of Multilocus Genotypes in SIB 

Recombinant Inbred Lines.  
Front. Genet. 10:833.  

doi: 10.3389/fgene.2019.00833

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2019.00833
https://www.frontiersin.org/journals/genetics#editorial-board
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2019.00833&domain=pdf&date_stamp=2019-10-01
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/article/10.3389/fgene.2019.00833/full
https://www.frontiersin.org/article/10.3389/fgene.2019.00833/full
https://loop.frontiersin.org/people/351611
https://loop.frontiersin.org/people/803103
https://creativecommons.org/licenses/by/4.0/
emailto:olivier.c.martin@inra.fr
https://doi.org/10.3389/fgene.2019.00833


Probabilities of Multilocus Genotypes in SIB RILsJebreen et al.

2 October 2019 | Volume 10 | Article 833Frontiers in Genetics | www.frontiersin.org

situation satisfying these criteria is that of recombinant inbred 
lines (RILs) (Crow, 2007) founded from two parents as displayed 
in Figure 1. Given two (generally homozygous) parents that are 
the founders of the RIL construction (F0), one first produces the 
associated hybrids (F1). Second, starting with these F1 individuals, 
one produces a sequence of generations F2, F3, etc by iterative 
inbreeding, crossing male and female siblings until formally at F∞ 
one reaches full homozygozity (fixation of the alleles at all loci). As 
seen in Figure 1, the genomes of the homozygous lines produced 
by this process are mosaics of the parental genomes.

Consider the allelic content at some set of L genomic 
markers or loci. There are then 2L possible RIL genotypes, each 
having a probability that depends on how meioses generate 
recombinations between these different loci. In the case of plants 
that allow for selfing, the same individual is both the mother and 
the father of its offspring; the RILs are then produced via single 
seed descent (SSD) as opposed to via sibling (hereafter denoted 
SIB) mating, this second case being the focus of the present work.

There are numerous generalizations of the RIL construction 
just given. Instead of using two parents to initiate the inbreeding, 
the use of 2k parents leads to 2k-way RILs (Broman, 2005). 
2k-way RILs start with 2k parents to form 2k-1 offspring that are 
themselves crossed iteratively following a funnel (specifically 

a binary tree) pattern. Once the root of this tree is reached, the 
usual RIL inbreeding process is applied. For instance, the so called 
“Collaborative Cross” which has been a key community tool for 
mouse genetics, corresponds to k = 3; the choice there of using 8 
founding parents at the top of the funnel allows for significantly 
greater allelic diversity than when using just 2-way RILs. Another 
generalization is the so called Advanced Intercross RIL (AI-RIL, 
sometimes referred to as Intermated RIL or IRIL) in which 
several generations of panmixia are inserted before applying the 
inbreeding to produce the RILs (Darvasi and Soller, 1995; Winkler 
et al., 2003; Rockman and Kruglyak, 2008). Other generalizations 
include Multi-parent Advanced Generation Inter-Cross (MAGIC) 
(El-din El-Assal et al., 2001), nested association mapping (NAM) 
populations (Buckler et al., 2009) etc. All of these population 
constructions involve some initial generations of allelic shuffling 
followed by the RIL (inbreeding) construction per se. Those early 
generations produce in effect initial conditions on the genotypes 
that are at the origin of the RILs and these initial conditions can be 
computed by direct recurrence from one generation to the next. 
In contrast, the RIL phase requires crossings that continue until 
all loci are homozygous and thus—at least mathematically—this 
phase involves an infinite number of generations. As a result, the 
computation of the probabilities of multilocus genotypes in RILs 

FIGURE 1 | The production of recombinant inbred lines by sibling mating (SIB RILs). The homologous chromosomes (numbered 0, 1, 2, and 3) inherit genomic 
segments from their parents, the boundaries of which identify crossover positions. The allelic content becomes fixed for “enough” generations, and so we introduce 
the limit of generations with the notation F∞.
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does not follow from a simple recursion over a fixed number of 
generations: either an extrapolation has to be made to deal with 
the infinite number of generations or some mathematical trick 
has to be devised to bypass the infinite nature of the process. This 
fact is at the heart of the difficulty of obtaining exact probabilities 
of multilocus genotypes in RILs.

The mathematical derivation of such RIL probabilities for two 
and three loci was provided by Haldane and Waddington (Haldane 
and Waddington, 1931) for bi-parental RILs in 1931. For two loci, 
by considering successive generations, they produced recursion 
equations for the probabilities of the corresponding (fixed or 
not) SIB genotypes which they then extrapolated to an infinite 
number of generations. This was quite a feat as they had to solve 22 
simultaneous equations, leading in fine to their celebrated relation:

 
R r

r
=

+
4

1 6
.  (1)

In this formula, R is the probability for a RIL two-locus 
genotype to be recombinant (have the allele of one F0 parent at 
one locus and the allele of the other at the other locus) while r is 
the recombination rate per meiosis between the two loci, assumed 
identical across male and female meiosis. We will rederive this 
formula using our framework in the section Case of Two Loci: 
Recovering the Haldane–Waddington Result and Allowing for Sex-
Dependent Recombination Rates because to our knowledge, the 
generalization of the Haldane–Waddington formula to situations 
where male and female recombination rates differ has not been 
published and our framework allows to deal with this extension.

Given R, it is easy to derive the probabilities of the four different 
RIL genotypes (each of the two loci can be fixed for either of the two 
parental alleles). Indeed, the two recombinant genotypes have the 
same probability and the sum of these two probabilities is precisely 
R. The probability of each of the two recombinant (respectively 
non-recombinant) RIL genotypes is then R/2 (respectively (1-R)/2).

Haldane and Waddington further showed that this two-locus 
result also determined the three-locus probabilities. A way to see 
this is to notice that for three loci (L = 3) there are 2L = 8 different 
RIL genotypes (at each locus the homozygous allelic state comes 
from one of the two parents). These 8 genotypes can be grouped 
into 4 pairs such that within each pair one genotype is obtained 
from the other by exchanging the alleles of the parents; for instance 
if the alleles of the parents are denoted by (A, B, C) and (a, b, c) at 
the three successive loci, the 4 pairs are {(A, B, C), (a, b, c)}, {(A, B, 
c), (a, b, C)}, {(A, b, C),(a, B, c)} and {(a, B, C), (A, b, c)}. In each pair, 
the two complementary genotypes have the same probability so in 
effect it is enough to find the probabilities of each of the 4 pairs. 
These probabilities add up to one, providing a first equation. Then, 
labeling the loci as 1, 2, and 3, if the three meiotic recombination 
rates r1,2, r2,3 and r1,3 are known, the three RIL recombination rates 
R1,2, R2,3 and R1,3 are also. These quantities provide three further 
equations relating the four pair probabilities. These four equations 
uniquely determine the four pair probabilities and thus the 
probabilities of the 8 RIL genotypes.

Since that 1931 Haldane–Waddington landmark paper, some 
works have provided generalizations of Eq. 1, for instance in 
the case of 2k-way RILs (Broman, 2005; Teuscher and Broman, 

2007) and in the case of IRILs (Winkler et al., 2003; Teuscher 
and Broman, 2007). However, the problem of dealing with more 
than three loci seems substantially more difficult. Following the 
Haldane–Waddington algebraic approach, if there are L loci, 
there are 16L possible allelic combinations at each generation and 
so it is necessary to diagonalize a 16L×16L matrix; that task takes 
on the order of 163L operations and thus cannot be done on a 
standard computer even for L = 4. To our knowledge, the only 
work providing closed-form expressions for 4 or more loci is that 
of (Samal and Martin, 2015), but their framework for determining 
exact probabilities of RIL multilocus genotypes applies only to 
single seed descent RILs, not to SIB RILs. The contribution of the 
present work is to show that the case of SIB RILs is also to a large 
extent tractable. In particular, (i) we give the analytic expressions 
for treating four loci in the absence of crossover interference, and 
(ii) we show that our framework allows to tackle more loci, though 
at a computational cost (CPU time and also computer memory) 
that increases roughly as 16L. Specifically, our computer scripts, 
written in R (Ihaka and Gentleman, 1996), can treat L = 8 loci in 
approximately 5 min when run on a desktop computer while a 
high-end server allows us to go up to L = 10 loci. Lastly, to illustrate 
an application of our theoretical framework to a practical situation, 
we construct a maximum likelihood algorithm to impute missing 
data in RIL populations. In contrast to the standard approach which 
infers probabilities using machine learning, our method exploits 
the exact multilocus RIL genotype probabilities. By comparing 
the two approaches we show that the use of the exact probabilities 
significantly increases the reliability of the missing data imputation.

OVERVIEW OF THE METHOD

In the less complex case of single seed descent RILs, it was possible 
to determine the probabilities of the 2L RIL multilocus genotypes 
by writing self-consistent equations directly associated with these 
unknowns (Samal and Martin, 2015). However, in the case of SIB 
RILs, the situation is more subtle because the allele carried by a RIL 
genotype may come from either of the two siblings at the F1 generation 
and thus “identical by descent” (IBD) does not reduce to identity by 
state (having the same allelic content) as can be seen in Figure 1. As 
a result, it is necessary to first work with the 4L probabilities that a 
RIL inherits IBD at the L loci from any of the four F1 homologous 
chromosomes. After introducing in the Section Probabilities of 
Multilocus IBD Inheritances in RILs and the Set of Non-Equivalent 
Q’s the 4L RIL multilocus IBD probabilities, we show in the section 
Self-Consistent Equations for the  IBD Probabilities that each of 
these unknowns satisfies a self-consistent equation relating it to the 
others. These equations allow to overcome the technical obstacle 
of there being an unlimited number of generations in the process 
of generating RILs all the way to complete fixation. Although 
these 4L self-consistent equations constrain the 4L unknowns, we 
show in the section Adding One Linear Inhomogeneous Equation to 
Uniquely Specify All  IBD Probabilities that one additional equation 
is necessary to specify the solution. For that last constraint we use 
the fact that the sum of all probabilities is 1. In the section Reducing 
the System of Equations to Treat Only the  Non-Equivalent Q’s, 
we show how the complexity of the problem can be reduced by 
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working with a subset only of the unknowns. Finally, upon solving 
the system of equations to determine the IBD quantities, each of the 
2L RIL multilocus genotype probabilities follows by summing the 
probabilities of all compatible IBDs as will be shown in the section 
Extracting the  Probabilities of RIL Genotypes.

Probabilities of Multilocus IBD 
Inheritances in Rils and the Set of Non-
Equivalent Q’s
For a given RIL L-locus genotype (specified formally at generation 
F∞), the genomic content at any locus ℓ (ℓ ∈{1,…, L}) will be IBD 
with exactly one of the four F1 homologous chromosomes. (One 
may note that the allelic fixation can happen before the IBD fixation, 
but no matter what, after an infinite number of generations both 
the IBD and the allelic states are fixed, that is they are identical 
across the four chromosomes of the SIB pair.) We number those 
four chromosomes 0, 1, 2 and 3 as indicated in Figure 2 and 
use the same labeling for the later generations too. The IBD case 
illustrated is such that the RIL inherits from the F1 chromosome 
2 at the first locus and from the F1 chromosome 1 at the second 
locus. (By convention we order the loci from left to right.) More 
generally, let us introduce the probability Q(i1, i2…,iL) that a RIL 
inherits IBD from F1 chromosome iℓ for locus ℓ, ℓ = 1,…, L where 
iℓ = 0, 1, 2, 3. Naturally the sum of these 4L probabilities (there are 
four possible values of iℓ at each locus ℓ) is equal to 1.

For L = 1, there are four IBD probabilities: Q(0), Q(1), Q(2) and 
Q(3). We shall assume Mendelian segregation with no bias in favor 
of any particular allele and so in particular the two homologues 
within each sex are equivalent. Then Q(i) = 1/4 for all ∈ {0, 1, 2, 3}. 

Moving on to L = 2 for which there are 16 Q’s, the equivalence of 
homologues leads to the equalities Q(0,0) = Q(1,1), Q(0,1) = Q(1,0), 
Q(2,2) = Q(3,3), and Q(2,3) = Q(3,2) but also to equalities between 
mixed terms, Q(0,2) = Q(0,3), Q(1,2) = Q(1,3) etc. Furthermore, 
if female and male meiosis behave in the same way (so that in 
particular they have the same recombination rates), we can also 
conclude that Q(0,0) = Q (2,2) etc so that finally there are just three 
probabilities to determine, Q(0,0), Q(0,1) and Q(0,2) instead of 
the initial 16. More generally, if there are L loci, how many non-
equivalent Q’s are there? We shall assume there is no segregation 
bias and that female and male meioses have statistically identical 
behavior. Then it is possible to show (see Supplementary Material 
for details) that the number of non-equivalent Q’s is exactly

 
N LQ

L L( ) = +( )− −2 2 12 1 .  (2)

For example L = 1 leads to NQ (L) = 1 while L = 2 leads to NQ (L) = 3. 
The number of these non-equivalent Q’s grows roughly as (1/8) × 4L 
to be compared with the total number ignoring equivalence of 4L. The 
factor (1/8) clearly makes it worthwhile to use such a reduction in 
the number of unknowns to simplify the task of writing and solving 
the equations. The proof of Eq. 2 in the Supplementary Material 
provides a way to enumerate the Q’s to be kept and schematically 
goes as follows. First, because all four chromosomes play equivalent 
roles, we can force i1 to be 0. Second, i2 can be constrained not to 
take the value 3 since that value can be replaced by 2, this time by 
equivalence of chromosomes 2 and 3. If i2 takes the value 0 or 1, we 
can again constrain i3 to be different from 3 by the same reasoning. 
If instead i2 = 2, then i3 must be allowed to take all values 0, 1, 2 and 

FIGURE 2 | Inheritance during SIB mating and illustration of the construction of a self-consistent equation for any IBD probability. At each generation the 
homologous chromosomes are labeled 0, 1 (for the female) and 2, 3 (for the male). Note that the chromosomes labeled 0 and 2 are the outcomes of female meiosis 
while the chromosomes labeled 1 and 3 are the outcomes of male meiosis. The drawing illustrates the transition probability T[(2,1) → (1,2)] Q(1,2) entering the self-
consistent equation (cf. Eq. 3 when the left-hand side is Q(2, 1).
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3. We can proceed in this way to define the rules to be applied to the 
successive iℓ. As long as the current list consist of 0’s and 1’s, the next 
i can be constrained to not take the value 3 by equivalence between 
chromosomes 2 and 3, but for all entries after the first occurrence 
of a 2, all values must be allowed (see the Supplementary Material 
for the final steps required to prove Eq. 2). As an illustration, the 
reader can check that for L = 3 loci, this construction leads to 10 
non-equivalent Q’s, namely Q(0,0,0), Q(0,0,1), Q(0,0,2), Q(0,1,0), 
Q(0,1,1), Q(0,1,2), Q(0,2,0), Q(0,2,1), Q(0,2,2), and Q(0,2,3).

Self-Consistent Equations for the 4L IBD 
Probabilities
The IBD inheritance needs an infinite number of generations 
to become fixed with certainty, at least in principle. Our strategy 
consist in mapping such an infinite process into a finite one by 
relying on self-consistency. The probability for F∞ siblings to inherit 
IBD the sequence of “indices” (i1,i2,…,iL) from the F1 chromosomes 
can be decomposed into trajectories where the inheritance 
indices at the F2 level are also made explicit. If we denote these by  
(iʹ1,iʹ2,…,iʹL), we can reinterpret Q(i1,i2,…,iL) as a sum of contributions:

Q i i i T i i i iL

i i i

L

L

1 2 1 2 1

1 2

, , , , , ,
' ' ', , ,

'…( ) = …( ) →∑
…( )

,, , , , ,' ' ' ' 'i i Q i i iL L2 1 2…( )



 …( )

 
  (3)

where T[(·)→(·)] is the transition probability of having the IBD 
propagate from the first list of indices to the second list of 
indices when going from the F1 to the F2 generation. T[(·)→(·)] is 
illustrated graphically in Figure 2 by considering the case of two 
loci and having i1 = 2, i2 = 1, iʹ1 = 1 and iʹ2 = 2 .

Clearly T [(·) → (·)] depends on the meiotic process, and thus 
in particular on the recombination rates between loci. To simplify 
the notation, let us set u = (i1,i2,…iL) and v = (iʹ1,iʹ2,…,iʹL). These 
transition probabilities T [(·) → (·)] satisfy three properties. First, 
if ik = 0 or 1, T [u → v] = 0 unless iʹk = 0  or 2. Similarly, if ik = 2 or 
3, T [u → v] = 0 unless iʹk = 1 or 3. We summarize this via the rules

 

′ ∈
{ } ∈{ }
{ } ∈{ }






i

i

i

0 2 0 1

1 3 2 3

, ,

, ,

if

if
 (4)

where i and iʹ ∈ {0,1,2,3}. Second, it turns out that the matrix T is 
“doubly stochastic” meaning that the sum of its entries in any row 
or in any column is exactly 1. The result that the sum over elements 
in a row is 1 follows from the fact that this sum gives the probability 
of having any of the possible outcomes of inheritances for a given 
starting point. Analogously, the result that the sum over all elements 
in a column is 1 corresponds to the fact that a given v is reached by 
some u and that summing over all possibilities for u again leads to 1. 
Third, each element of T decomposes into four factors,

 
T u v P u v P u v P u v P u v→  = →  →  →  → 0 1 2 3  (5)

where the subscript of each P labels the chromosome of interest 
(and therefore the meiosis) at the F2 generation, thus Pj is a 

probability associated with the meiosis that produces chromosome 
j when going from F1 to F2. Consider for specificity the term P3. For 
the computation of this probability, only the entries in v equal to 3 
matter. The corresponding indices specify which loci are thereafter 
IBD from chromosome 3 when considering the F∞ inheritance 
from the F2 generation. If those loci numbers are say 2, 5, and L – 1, 
then P3[u → v] is the probability for the loci 2, 5 and L – 1 to inherit 
IBD from i2, i5 and iL-1 during the meiosis producing chromosome 
3 when going from the F1 generation to the F2 generation. Note that 
all the other loci and chromosomes are irrelevant for this factor. 
The probability of that event is 0.5 (for the probability that the 
locus 2 will inherit IBD from chromosome i2) times the probability 
that the successive intervals 2-5 and 5-(L–1) will be as required – 
recombinant or not – by the values of i5 and iL–1. Let us suppose 
that meioses arise without genetic interference, that is, according 
to the so-called Haldane model (Haldane et al., 1919). (Note that 
the values of these P's are the only part of our framework where 
crossover interference affects our computations; if these single-
meiosis probabilities are known, then our framework provides 
the probabilities of all RIL multilocus genotypes just as in the case 
of no interference.) For specificity, if there is no interference and 
both intervals 2–5 and 5– (L – 1) are recombinant, the associated 
(meiotic) probability P is simply 0.5 × r2,5 × r5,L – 1. Such a reasoning 
is easily extended to any situation, leading to the formula

 

P u v r rj

l l

l l
e

l l
el l l l→  = −

′

′ ′
−∏ ′ ′0 5 1 1. ( )

,

, ,
, ,  (6)

where the locus indices l and lʹ are such that vl = vlʹ = j , j being 
the index appearing in the probability Pj. In addition, the el,lʹ are 
defined as

 

el l,
" "

′ =
1
0

if the interval is recombinant
if the intervaal is not recombinant" ".

.





 (7)

For Eq. 6, an interval l l, ′  is called “recombinant” if and only if 
il and ilʹ differ. Lastly, we need to specify the actual pairs of loci l and 
lʹ that are to be used in that equation. To do so, we first construct 
the list of ordered indices that satisfy the constraint vl = vlʹ = j. The 
product in Eq. 6 is then over the successive pairs of this list. If the list 
is empty, Pj = 1 while if there is only one element in the list, Pj = 0.5. 
The interpretation of Eq. 6 is then as follows: there is a factor rl,lʹ if the 
u list imposes that the interval l l, ′  be recombinant and a factor 
1 – rl,lʹ otherwise. Putting together Eqs.3 and 5 specifies the 4L linear 
homogeneous equations for the Q’s. In our computer software, 
we determine the matrix elements of T as formal mathematical 
functions of the rl,lʹ. In these general expressions it is possible to 
substitute the numerical values of the rl,lʹ when necessary.

Adding One Linear Inhomogeneous 
Equation to Uniquely Specify All 4L IBD 
Probabilities
Eq. 3 can be rewritten as

 
Q u T u v v

v

( ) − →  ( ) =∑ Q 0  (8)
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for all choices of u, corresponding to a set of 4L linear homogeneous 
equations. Given one has as many equations as unknowns, one 
might hope that this system would determine the Q’s but that 
is not the case because these 4L equations are not independent. 
Indeed, consider the sum of all the equations in the system:

 
∑ ∑ ∑( ) − →  ( ) =

u u v

Q u T u v Q v 0.
 (9)

By interchanging the order of the sums this becomes

 
∑ ∑ ∑( ) − → 











 ( ) =

u v u

Q u T u v Q v 0  (10)

which is automatically satisfied because T is doubly stochastic 
so that ∑ →  =

u

T u v 1. To overcome the problem coming 

from this dependence amongst the homogeneous self-consistent 
equations, we need to include further information. We choose 
to do that by adding the constraint that the sum of all 4L IBD 
probabilities equals 1:

 
∑ ( ) =

u

Q u 1.  (11)

The inclusion of this (inhomogeneous) linear equation then 
uniquely specifies the values of all Q’s.

Reducing the System of Equations to Treat 
Only the NQ(L) Non-Equivalent Q’s
As mentioned previously, it is advantageous to work with a 
subset of non-equivalent Q’s because this substantially reduces 
the complexity of the operations to be performed. Specifically, 
we modify the above approach by considering self-consistent 
equations only for the reduced list of unknowns—the NQ(L) non-
equivalent Q’s chosen in the section Probabilities of Multilocus 
IBD Inheritances in RILs and the Set of Non-Equivalent Q’s—so 
instead of having 4L homogeneous equations of the type Eq. 8 we 
have only NQ(L) of them. In these NQ(L) equations, we replace 
each Q(v) by an equivalent Q(vʹ) where Q(vʹ) belongs to our list of 
NQ(L) unknowns. This recipe leads to NQ(L) linear homogeneous 
equations for our unknowns. Furthermore, we also apply these 
substitutions to the inhomogeneous equation Eq. 11, with the 
previously mentioned rule. As a result, by counting the number 
of Q’s arising in each equivalence class defined in the section 
Probabilities of Multilocus IBD Inheritances in RILs and the Set of 
Non-Equivalent Q’s, Q(u) occurs with weight 4 if the entries of u 
are all different from 2 and with weight 8 otherwise.

In practice, to solve this set of equations, it is convenient to 
have as many equations as unknowns so we remove exactly one 
of the homogeneous equations. In our computer algorithm we 
remove the last of these homogeneous equations but any other 
choice is just as valid. Having obtained as many independent 
equations as there are unknowns, the direct solution of this linear 

system (a linear algebra problem) provides the (unique) values of 
our NQ(L) non-equivalent Q’s.

Extracting the 2L Probabilities of RIL 
Genotypes
Once the Q’s are determined, the probabilities of RIL multilocus 
genotypes can be computed by summing all IBD probabilities 
that are compatible with the RIL allelic content. Let us refer 
to the allelic content of parent 1 as a series of A alleles and 
that of parent 2 as a series of a alleles. Consider then a RIL 
multilocus for all k \in {1,..,L} genotype, written as a list .G = 
(α1,α2,…,αL) of L alleles, αk being A or a. The probability of a 
genotype G is obtained by summing over all Q(u) for which the 
u is compatible with the allelic content of G. The compatibility 
rule can be summarized as follows: if αk = A, then uk must be 0 
or 2, while if αk = a, then uk must be 1 or 3. This is formalized 
mathematically by the following equation

 
P G Q uL

u

= …( )( ) = ( )∑α α α1 2, , ,  (12)

where the sum is restricted to the u’s satisfying the compatibility 
rule. Note that the Q’s on the right-hand side of Eq. 12 in general 
will not belong to our list of non-equivalent Q’s. As before, just 
omit all the terms associated with Q’s that are not in this list and 
multiply the other terms by either 8 or 4 depending on whether 
the associated u has one of its indices uk equal to 2 or not, again 
because of the size of the equivalence classes.

RESULTS

We illustrate the power of our framework by considering 
increasing number of loci. The case of two loci is presented both 
for pedagogical reasons and to give the novel (as far as we know) 
values of the IBD probabilities when allowing for sex-dependent 
recombination rates. For three loci we detail the derivation 
of the coefficients of the self-consistent equations by giving 
associated graphical representations in the Supplementary 
Material. For four loci the analytical expression of the 40 × 40 
matrix is also given explicitly. For more loci, the mathematical 
steps become too cumbersome to be dealt with by hand, but 
our computer code (in the form of R functions) can be used to 
first generate the analytic expressions for the linear system of 
equations, then to solve that system for the Q’s, and finally to 
produce the probabilities of all the RIL multilocus genotypes. 
The complexity of the computations provided by our framework 
can be summarized via the dimensionality of the linear system 
of equations used to compute the Q’s. This dimension increases 
roughly by a factor 4 for each additional locus for the simple 
reason that the number of unknowns increases in that way (cf. 
Eq. 2). Lastly, in the section Application to Imputing Missing Data 
we will apply our method to the problem of imputing missing 
values in RIL genotyping data, demonstrating the benefit of 
using exact multilocus genotypes.
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Case of Two Loci: Recovering the 
Haldane–Waddington Result and Allowing 
for Sex-Dependent Recombination Rates
Haldane and Waddington (1931) derived the formula for the 
probabilities of 2-locus RIL genotypes and (Teuscher and Broman, 
2007) gave an alternative more compact approach. We will derive 
the Haldane–Waddington result here using our self-consistency 
approach. Then we show how to extend our framework to the 
case where female and male recombination rates differ.

Let rl,lʹ = r1,2 denote the recombination fraction between the two 
loci (this recombination rate is for the moment taken to be the 
same in female and male as assumed by Haldane and Waddington). 
Furthermore, let al denote the allele at locus l, l ∈ {1,…, L}, on any of 
the homologous chromosomes in the RIL. By Eq. 2, for L = 2 there 
are 3 unknown Q’s. The indices u for each of these Q’s are such that 
they are not related by the symmetry between chromosomes. Our 
choice is to use Q(0,0), Q(0,1) and Q(0,2). To build the 3 × 3 system 
of equations, begin with the inhomogeneous linear equation

 
4 0 0 4 0 1 8 0 2 1Q Q Q, , ,( ) + ( ) + ( ) =  (13)

where the respective factors 8 and 4 follow from whether or not 
the u  list of indices contains a 2. The next step is to write the self-
consistent equation for each of the NQ(L) – 1 non-equivalent Q’s. 
For instance for u = (0,0), by Eq. 3 applied to this case and using 
the rules for the vanishing of the elements of the matrix T, one has

Q T Q

T Q

0 0 0 0 0 0 0 0

0 0 0 2

, , , ,

, ,

( ) = ( ) → ( )  ( )
+ ( ) → ( )  00 2

0 0 2 0 2 0

0 0 2 2

,

, , ,

, ,

( )
+ ( ) → ( )  ( )
+ ( ) → ( ) 

T Q

T Q 22 2, .( )
  (14)

The matrix elements T [u → v] are determined by Eqs. 5 and 
6. Direct calculation gives (1 – r1,2)/2, 1/4, 1/4, and (1 – r1,2)/2 
respectively. To obtain a self-consistent equation involving only 
our three non-equivalent Q’s, we rewrite Eq. 14 by replacing 
Q(2,0) by Q(0,2) and Q(2,2) by Q(0,0), leading to

 
r Q Q1 2 0 0 0 2 2 0, , , / .( ) − ( ) =  (15)

The self-consistent equation for Q(0,1) is obtained by the 
same method. Eq. 13 together with Eq. 15 and its analogue for 
Q(0,1) then lead to the system
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 (16)

(Compared to Eq. 8, we have changed the signs of each 
homogeneous equation to obtain a more readable matrix.) This 
system can be solved by hand, leading to

 
Q

r
Q Q

r
r

0 0 1
4 24

0 1 0 2
2 121 2

1 2

1 2
, , , , .

,

,

,
( ) =

+ ( ) = ( ) =
+  (17)

Given these three values, we can compute the RIL 
recombination rate R by summing all the probabilities of IBD 
events that produce recombinant RILs:

 

R Q Q Q Q

Q Q Q Q

= ( ) + ( ) + ( ) + ( )
+ ( ) + ( ) + ( ) + ( )

0 1 0 3 2 1 2 3

1 0 1 2 3 0 3 2

, , , ,

, , , , .  (18)

Using the equivalences (Q(3,0) = Q(0,2) etc), this gives  
R = 4Q(0,1) + 4Q(0,2); substituting the values from Eq. 17 leads 
directly to the Haldane-Waddington formula, Eq. 1.

How do these results extend to the case where female and 
male have different recombination rates, rf and rm? The main 
complication comes from the fact that the symmetries of the 
system are reduced: one can no longer exchange the roles of 
female and male SIBs. As a result, there are 6 non-equivalent 
IBD probabilities. Without loss of generality, we take these 
to be Q(0,0), Q(0,1), Q(0,2), Q(2,0), Q(2,2), and Q(2,3). The 
determination of these six unknowns follows the same logic as 
when rf = rm. First, use the inhomogeneous equation specifying 
that the Q’s are probabilities that add up to 1:

 
2 0 0 2 0 1 4 0 2 4 2 0 2 2 2 2 2 3Q Q Q Q Q Q, , , , , ,( ) + ( ) + ( ) + ( ) + ( ) + ( ) == 1.

  
  (19)

Second, determine the homogeneous equations associated 
with the self-consistency for the first NQ(L) – 1 non-equivalent 
Q’s. This then leads to the following system of equations:
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  (20)

For the matrix elements in this system of equations, we have 
used the notation r r= −1  to designate the complementary value 
of the recombination rate, such a notation allowing for more 
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compact expressions. The linear system of Eq. 20 can be solved 
by hand, leading to

Q
r r

Q r r
f m

f m

f m

( , )
( )

, ( , )
(

0 0

1
2

1
2

1

4 3 3 1
0 1 3

8
=

− + +

+ +
= +

r r 33 3 1

0 2 2 0
4 3 3 1

2

r r

r r

f m

f m

f mQ r r Q

+ +

= = +
+ +

)
,

( , ) Q( , )
( )

, ( ,, )
( )

,

( , )
(

2 2 2
1

4 3 3 1
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8 3 3

=
− +
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= +
+

r r

Q r r

f m

f m

f m

f

r r

r rrm +1)
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  (21)

Note that except for Q(0,2) and Q(2,0), all the Q’s are 
asymmetric functions of rf and rm. Furthermore, the equality  
Q(0, 2) = Q(2, 0) follows from the special symmetry of replacing 
the left-right convention that orients chromosomes by one using 
the right-left orientation.

Given the non-trivial result of Eq. 21, we can ask what is the 
consequence for R, the RIL recombination rate. The calculation 
is straightforward:

 

R Q= + + +
+ + + +
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( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , )
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( ( , ) ( , ) ( , ) ( , ))
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Q Q
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f m

+ + +

= +
+ +

Q Q

r
r r

  (22)

Interestingly, this result depends only on the mean of the 
female and male recombination rates, in spite of the fact that 
such a property does not hold at the level of the individual Q’s. 
Furthermore, it shows that the Haldane-Waddington relation 
(Eq. 1) can be used when recombination rates are sex-dependent 
if in that formula the (sex-independent) recombination rate is 
replaced by the sex-averaged recombination rate.

Although this example was very simple (it involved only 
two loci), it should be clear that our framework is generally 
applicable, for any number of loci, whether the female and male 
recombination rates are identical or not.

Case of Three Loci
Haldane and Waddington showed that the probabilities 
of two-locus RIL genotypes may be used to derive the 
probabilities of the three-locus RIL genotypes. Teuscher and 
Broman also provided this result when they introduced their 
approach (Broman, 2005; Teuscher and Broman, 2007). In the 
introduction we explained why such a relation holds and so 
one might expect a similar conclusion to hold for the Q’s, but 
this is not so. Indeed, for this L = 3 case, as mentioned in the 
section Probabilities of Multilocus IBD Inheritances in RILs and 
the Set of Non-Equivalent Q’s, there are NQ(L) = 10 unknown Q’s 

to determine, corresponding to 9 degrees of freedom, but the 
information from the L = 2 level only provides 6 constraints, 
two for each pair of loci (6 = 2 × 3).

To determine the values of all the IBD probabilities, we 
simply apply our framework when using L = 3. We begin by 
specifying the set of non-equivalent Q’s that are our unknowns, 
following the logic of the general case as exposed in the section 
Probabilities of Multilocus IBD Inheritances in RILs and the Set of 
Non-Equivalent Q’s. We thus choose Q(0, 0, 0), Q(0, 0, 1), Q(0, 0, 
2), Q(0, 1, 0), Q(0, 1, 1), Q(0, 1, 2), Q(0, 2, 0), Q(0, 2, 1), Q(0, 2, 
2), and Q(0, 2, 3). Second, we write the single inhomogeneous 
equation that sums all Q’s (before applying equivalences). Third, 
we construct the self-consistent equations for the first 9 of our 
non-equivalent Q’s, assuming no genetic interference. The 
Supplementary Material provides a graphical representation of 
the T [u → v] entries to be explicit, our R code constructs this 
matrix automatically. These successive steps lead to the following 
linear system for our 10 unknowns:
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where as before r r= −1  denotes the complementary value of 
the recombination rate and rij = ri,j. The solution of Eq. 23 can 
be obtained either numerically or analytically—that is as an 
explicit function of the three recombination rates—using e.g., 
Maple or Mathematica since a treatment by hand would be very 
tedious.

Four and More Loci
The previous methodology can be extended to more loci but 
quickly becomes too cumbersome to manage manually. For 
illustration, in the case L = 4, there are 40 Q’s to determine 
(cf. Eq. 2). The system of 40 linear inhomogeneous equations 
determining these unknowns is given in Eq. 24.

In that display including a 40 × 40 matrix, we have used the 
same compact notation as for L = 3. Our software produces 
this system of equations and then can solve for the Q’s for 
any particular values of the rij. Computing the corresponding 
probabilities of RIL genotypes is then straightforward and in 
practice the computer does this very quickly.

It is of course possible to go to larger values of L but then 
it becomes unweildly to show the corresponding matrix. As 
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expected, the computation time required by our R code grows 
fast with L, by about a factor 16 for each unit increase of L. 
The required computer memory also grows in the same way. 
At L = 8 the code takes about 5 min to solve the problem, and 
for still larger values of L it is best to use a server with large 
memory capacity (we have gone up to L = 10).

Application to Imputing Missing Data
Genotyping arrays can provide calls for thousands and even 
millions of single nucleotide polymorphisms. When dealing 
with such large numbers, the raw data of some markers will 
inevitably be unambiguous and so generally these cases are 
called as “missing data.” On the other hand, some technologies 
such as genotyping by sequencing of low coverage in fact lead 
predominantly to missing data calls. To deal with either of 
these cases, one typically imputes a posteriori to transform 
the missing calls into the most plausible values, exploiting 
the values of the calls at neighboring loci. Such imputation 
is a general problem and is typically treated by machine 
learning approaches that attempt to infer probabilities from 
the data. For the current context where we are focused on 
SIB RIL populations, one may expect that having the exact 
probabilities for RIL multilocus genotypes will allow for more 

reliable imputation than when using algorithms which resort 
to statistical inference.

To test this idea, we have developed an algorithm that 
exploits our exact probabilities and compared it to a standard 
imputation algorithm. The comparison is based on applying 
these two algorithms to simulated RIL genotyping data, and 
doing so for many replicates. Specifically, for each replicate, 
we started with two homozygous parents having two 
homologous chromosomes of total length 150 cM on which 
we randomly positioned 100 markers. After producing from 
these a SIB RIL population of 100 individuals, we took the 
genotypes of each individual and transformed the calls by 
introducing missing data, selecting at random 10, 20, 30, 40, 
50 or 70% of the markers for this change from a parental allele 
to “missing data.”

For a standard imputation algorithm, we used the R package 
“missForest” (Stekhoven and Buelhmann, 2012; Stekhoven, 2013) 
that uses machine learning to estimate the most probable values 
underlying the missing data. In effect, it applies a hidden Markov 
model that adjusts its parameters to the dataset. It outputs the 
imputed genotypes from which one can determine an associated 
error rate. This error rate depends on the realization of the RIL 
population, which is why we perform replicates. These values 
are displayed on the X axis of Figure 3 for each of the studied 

FIGURE 3 | Scatterplot comparison of imputation error rates. For each of the replicates simulated, the X axis gives the error rate for the missForest R package while 
the Y axis gives the error rate when using our code that exploits the exact multilocus genotype probabilities. For each fraction of missing data studied we display the 
points using a different color.
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values of the percentage of missing data. One clearly sees that 
the error rate increases with that percentage, a feature that is of 
course expected.

The second method (ours) is based on exploiting the fact 
that one can now access (cf. previous sections) the exact 
multilocus genotype probabilities in SIB RILs. For each 
genotyped RIL, we construct the blocks of adjacent markers that 
are called as missing data. They thus have one or two flanking 
markers. If there is just one such marker (the block is at the 
end or beginning of the chromosome), we impute the values  
to be that of this flanking marker. If there are instead two 
flanking markers (one on each side), again we just impute all 
the missing data to be that of these two markers if they are both 
of the same parental type (non-recombinant). The remaining 
case is where the considered individual is recombinant for 
those two flanking markers. To impute here, we calculate the 
multilocus genotype probabilities for all 2L allelic combinations 
when considering these two flanking markers and the L – 2 
markers in the missing data block. Then we select the L-locus 
genotype of maximum probability that is compatible with the 
calls at the two flanking markers, and this selected genotype 
specifies our imputation. The corresponding imputation errors 
are displayed on the Y axis of Figure 3. Clearly, our imputation 
method systematically out performs missForest, as expected 
since using the exact probabilities should be more reliable 
than using approximate ones. This is further quantified in the 
Supplementary Material. The imputation code is available 
online at https://github.com/olivier-c-martin/PMG_SIB_RILs.
git and is internal documentation explains in greater detail the 
different algorithmic steps.

DISCUSSION

The construction of RILs involves successive generations of 
inbreeding. In realistic situations, SIB based inbreedings are 
performed for 10 to 20 generations and that leads to some 
low level of residual heterozygosity. One way to deal with 
such residual heterozygosity is to follow the probabilities of all 
possible combinations of allelic values for the siblings from one 
generation to the next. As shown by Haldane and Waddington 
(Haldane and Waddington, 1931), that means applying at each 
generation a 16L × 16L matrix to the vector of those probabilities, 
where L is the number of loci considered (see also Hospital 
et al., 1996). Because this is very tedious and just not possible 
for 5 or more loci, a shortcut is used whereby one considers that 
the statistics are given by the limiting case in which fixation 
should be complete and whenever a locus is in the heterozygous 
state one replaces it by missing data. Softwares that construct 
genetic maps or that perform QTL mapping then either just 
ignore such missing data or first perform imputation on those 
missing values.

That brings us to the challenge of determining RIL 
probabilities when fixation is indeed complete; note that there 
are far fewer combinations of allelic values in this situation 
than when one allows for residual heterozygosity, so one 
might hope for a simple way to obtain the corresponding 

multilocus genotype probabilities. But in this mathematical 
idealization where fixation is complete, the difficulty is that 
fixation formally requires an infinite number of generations. 
Thus, either the recursions must be taken “sufficiently far” to 
obtain numerical convergence or a mathematical trick has to 
be found. For L  =  2, Haldane and Waddington succeeded in 
the second path thanks to much mathematical ingenuity, and 
interestingly, that L = 2 solution automatically determines the 
probabilities in the L = 3 case. However, since that founding 
work—going back to 1931—no solution had been proposed 
to tackle the problem of determining probabilities in SIB RILs 
with four or more loci.

Using a novel method, we have successfully overcome 
that long-standing challenge here. Our approach provides an 
algebraic solution, albeit at a computational cost that grows 
roughly as 16L for L loci. That exponential growth rate is far less 
drastic than that of the iterative method mentioned above using 
16L × 16L matrices and even more dramatically less than applying 
diagonalization methods as in of the original proposition of 
Haldane and Waddington of 1931. As a result, not only did we 
break the L = 4 barrier but in fact we were able to rather easily 
treat L’s up to 8. We also pointed out that our framework can deal 
with different female and male recombination rates, a situation 
that seems to have never been considered before in the context of 
SIB RILs, even for L = 2.

The ability to compute probabilities of RIL multilocus 
genotypes opens up to a number of applications. For instance, 
when building genetic maps, the ordering of markers is 
determined by comparing likelihoods of different orderings. 
That calculation can now be done using exact rather than 
approximate multilocus genotype frequencies, putting those 
mapping algorithms on a more solid footing. Similarly, when 
RIL genotypes must be imputed because of missing data, 
determining the most likely value of an allele marked as missing 
data requires comparing multilocus genotype probabilities. In 
the absence of these probabilities, imputation algorithms use 
approximations. We showed that it was in fact possible to avoid 
doing so, leading to systematically more reliable imputation 
results. Finally, beyond specific uses in the case of RILs, our 
mathematical framework that exploits self-consistency might 
be useful in certain population genetics problems involving an 
infinite number of generations.
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