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Polyhydramnios is sometimes associated with genetic defects. However, establishing an 
accurate diagnosis and pinpointing the precise genetic cause of polyhydramnios in any 
given case represents a major challenge because it is known to occur in association with 
over 200 different conditions. Whole exome sequencing (WES) is now a routine part of 
the clinical workup, particularly with diseases characterized by atypical manifestations and 
significant genetic heterogeneity. Here we describe the identification, by means of WES, 
of novel compound heterozygous truncating variants in the LMOD3 gene [i.e., c.1412delA 
(p.Lys471Serfs*18) and c.1283dupC (p.Gly429Trpfs*35)] in a Chinese family with two 
successive fetuses affected with polyhydramnios, thereby potentiating the prenatal diagnosis 
of nemaline myopathy (NM) in the proband. LMOD3 encodes leiomodin-3, which is localized 
to the pointed ends of thin filaments and acts as a catalyst of actin nucleation in skeletal and 
cardiac muscle. This is the first study to describe the prenatal and postnatal manifestations 
of LMOD3-related NM in the Chinese population. Of all the currently reported NM-causing 
LMOD3 nonsense and frameshifting variants, c.1412delA generates the shortest truncation 
at the C-terminal end of the protein, underscoring the critical role of the WH2 domain in 
LMOD3 structure and function. Survey of the prenatal phenotypes of all known LMOD3-
related severe NM cases served to identify fetal edema as a novel presenting feature that 
may provide an early clue to facilitate prenatal diagnosis of the disease.
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INTRODUCTION

Polyhydramnios, an excess of amniotic fluid in the amniotic sac, is diagnosed if the single 
deepest pocket (SDP) is of ≥ 8 cm or the amniotic fluid index (AFI) is of ≥ 25 cm (Moore and 
Cayle, 1990; Magann et al., 2007). It is present in 1–3% of pregnancies (Maymon et al., 1998; 
Biggio et al., 1999; Magann et al., 2007) and may occur as a consequence of both environmental 
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(e.g., perinatal exposure to TORCH infections, maternal 
gestational and pregestational diabetes) and genetic factors 
(Bartha et al., 2003; Keshavarz et al., 2005; Touboul et al., 2007; 
Kishore et al., 2011; Kollmann et al., 2014). Indeed, a search for 
polyhydramnios in the Human Phenotype Ontology database 
(https://hpo.jax.org/app/browse/term/HP:0001561) yielded 
204 different conditions and 143 different genes. Nearly one 
half of all pregnancies with polyhydramnios are associated 
with varying degrees of fetal abnormality, including fetal 
death (Kollmann  et al., 2014). Therefore, it is extremely 
important to identify the genetic causes of polyhydramnios in 
affected families with a view to providing genetic counselling 
and prenatal diagnosis for subsequent pregnancies.

With the decreasing cost of next generation sequencing, whole 
exome sequencing (WES) has been increasingly employed as an 
important diagnostic tool for clinical purposes (Boycott et al., 
2013; Lee et al., 2014; Posey et al., 2017), especially in the case of 
diseases characterized by atypical manifestations and significant 
levels of genetic heterogeneity (Ku et al., 2012). Here we describe 
the use of WES to identify the genetic cause of polyhydramnios 
in two successive fetuses in a Chinese family.

CASE PRESENTATION

A 35-year-old woman was referred to our centre at the First 
Affiliated Hospital of Sun Yat-Sen University after her third 
fetus (II:3; Figure 1A) had been found to have polyhydramnios 
(SDP of 9.5 cm and an AFI of 30.7 cm) and hydrocele of testis at 
29 gestational weeks (GW). Prior to this, her second fetus (II:2) 
had presented with polyhydramnios and generalized edema 
(pleural effusion, ascites, skin edema of the chest, abdomen, 
and scalp) at 34 GW (Figures 2A–D) and was then terminated 
at 36 GW. Her first child (II:1) is a healthy girl, now aged 6 years. 
Both parents were of south Chinese origin, healthy and non-
consanguineous. Exposure to known mutagenic or teratogenic 
agents during pregnancy was not reported.

In the case of II:2, only standard G-banding karyotyping 
(using cord blood cells taken at 35 GW) followed by 
chromosomal microarray analysis were performed at the 
time, yielding negative findings. In the case of fetus II:3, 
molecular genetic analysis including WES was performed at 
31 GW. The WES results were returned to us 6 weeks later, 
confirming a diagnosis of nemaline myopathy (NM) (see 
below). Genetic counselling was provided to the couple, who 
opted to continue the pregnancy. The boy was born by full-
term vaginal delivery at 37 GW; his Apgar scores were 5 and 
6 (normal, 10) at 1 and 5 min of life, respectively. He showed 
stiffness of limbs, little movement and scrotal swelling, and 
died of respiratory failure 2 days after birth.

Clinical findings in the two affected fetuses (II:2 and II:3) are 
illustrated in Figure 2 and summarized in Table 1.

MATERIALS AND METHODS

Subjects
This study was carried out in accordance with the 
recommendations of “ethical regulations of biomedical research 
involving humans, Ethics Committee of the First Hospital 
affiliated to Sun Yat-sen University” with written informed 
consent from all subjects. All subjects gave written informed 
consent in accordance with the Declaration of Helsinki. The 
protocol was approved by the “Ethics Committee of the First 
Hospital affiliated to Sun Yat-sen University”. Prenatal diagnosis 
was undertaken through ultrasound-guided umbilical cord 
blood puncture in accordance with standard practice.

Karyotype and Chromosomal Microarray 
Analysis
Standard G-banding karyotyping was performed according to 
standard laboratory procedures. The chromosomal microarray 
experiments were conducted using the high-resolution 
Affymetrix CytoScan HD arrays (Affymetrix Inc., Santa Clara, 
CA) according to the manufacturer’s protocols. Detected 
copy number variants were evaluated for clinical significance 
by comparing them with data in the scientific literature and 
publicly available databases: UCSC (Ku et al., 2012), DECIPHER 
database (https://decipher.sanger.ac.uk/), Database of Genomic 
Variants (DGV, http://dgv.tcag.ca/dgv/app/home), the 
International Standards for Cytogenomic Arrays (ISCA, https://
www.iscaconsortium.org/), and Online Mendelian Inheritance 
in Man (OMIM, https://www.omim.org/). The results were then 
analyzed by the Chromosome Analysis Suite software version 
3.3.0; the reporting threshold of copy number variants was set 
at 10 kb, with marker count at over 50, as previously reported 
(Wang et al., 2015).

Whole Exome Sequencing (WES)
WES was performed in fetus II:3 and its parents. Genomic 
DNA was randomly fragmented and then purified by means 
of the magnetic particle method. Sequences were captured 
by Agilent SureSelect version 4 (Agilent Technologies, Santa 
Clara, CA) according to the manufacturer’s protocols. After 
enrichment and purification, the DNA libraries were sequenced 
on a NextSeq500 sequencer following the manufacturer’s 
instructions (Illumina, San Diego). The reads were aligned 
to hg19/GRCh37.p10 using the Burrows-Wheeler Aligner 
(version 0.59) (Li and Durbin, 2009). Base quality recalibration 
and local realignment of the Burrows-Wheeler aligned reads 
were then processed by means of GATK IndelRealigner 
(https://software.broadinstitute.org/gatk/documentation/
tooldocs/current/org_broadinstitute_gatk_tools_walkers_
indels_IndelRealigner.php) and GATK BaseRecalibrator 
(https://software.broadinstitute.org/gatk/documentation/
tooldocs/current/org_broadinstitute_gatk_tools_walkers_
bqsr_BaseRecalibrator.php), respectively. Single nucleotide 
variations and small indels were revealed by the GATK 
UnifiedGenotyper (https://software.broadinstitute.org/gatk/

Abbreviations: AFI, amniotic fluid index; GW, gestational weeks; NM, nemaline 
myopathy; SDP, single deepest pocket; WES, whole exome sequencing.
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documentation/tooldocs/current/org_broadinstitute_gatk_
tools_walkers_genotyper_UnifiedGenotyper.php). Variants 
were finally annotated employing the Consensus Coding 
Sequences Database at the National Centre for Biotechnology 
Information (https://www.ncbi.nlm.nih.gov/CCDS/).

Putative causal variants were sought in an unbiased and 
hypothesis-free manner. Trio sample strategy was applied to 
remove the bias that may arise by proband-only sequencing. 
Literature and population databases were used for variant 
annotation, including 1000 Genomes, dbSNP, GenomAD, 
Clinvar, HGMD, and OMIM. The synonymous and common 
SNPs (MAF > 5%) were filtered out, and rare variants with high 
confidence were considered as disease-causing candidates for 
further genetic evaluation. Multiple computational algorithms 
were applied to assist the genetic evaluation of pathogenicity, 
including SIFT, Polyphen-2, and MutationTaster. Variants 
occurring in known phenotype-causing or -associated genes 

as well as in candidate genes selected on the basis of known 
biological, physiological or functional relevance to phenotype 
were considered with priority. The interpretation of variants 
was managed according to the American College of Medical 
Genetics (ACMG) guidelines.

Sanger Sequencing
All family members were subjected to Sanger sequencing of exon 
2 of the LMOD3 gene. PCR primers were designed by Oligo 6.0 
(http://www.oligo.net/downloads.html). Primer sequences and 
PCR conditions are available upon request.

Reference Sequence and Variant 
Nomenclature
NM_198271.4 was employed as the LMOD3 mRNA reference 
sequence. Nomenclature for the description of LMOD3 variants 

w

FIGURE 1 | Identification of the genetic basis of polyhydramnios in a Chinese family. (A) Family pedigree and DNA sequencing results. Filled triangle with oblique 
line indicates the fetus with polyhydramnios terminated by therapeutic abortion. Filled square with oblique line indicates the affected boy who died after birth. 
Arrow indicates the proband. Open symbols indicate clinically unaffected family members. LMOD3 genotypes are provided for all subjects. Red arrows indicate 
the mutation positions. wt, wild-type. (B) Illustration of the LMOD3 structure and all currently reported severe NM-causing LMOD3 variants. The two novel variants 
identified in the current study are highlighted in red. Previous reported variants (in black) were from (Yuen et al., 2014; Berkenstadt et al., 2018; Michael et al., 2019). 
See Supplementary Table S1 for variant descriptions at the nucleotide sequence level.
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TABLE 1 | Summary of prenatal feature in 24 LMOD3 mutation-positive cases of nemaline myopathy.

Case Reference Gender Ethnicity Polyhydramnios Decreased 
fetal 

movements

Arthrogryposis/
contracture

Fractures Fetal 
edema

Other 
anomalies

Preterm 
delivery

Age at death 
(or current 
age if alive)

LMOD3 genotype†

1 Yuen et al., 2014 F Algerian + – + + – + neonatal p.S47fs*13 homozygote
2 M Belgian – + + – – – 10 months p.S47fs*13 homozygote
3a F Portuguese + + + – – – neonatal p.M52* homozygote
3b F Portuguese + – + – – – 1 months, alive
4 F Japanese + + – – – – 2 months, alive p.[T101Rfs*4]; [D201Efs*9]
5 F Japanese + + + – + Subdural 

hematoma
+ 10 months, 

alive
p.Q117* homozygote

6 F Japanese + + – – – microcephaly – 1 year, alive p.[Q117*]; [K406Nfs*11]
7 F Italian + + + – – + 4 months p.F287Sfs*3 homozygote
8 M Ecuadorianmn + + + + – + 6 weeks p.[G326R]; [Q458*]
9 M Swedish + – + – – – 5 months p.E357* homozygote
10 M Afghan – + + – – + neonatal p.N367Qfs*11 homozygote
11 M Afghan – – + – – + 2 months p.N367Qfs*11 homozygote
12 F Pakistani + – – – – – 3 months p.N367Qfs*11 homozygote
13 F Pakistani + + – – – – neonatal p.N367Qfs*11 homozygote
14 F Australian + + – – – – 10 years, alive p.[N367del]; [R401*]
15 F Australian + – – – – – 4 years, alive p.[N367del]; [R401*]
16a Abbott et al., 

2017
F Turkish – + – + + + neonatal p.S47fs*13 homozygote

16b F Turkish – + – + – + 2 months
16c F Turkish + – – + + + neonatal
17 Berkenstadt 

et al., 2018
F Moroccan + + + – – NE induced 

abortion
p.[E121Rfs*5]; [L245del]

18 Michael et al., 
2019

F Turkish + + + – + atrial septum 
defect

– 8 years, alive p.D295Rfs*2 homozygote

19 M NE + + + – – atrial septum 
defect

– 5 months p.E357* homozygote

20a This study Unknown Chinese + + – – + NE induced 
abortion

p.[G429Wfs*35]; 
[K471Sfs*18]

20b M Chinese + + – – + – neonatal

Total 19/24
(79.2%)

17/24
(70.8%)

13/24
(54.1%)

5/24
(20.8%)

6/24
(25.0%)

9/22
(40.9%)

+, present; –, absent; F, female; M, male; NE, not evaluated.
†See Supplementary Table S1 for variant descriptions at the nucleotide sequence level.
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and genotypes followed the Human Genome Variation Society 
(HGVS) recommendations (den Dunnen et al., 2016).

Currently Reported Variants in the 
LMOD3 Gene
Currently reported variants in the LMOD3 gene were obtained 
from the Professional version of the Human Gene Mutation 
Database (HGMD; https://www.qiagenbioinformatics.com/
products/human-gene-mutation-database/) (Stenson et al., 
2017) and augmented by a manual literature search.

RESULTS

Karyotyping of fetus II:3 indicated the presence of a normal 
set of chromosomes. Chromosomal microarray analysis also 
failed to identify any pathogenic copy number variants. We 
then screened II:3 and his parents by WES to search for putative 
causal variants in an unbiased and hypothesis-free manner. 

Variants detected were then prioritized based on sequencing 
quality, allele frequency in the normal population, gene product 
damage potential, zygosity and mode of inheritance. The mean 
depth of coverage for the coding regions targeted with the WES 
was 267×. A mean of 99.2% of bases in the targeted coding 
regions were covered by at least 10 reads and 99.0% of bases in 
the targeted coding regions were covered by more than 20 reads. 
Compound heterozygous truncating variants, c.1283dupC 
(p.Gly429Trpfs*35) and c.1412delA (p.Lys471Serfs*18), were 
identified in exon 2 of the LMOD3 gene (NM_0198272) in 
II:3; c.1283dupC was inherited from the mother whereas 
c.1412delA was inherited from the father (Figure 1A). The 
genotypes in II:3 and his parents were confirmed by Sanger 
sequencing of exon 2 of the LMOD3 gene. We also sequenced 
exon 2 of the LMOD3 gene in II:1 and II:2. Neither variant was 
found in the former while both variants were found in the latter 
(Figure 1A). Neither c.1283dupC nor c.1412delA have been 
previously described in the literature and are also absent from 

FIGURE 2 | Ultrasound photographs of the 2 fetuses with polyhydramnios. (A–E) Ultrasound images of the first affected fetus (II-2) at 34 GW. Two-dimensional 
ultrasound showing polyhydramnios (amniotic fluid deep, AFD, 12.2 cm) (A) and fixed limbs (E). Bilateral pleural effusion (B, yellow arrow), ascites (C, yellow arrow), 
skin edema of chest (B, white arrow), abdomen (C, white arrow), and scalp (D, white arrow) were detected by ultrasound. (F, G) Ultrasound pictures of the second 
affected nemaline myopathy fetus (II-3) at 33 GW. Two-dimensional ultrasound revealed polyhydramnios (amniotic fluid deep, AFD, 11.5cm) (F) and hydrocele of 
testis (G) (yellow arrow).
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the Genome Aggregation Database (gnomAD, http://gnomad.
broadinstitute.org/).

Homozygous or compound heterozygous variants 
(predominantly truncating and nonsense) in the LMOD3 gene 
have recently been identified to be a cause of autosomal recessive 
NM (Yuen et al., 2014). Our identification of novel compound 
heterozygous truncating variants in the LMOD3 gene in the two 
fetuses with polyhydramnios therefore firmly established the 
diagnosis of NM.

All LMOD3 variants so far reported to be causative for 
severe NM are illustrated in the context of the LMOD3 protein 
structure (Figure 1B). The structure of LMOD3 is in accordance 
with Chereau et al. (2008), UniProt (http://www.uniprot.org/) 
and InterProScan 4 (Zdobnov and Apweiler, 2001). Additionally, 
we collated prenatal features in all 22 known LMOD3 mutation-
positive severe NM cases (Table 1).

DISCUSSION

Employing WES, we have successfully identified two novel 
compound heterozygous truncating variants, c.1283dupC 
and c.1412delA, in the LMOD3 gene in two successive fetuses 
from the same family with polyhydramnios. LMOD3 encodes 
a member of the leiomodin family of proteins, leiomodin-3, 
which is localized to the pointed ends of thin filaments and acts 
as a catalyst of actin nucleation in skeletal and cardiac muscle 
where it is expressed (Conley et al., 2001; Chereau et al., 2008; 
Qualmann and Kessels, 2009; Campellone and Welch, 2010; 
Tsukada et al., 2010; Cenik et al., 2015). In 2014, Yuen et al. 
(2014) identified LMOD3 as a new causative gene for autosomal 
recessive NM. NM is a disorder that is characterized by 
muscle dysfunction and electron-dense protein accumulations 
(nemaline bodies) in myofibers (Sandaradura and North, 2015). 
Patients with mutations in LMOD3 often present with a severe 
congenital form of early-onset generalized muscle weakness and 
hypotonia with respiratory insufficiency and feeding difficulties; 
they usually die in early infancy (Yuen et al., 2014). NM is 
clinically and genetically heterogeneous, making it difficult 
to establish a correct diagnosis from clinical features alone. 
Fetuses with NM usually display decreased fetal movements 
and polyhydramnios without any particular disease-defining 
features. The identification of compound heterozygous LMOD3 
variants in our family therefore provided a definite diagnosis of 
the disease that could not otherwise have been made merely on 
the basis of clinical findings in the fetus.

To date, a total of 25 LMOD3 variants have been reported in 
the literature (Supplementary Table S1). Of these, 4 missense 
variants, p.Arg83His, p.Glu142Asp, p.Lys282Glu, p.Pro552His, 
have been reported to cause Kleine-Levin syndrome (Al Shareef 
et al., 2019); a further two missense variants, p.Leu550Phe 
and p.Gln335Arg, have been associated with a mild form 
of congenital NM (Schatz et al., 2018) whereas a truncating 
variant, c.112delG (p.Glu38Lysfs*15), has been detected in a case 
without a definite clinical diagnosis (Theunissen et al., 2018). By 
contrast, the remaining 18 variants (i.e., variants highlighted in 
black in Figure 1B) were reported to be causative for severe NM 

(Yuen et al., 2014; Abbott et al., 2017; Berkenstadt et al., 2018; 
Michael et al., 2019). Notably, 83% (n = 15) of these latter 18 
variants represent truncating variants (nonsense or frameshift). 
The addition of our two newly identified truncating variants 
increased this figure to 85% (17/20). Moreover, most previous 
studies analyzed patients with a diagnosis or suggestive diagnosis 
of NM (Yuen et al., 2014). Only very recently have LMOD3 
variants been described in any detail in fetuses (Berkenstadt 
et al., 2018). Our study is the first to describe the prenatal and 
postnatal manifestations of LMOD3-related NM in the Chinese 
population.

LMOD3 contains three actin-binding domains, which 
are actin-binding helix [A-h], residues 69–79; leucine-rich 
repeat domain [LLR], residues 237–402; and Wiskott-Aldrich-
syndrome protein homology 2 domain [WH2], residues 534–
553 (Yuen et al., 2014). It should be noted that 1 of our 2 novel 
LMOD3 mutations, c.1412delA, led to the shortest C-terminal 
truncation among the LMOD3 nonsense and frameshifting 
variants reported to date (Figure 1B). This, together with 
the fact that c.1412delA is associated with a severe form of 
NM, serves to highlight the indispensable role of the WH2 
domain in LMOD3 protein and function. Current models 
and in vitro assays support the view that the WH2 domain, 
an actin nucleator, stabilizes actin monomers in the trimer 
conformation, thereby promoting nucleation (Qualmann and 
Kessels, 2009; Cenik et al., 2015).

Finally, we evaluated the prenatal features of LMOD3-related 
severe NM reported elsewhere (Yuen et al., 2014; Abbott et al., 
2017; Berkenstadt et al., 2018; Michael et al., 2019) as well as in 
this study. As shown in Table 1, the most frequently observed 
anomaly is polyhydramnios (79.2%), followed by decreased 
fetal movements (70.8%), arthrogryposis/contracture (54.1%), 
fetal edema (25.0%), and fractures (20.8%). This survey 
identified fetal edema, which has an even higher frequency than 
fracture (Abbott et al., 2017), to be a new noteworthy feature 
of LMOD3-related severe NM in the fetal period. Fetal edema 
could be explained as follows: decreased fetal movement allows 
accumulation of subcutaneous fluid and causes subsequent 
atony in the diaphragm, leading to a change in thoracic pressure 
and a disturbance of lymphatic circulation (Vardon et al., 1998). 
Taken together, we suggest that LMOD3-related severe NM 
should be considered in cases of prenatal diagnosis of fetal 
edema and polyhydramnios.

This is the first report of NM-causative LMOD3 variants, and 
the first example of prenatal diagnosis of NM, in the Chinese 
population. The identification of a novel LMOD3 variant (i.e., 
c.1412delA) generating the shortest LMOD3 truncation reported 
to date underscores the critical role of the WH2 domain in LMOD3 
structure and function. Further, survey of the prenatal phenotypes 
of LMOD3-related severe NM identified fetal edema as a new 
presenting feature that may provide an early clue to facilitate prenatal 
diagnosis of the disease. Finally, we demonstrate once again the 
power of WES as an effective means to deliver a timely molecular 
diagnosis in a genetically and clinically highly heterogeneous 
disorder. We anticipate that the availability of genetic testing for 
NM will also allow clinicians to offer more reliable prognostic and 
recurrence risk information to families at risk.
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