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The importance of understanding microbe–microbe as well as microbe–disease 
associations is one of the key thrust areas in human microbiome research. High-
throughput metagenomic and transcriptomic projects have fueled discovery of a 
number of new microbial associations. Consequently, a plethora of information is 
being added routinely to biomedical literature, thereby contributing toward enhancing 
our knowledge on microbial associations. In this communication, we present a tool 
called “EviMass” (Evidence based mining of human Microbial Associations), which 
can assist biologists to validate their predicted hypotheses from new microbiome 
studies. Users can interactively query the processed back-end database for 
microbe–microbe and disease–microbe associations. The EviMass tool can also be 
used to upload microbial association networks generated from a human “disease–
control” microbiome study and validate the associations from biomedical literature. 
Additionally, a list of differentially abundant microbes for the corresponding disease 
can be queried in the tool for reported evidences. The results are presented as 
graphical plots, tabulated summary, and other evidence statistics. EviMass is a 
comprehensive platform and is expected to enable microbiome researchers not only 
in mining microbial associations, but also enriching a new research hypothesis. The 
tool is available free for academic use at https://web.rniapps.net/evimass.

Keywords: microbiome, literature mining, human disease, web server, microbial association

INTRODUCTION

The microbial groups residing in human body remain in complex association within themselves 
as well as with the host. These associations range from mutualism, amenalism, and commensalism 
to parasitism, predation, and competitions (Faust and Raes, 2012). However, with the onset of a 
disease, the human microbiome is often seen to display aberrations, which may be a cause or an 
effect (Eloe-Fadrosh and Rasko, 2013; Liang et al., 2018). Advances in the field of metagenomics 
have made it possible to successfully capture and report such microbial dysbiosis observed in the 
diseased state. Microbial abundance measurements for many samples can be simultaneously 
obtained using 16S rRNA (amplicon) sequencing in a short span of time (Goodrich et al., 2014). 
Recent developments in sequencing technology and the drastic reduction in the associated cost have 
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encouraged researchers to probe the microbial basis of various 
human diseases. Consequently, a plethora of information relating 
to microbes and their association with diseases are added to the 
growing biomedical literature (Cani, 2018). Although the obtained 
microbiome data can be used to calculate differentially abundant 
genera as well as their co-occurrence patterns (Kuntal et al., 2013; 
Kumar et al., 2014; Dhariwal et  al., 2017), their evidence from 
biomedical literature can help to strengthen a research hypothesis.

The Human Microbe Disease Association Database 
(HMDAD) was the first resource developed using literature 
mining to systematically gather experimental data to study 
microbe–disease associations (Ma et al., 2017b). Several 
tools have been developed thereafter to utilize the curated 
data from HMDAD and score human microbe associations 
using advanced mathematical approaches (Chen et al., 2017; 
Huang et al., 2017a; Huang et al., 2017b; Wang et al., 2017b; 
Peng et al., 2018; Zou et al., 2018; Qu et al., 2019). The above 
set of tools focuses on identifying associated genera across a 
set of selected diseases and is eventually used to find diseases 
having similar pattern of associated microbes. For example, 
KATZHMDA (Chen et al., 2017) computes the number of 
walks of connections between microbe and disease nodes, 
LRLSHMDA (Wang et al., 2017b) uses a semisupervised learning 
framework based on Laplacian regularized least squares, 
ABHMDA (Peng et al., 2018) uses an Adaptive Boosting 
model, PBHMDA (Huang et al., 2017b) calculates the Gaussian 
interaction profile kernel similarity, and very recently a new 
method called MDLPHMDA (Qu et al., 2019) based on Matrix 
Decomposition and Label Propagation has been introduced. 
While some of the above methods are limited to predict 
microbes associated with a fixed set of diseases, more recent 
methods like ABHMDA can predict microbes associated with 
a new disease (Peng et al., 2018). In addition, methods like 
MDLPHMDA also can now be used to predict novel microbe–
disease associations with minimum noise (Qu et al., 2019). 
Tools like Micro-pattern, on the other hand, can perform 
an enrichment analysis for a given set of microbes using a 
hypergeometric test (Ma et al., 2017a). This method relies on 
creation of pregenerated microbe sets using manual curation 
from selected diseases, making it advantageous for accurate 
predictions, but limits the applicability. Given the scenario, 
although the association of individual microbes with a disease 
can give informative predictions, the knowledge of microbial 
co-occurrence patterns can augment it further to provide 
improved insights. As microbes are known to work in mutual 
associations rather than single entities, it is also imperative 
to validate a known co-occurrence pattern observed in an 
experimental microbiome study. One such method called 
“Microbial Prior Lasso” (or MPLasso) uses literature evidence 
supplied as an input to quantify microbial associations and 
is available as an R package (Lo and Marculescu, 2017). 
However, the major limitation lies in gathering systematic 
information relating to intermicrobe association and their 
relation to human diseases.

In order to address the aforementioned limitation, we 
have developed a web-based GUI resource called “EviMass” 
(Evidence based mining of human Microbial Associations) 

available at https://web.rniapps.net/evimass that can be 
interactively used for not only querying microbe disease 
associations, but also inferring the intermicrobe association 
patterns mined from biomedical literature (Figure 1). The 
EviMass backend database has been developed using extensive 
data mining of the currently available PubMed abstracts. 
The front-end is designed with an interactive query system, 
which allows users to find all microbes associated with a user-
defined query microbe. In addition, the identified microbial 
associations can also be visualized for their occurrence 
statistics in various human diseases. Similarly, users can search 
for an individual microbe to view all diseases associated with 
it and vice versa. Additionally, users can upload a microbial 
association network generated from experimental microbiome 
data corresponding to a human disease and easily verify these 
associations using the evidence statistics. A list of differentially 
abundant genera obtained from a disease–control microbiome 
case study can also be validated using EviMass along with an 
option for enrichment analysis. All evidence inferred using 
the present tool is listed with corresponding PubMed IDs, 
which can be used for further reference. The utility of EviMass 
is demonstrated with case studies as well as using real-world 
microbiome data.

RESULTS

Global Overview of Disease–Microbe 
Associations Captured by EviMass
EviMass backend database was generated using a systematic 
literature mining approach (details in Material, Methods and 
Implementation) specific to microbiome and human diseases. 
We focused our analysis on 51 widely reported microbiome 
associated human diseases and their associations with various 
microbes (genera level). These diseases spanned six categories, 
namely, systemic diseases and those affecting gut, skin, lung, 
brain, and urogenital system (Table 1). The results of the 
literature mining as incorporated in EviMass yielded several 
interesting findings. For example, ulcer, diarrhea, HIV, urinary 
tract infection, and cystic fibrosis were found to be the most 
widely (top 5) reported diseases with microbial associations 
(Supplementary Figure 1). On the other hand, microbial 
genera, namely, Escherichia, Staphylococcus, Pseudomonas, 
Bacillus, and Streptococcus, were seen to occupy the top 5 
spots in terms of their reported all-microbiome articles in 
PubMed (irrespective of disease association) (Supplementary 
Figure 2). A closer look into the genera maximally associated 
with human diseases revealed Escherichia, Lactobacillus, 
Clostridium, Streptococcus, and Bacteroides to be the top 5 
players (Supplementary Figure 3). A deeper analysis revealed 
the following genera to be significantly (P < 0.05) associated 
with diseases (affecting various organs): Clostridium with gut, 
Staphylococcus with skin, Pseudomonas with lungs, Escherichia 
with brain as well as urogenital, and Helicobacter with the 
other systemic diseases (Figure 2).

In order to check which all genera are closely associated 
with each of the aforementioned top genera irrespective of 
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diseases, Module 1 of the EviMass tool was utilized. The results 
(Supplementary Figures 4–19) showed a wide range of association 
patterns between each of these genera shown as graphs. While 
the central node of the graph represented the query genera, the 
remaining nodes corresponded to the genera associated with it. 
The size of the nodes depended on the strength of the associations 
calculated as the sum total of publications where the two genera 
were identified to co-occur. It was interesting to observe that most 
of the association graphs were dominated by a selected group 
of genera like Escherichia, Staphylococcus, and Pseudomonas. 
In order to get a deeper insight into the microbe–disease 
associations, a summary of the associated microbial genera 
count corresponding to each disease and the number of articles 
reporting the disease was generated (Figure 3). The Module 2 
of EviMass was then used to explore each of these associations 
along with the literature evidences. Our analysis using EviMass 
for the top diseases across each category showed some amount of 
genera specificity (Supplementary Figures 20–24). For example, 
cystic fibrosis (Supplementary Figure 20) showed a very strong 
association with the genera Pseudomonas with 3,711 evidences 
(journal articles). Apart from being dominant in cystic fibrosis, 
Pseudomonas was also found to be associated with other diseases 
like HIV, diabetes, ulcer, and urinary tract infection although 
with lower evidences. Similar associations were also observed in 

other diseases (Supplementary Figures 20–24), which instigated 
an interest to look into the disease similarities based on their 
associated genera as explored in the next section.

Disease Similarity Based on Literature 
Evidence Using EviMass
Although earlier studies (Ma et al., 2017a) have shown an 
overall relation between various diseases based on their 
microbial associations, we focused on obtaining categorical 
insight based on our extended database (Figure 4). The top 
20 persistent microbes across the six categories (Table 1) were 
chosen and used to generate bidirectional clustered (UPGMA 
hierarchical clustering) heat map for each category. Euclidean 
distance was used as the measure of distance, and the values 
were normalized by rows (diseases). Diseases like colorectal 
carcinoma, colon cancer, inflammatory bowel disease, irritable 
bowel syndrome, colitis, and kidney stones were part of closely 
linked cluster in the gut category. These diseases were seen to 
be reported with an increased association with Lactobacillus, 
Bifidobacterium, and Clostridium. The skin, brain, and 
urogenital diseases did not show any distinct clustering, but 
Staphylococcus, Escherichia, and Lactobacillus were observed to 
be the dominant players in these diseases, respectively. Asthma 
and related diseases were seen to cluster away from cystic 

FIGURE 1 | Overview of the EviMass backend creation and utility of its various modules in understanding the intermicrobial and microbe–disease associations.

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Evidence- Based Human Microbial AssociationsSrivastava et al.

4 September 2019 | Volume 10 | Article 849Frontiers in Genetics | www.frontiersin.org

fibrosis and chronic obstructive pulmonary disease in the lung 
category. The remaining category of systemic diseases showed 
a clear cluster of allergy, obesity, and type 2 diabetes dominated 
by Lactobacillus and Helicobacter. Periodontitis, one of the 
diseases in the last category, clustered away from other systemic 
diseases and was characterized by the increase in association 
of the genera Porphyromonas. The “word cloud” feature was 
used to understand the associations that distinctly showed the 
dominance of the word “gingivalis” (Supplementary Figure 
25) in the abstracts indicating the role of Porphyromonas 
gingivalis. A secondary search on the listed abstracts by using 
the keyword “inflammation” further yielded keywords like 
“cytokines,” “tnf,” “lps” (Supplementary Figure 25), which are 
indicators of some mechanisms of Porphyromonas gingivalis 
infection in periodontitis (Jiang et al., 2018; Kajiura et al., 2018; 
Zhou et al., 2018). However, these observations only provided 
a global picture, which can be enriched by augmenting with 
experimental data. In the next section, we investigated a 
specific disease along with reported experimental data to get 
more insights into microbial pathogenesis.

Case Study With Real World 
Microbiome Data
One of the featured utility of the EviMass tool pertains to 
Module 3, which allows users to validate their results from 
microbiome experiments based on the curated literature 
evidence. In order to demonstrate the utility, we first selected 
a publicly available data (Fazlollahi et al., 2018) where the 
authors studied 72 asthma subjects (using 16S ribosomal RNA 
sequencing on nasal swabs) and compared the same with those 
obtained from healthy controls. Four microbial genera reported 
to be significantly associated with asthma, namely, Prevotella, 
Dialister, Gardnerella, and Alkanindiges, were used as input 
for the EviMass Module 3 along with the disease keyword 
“asthma.” The result indicated Prevotella to be the most widely 
reported as well as statistically significant (P < 0.001) genera 
to be associated, among others, for asthma (Supplementary 
Figure 26). The node “Prevotella” can be clicked to populate 
the list of PubMed articles reporting the association, which in 
turn can be filtered based on search criteria. As most microbes 
are known to orchestrate an inflammatory disease by altering 
the immune response in the host, we searched for the keyword 
“immune” to filter the articles reporting the immunological 
role of Prevotella in asthma. The search result yielded three 
articles, of which one clearly reported the marked capacity of 
Prevotella in driving TH17 immune responses (Larsen, 2017).

In the next step, we used another dataset for analyzing 
a microbial association network for allergic asthma where 
the authors did not find any differentially abundant genera 
specific to the allergy samples (Hevia et al., 2016). We had 
used the same data in one of our earlier works (Kuntal et al., 
2019) to identify microbial “driver” genera (using “NetShift” 
methodology). While Granulicatella and Turicibacter 
were seen to be two potential pathogenic drivers, only 
Granulicatella was predicted to be the main driver (Kuntal 
et al., 2019). The same microbial network was used as an 
input for EviMass, and the associations of Granulicatella and 
Turicibacter were investigated with Module 3 (also provided 
as an autoload example in the web server). The evidence 
statistics for Granulicatella and its associated genera (which 
were mostly pathogens) Staphylococcus, Streptococcus, and 
Veillonella showed a tendency to co-occur irrespective of 
disease condition (Supplementary Figure 27). For example, 
evidence for association of Granulicatella and Staphylococcus 
was seen in 23 articles, Granulicatella and Streptococcus in 
80 articles, and Granulicatella and Veillonella in 35 articles. 
This observation provides evidence that co-occurrence of the 
genus Granulicatella with the above pathogens is indeed seen 
globally. On the other hand, the associations of Turicibacter 
(with Fusibacter and Alkaliphilus) did not show any literature 
evidence of co-occurrence (Supplementary Figure 28), 
thereby strengthening our earlier prediction of inability of 
Turicibacter to become a pathogenic driver. The primary 
intention of this case study was to demonstrate the ease with 
which scientific hypothesis in microbiome research can be 
enriched using the EviMass tool.

TABLE 1 | List of different microbe-related human diseases categorized by the 
organs they affect.

Organs affected Diseases No. of diseases

Gut End-stage renal disease (ESRD), 
kidney stones, diarrhea, liver 
cirrhosis, malnutrition, ileal 
Crohn disease (CD), necrotizing 
enterocolitis, colon cancer, infectious 
colitis, constipation, colitis, 
ulcerative colitis, Whipple disease, 
irritable bowel syndrome (IBS), 
gastroesophageal reflux, Crohn 
disease (CD), gastric and duodenal 
ulcer, inflammatory bowel disease 
(IBD), Clostridium difficile infection 
(CDI), colorectal carcinoma 

20

Skin Skin and mucosal infections, 
atopic dermatitis, psoriasis, guttate 
psoriasis, atopic sensitization, 
eczema, atopy 

7

Lungs Asthma, allergic asthma, recurrent 
wheeze, chronic obstructive 
pulmonary disease, cystic fibrosis 

5

Brain Multiple sclerosis, Parkinson’s 
disease, Schizophrenia, Autism, 
Depression 

5

Urogenital Urinary tract infection, bacterial 
vaginosis, polycystic ovary syndrome, 
preterm birth 

4

Systemic Type 1 diabetes, diabetes, type 2 
diabetes, HIV/AIDS, obesity, systemic 
inflammatory response syndrome, 
allergic sensitization, allergy, ulcer, 
periodontitis 

10

Total 51
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CONCLUSIONS AND FUTURE WORK

In this communication, we developed a resource for understanding 
the microbe–microbe and microbe–disease associations. The 
present version aims to provide a one-stop platform for validating 
data-driven hypothesis on microbiome studies. We aim to update 
our resource on a regular basis in order to incorporate the 
growing corpus of information. The current version of EviMass 
performs a text processing of the available PubMed abstracts 
to identify microbe association trends (increase or decrease). 
Additionally, it allows one to filter the results based on specific 
queries like genera/species name, journal information, or any 
generic keyword available in the abstracts. While interpreting 
the results, it should be noted that the association graphs are 
generated based on the cumulative evidence counts, which might 
be biased for a disease or microbe having a higher coverage. In 
such cases, the individual associations must be carefully assessed 
using the implemented hypergeometric tests before making any 
biological inference. The implementation of word cloud for the 
search output can highlight keywords in the abstracts that get 
repeatedly mentioned. Although this feature can be used as a 
tool to understand the mechanism of how the microbes affect 
various diseases, it is strongly advised to carefully crosscheck 
with the individual publications. In a future update, we plan to 
link the results with human genome-wide association studies and 
other related databases to help users automatically get improved 
insights. We also plan to augment an additional layer of natural 
language processing to help users automatically get insights on 
the nature of interaction in a future update. Additionally, we will 

introduce a “Contribute” feature to allow users pick a random 
abstract from an initial preselected set of abstracts and submit 
their annotation on the observed type of association (both 
microbe–microbe and microbe–disease). Every annotation 
will be cross validated by two other independent annotations 
to improve accuracy. We expect EviMass to serve as a valuable 
resource for microbiologist as well as other researchers working 
in the field of human microbiome and diseases.

MATERIAL, METHODS AND 
IMPLEMENTATION

Data Acquisition and Building the 
EviMass Backend
Generation of the EviMass backend involved two major steps, 
namely, information extraction and entity recognition. Articles 
with abstracts were downloaded directly from PubMed. A 
combination of keywords including “microbe,” “microbiome,” 
“microbial disease,” “metagenome,” and “bacteria” was used to 
query abstracts using the PubMed web interface. There were 
1,457,991 unique articles retrieved, which were parsed using 
in-house scripts to retain PubMed IDs, title, publication year, 
journal name, authors, and abstract text. These abstracts were 
further processed to extract bacteria names and the reported 
human diseases. The steps involved in backend processing are 
described below as well as summarized in Figure 5. Processed 
backend tables along with their description are provided in the 
Supplementary data.

FIGURE 2 | Top 10 prominent microbial genera associated with diseases affecting various organs. Statistically significant (P < 0.05) genera are marked with a black 
asterisk (with Bonferroni-corrected P < 0.05 highlighted in red).
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Bacteria Named Entity Recognition
The abstracts were passed through a named entity recognition 
(NER) engine implemented in the BacNER tool (Wang et al., 2017a). 
BacNER is a dedicated bacterial NER tool, which reports bacteria 
names, strains, and related entities from a given query text. It is based 
on a trained conditional random field, which processes text and tags 
bacterial entities in IOB (inside-outside-beginning) format. The title 
and the abstract for each article were passed to BacNER, and the 
entities reported in them were extracted. A total of 787,069 articles 
from our library were returned with at least one bacterial entity 
recognized. The results from BacNER required further processing in 
order to be used in our model. For instance, entities like Escherichia 
coli and E. coli needs to be clubbed together. Moreover, there were 
instances where specific species/strains of a bacterium were reported, 
which needed to be clustered together. The identified species were 
also kept as a separate map with the PubMed IDs to display them in 
the EviMass web tool. To resolve these ambiguities, a master list of 
2,178 genera was generated using the Ribosomal Database Project 
(Maidak et al., 1996) and Green Genes (DeSantis et  al., 2006) 
database. As the majority of microbiome 16S rRNA studies utilize 
one of these databases, it also aligns to our aim of validating the 
results from microbiome experimental data. Using an approximate 
string matching method based on Levenshtein distance (Miller et al., 
2009), each identified bacterial entity was matched and mapped to 

the master list. The mapping was then manually verified to modify 
inconsistent mappings. A total of 637,428 articles were finally 
selected having a mapped bacterial entity to the biomedical text. A 
detailed description of the steps involved is summarized in Figure 5.

Diseases Named Entity Recognition
In order to create a disease entity dictionary, the HMDAD’s 
most commonly occurring list of diseases (Ma et al., 2017a) 
was used along with some additions to finalize a set of 51 
diseases. The disease set is created in order to effectively cater 
to the wide variety of researches. For example, “diabetes” is 
deliberately kept as a different disorder and is not merged with 
“type 1” or “type 2 diabetes.” Another example of a similar 
case pertains to the disease “colorectal carcinoma” where we 
added a search query term for both “colorectal carcinoma” 
and “colorectal cancer” to encompass all the search results. 
These 51 diseases were further grouped into 6 categories 
broadly based on their target regions: gut, skin, lungs brain, 
urogenital, and other (systemic diseases) (Table 1). Disease 
names were recognized from abstracts identified earlier to 
have an associated bacterial entity using string matching.

The complete information extracted from more than a 
million scientific articles is stored and indexed for minimum 
memory consumption and fast access. All the genera as well 

FIGURE 3 | Summary of the associated microbial genera count corresponding to each disease and the number of articles reporting the disease. The diseases are 
ordered based on the categories as listed in Table 1. Each category of disease is sorted based on the number of genera associations.
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FIGURE 4 | Category-wise (organs affected by various diseases) bidirectionally clustered heat maps based on microbial associations. The top 20 persistent 
microbes across the six categories (Table 1) were chosen and used to generate bidirectionally clustered (UPGMA hierarchical clustering) heat map for each 
category. Euclidean distance was used as the measure of distance, and the values were normalized by rows (diseases).

FIGURE 5 | Flowchart describing the various steps involved in development of the EviMass backend.
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as the diseases reported for articles are stored in tables, where 
each record corresponds to a PubMed ID. Apart from this, 
all PubMed IDs that report each genus are also separately 
identified and stored. Similarly, a mapping of disease and 
PubMed IDs is also created for easy information retrieval. 
Abstracts are then processed to identify “increase” and 
“decrease” of the various microbial names identified to be 
present in them. These patterns are later displayed in the 
web application in the PMID result table under “taxa and 
trends” column with a “+” (increase), “−” (decrease), and 0 
(no trend detected) sign beside the identified taxa name in an 
abstract. For advanced analysis, EviMass holds all the parts-
of-speech (POS) tagged noun words corresponding to the 
articles, which can be used to get a deeper insight. These POS 
tags can be used to fine tune a search based on a particular 
term of interest as described in the next section (Figure 5). 
Microbial genera significantly associated with the diseases 
(P < 0.05) were identified using a Fisher exact test (Lo and 
Marculescu, 2017; Ma et al., 2017a), which is further applied 
for enrichment analysis in the web tool.

The EviMass Frontend
EviMass web server uses the generated backend to allow easy 
queries using simplistic searches and graphical outputs. Three 
workflows are implemented to systematically query for a 
microbe–microbe or disease–microbe association as described 
below (additional details in Supplementary material 2).

Module 1: Identify 
Intermicrobial Associations
Using this module, users can select a microbial genus and 
find all other microbial genera associated with it. The results 
of the workflow are presented as a network with the central 
node representing the queried genus and the peripheral nodes 
representing the associated genera. The sizes of the nodes 
represent the strengths of the associations and are calculated 
as the total number of publications where the two genera 
(corresponding to the central and the peripheral node) are 
identified to co-occur. EviMass displays the top 100 strongest 
associated pairs by default but also provide users an option to 
view all the associations. Along with the network, a dropdown/
text box with automatic suggestions for associated microbial 
genera names is rendered. Clicking on any node or selecting 
any microbial genera from the dropdown will display all the 
PMIDs in which the corresponding genera and the queried 
genera co-occur, along with the main keywords (POS tags) 
used in the abstract listed as a table. Additionally, a set of 
hypergeometric tests, namely, Fisher exact test and χ2 test, are 
performed (Camilli, 1995; Lo and Marculescu, 2017; Ma et al., 
2017a) to statistically assess the significance of the selected 
association, and the results are presented as a contingency table 
along with P values. Users have the option to search and filter 
the displayed table for any term/keyword and narrow down the 
number of abstracts containing the specified word using either 
the global search or a column-specific search. Also, to ease 
further analysis, a word cloud of entity names in the abstracts 

from the PMID resultant output table can be generated for a 
specific custom query. If a particular gene, protein, or clinical 
condition gets repeatedly mentioned in the abstract texts for 
the selected interaction, it will appear as a dominant word. 
The PMID output table can also be downloaded in a variety of 
commonly used formats. EviMass also allows users to identify 
inter microbial associations, which are present in a selected set 
of diseases using interactive options.

Module 2a: Identify All Microbial Genera 
Associated With a Disease
This module can be used to find all genera that are reported to 
be associated with a selected disease. The results of this module 
can be viewed either as a network (with the central node being 
the disease and the peripheral nodes being the associated 
microbial genera) or as a bar chart with the top 30 associated 
genera sorted by their strength of associations. Microbes 
identified to be significantly (P < 0.05) associated with the 
selected diseases are highlighted in pink (nodes/bars). In 
addition, a dropdown/text box with automatic suggestions for 
associated microbial genera names is provided for convenience. 
Clicking on any peripheral node (in case of the network view) 
or bar (in case of bar chart) or selecting any microbial genus 
from the dropdown displays the PMIDs in which the disease 
and the corresponding genus co-occur along with the keywords 
in the abstract in a sortable, searchable, and downloadable 
table. Similar to Module 1, results for assessing significance of 
the association are also generated. In addition, a genus node 
can be interactively queried (using left mouse click) to inquire 
its other known disease associations as a separate bar plot.

Module 2b: Identify All Diseases 
Associated With a Microbial Genera
The diseases associated with a particular genus can be evaluated 
using this module. A genus can be queried to find its associations 
with the diseases depicted in form of a bar chart, arranged in 
order of the strength of their associations along with their 
statistical significance. As in the previous modules, clicking on 
any bar or selecting any associated disease from the dropdown 
will load the PMIDs where the corresponding disease and the 
queried microbe co-occur along with the keywords in a sortable, 
searchable, and downloadable table. The “word cloud” for the 
PMID resultant table can be used to understand the mechanism of 
how the microbe affects the disease (Supplementary Figure 25).

Module 3a: View Literature Evidence for a 
Disease-Specific Microbial Network
Often, biological systems are analyzed as a network/graph, which are 
mostly obtained using computational techniques on microbiome 
abundance data. However, such data-driven approaches often lead 
to spurious connections among noninteracting microbes, due to 
either measurement or statistical errors. Therefore, a quick and 
easy method to correlate such associations with literature mined 
results is likely to help in getting an improved understanding. 
This module offers users the possibility to upload a microbial 
association network as an edge list along with the pertinent disease. 
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The uploaded edge list is depicted as a network with a searchable 
dropdown containing all the edges. For user convenience, the edge 
widths are automatically mapped to their association frequencies. 
Clicking on any edge or selecting any edge from the dropdown 
shows the PMIDs and keywords where the pair co-occurs along 
with a list of evidence statistics. The evidence statistics reports the 
occurrence count of the selected genera independently as well 
as together in the given disease, any diseases, and globally in the 
EviMass backend. The utility of this feature has been demonstrated 
as a case study in the Results section.

Module 3b: View Literature Evidence 
for Genera Identified to Be Differentially 
Abundant in a Disease and Perform 
Enrichment Analysis
Analyzing differentially abundant microbial genera in disease–
healthy microbiome studies is often used to identify potential 
microbial biomarkers. This module enables one to view literature 
reported evidences for associations of a given set of differentially 
abundant microbial genera (identified from an experimental 
study) with a specific disease. The results of the module can 
be viewed either as a network, with the central node depicting 
the disease and the peripheral nodes representing the queried 
microbial genera, or as a bar chart with the queried genera sorted 
by their strength of associations. In addition, a dropdown/text 
box with automatic suggestions for associated microbial genera 
names is rendered. Clicking on any peripheral node (in case of 
the network view) or bar (in case of bar chart) or selecting any 
microbial genus from the dropdown displays the PMIDs in 
which the disease and the corresponding genus co-occur along 
with the keywords in the abstract in a sortable, searchable, and 
downloadable table. All the other disease associations of the genus 
corresponding to the selected node/bar are reported as a separate 
bar chart. An enrichment analysis of the uploaded set of microbial 

genera is performed with respect to the selected disease similar 
to the implementation in Micro-pattern (Ma et al., 2017a). For 
this implementation, the microbes identified to be significantly 
associated with the 51 diseases are used as “disease sets” in EviMass.
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