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Faced with the lack of reliability and reproducibility in omics studies, more careful and 
robust methods are needed to overcome the existing challenges in the multi-omics 
analysis. In conventional omics data analysis, signal intensity values (denoted by M and  
values) are estimated neglecting pixel-level uncertainties, which may reflect noise and 
systematic artifacts. For example, intensity values from two-color microarray data are 
estimated by taking the mean or median of the pixel intensities within the spot and then 
subjected to a within-slide normalization by LOWESS. Thus, focusing on estimation and 
normalization of gene expression profiles, we propose a spot quantification method that 
takes into account pixel-level variability. Also, to preserve relevant variation that may 
be removed in LOWESS normalization with poorly chosen parameters, we propose a 
parameter selection method that is parsimonious and considers intrinsic characteristics 
of microarray data, such as heteroskedasticity. The usefulness of the proposed methods 
is illustrated by an application to real intestinal metaplasia data. Compared with the 
conventional approaches, the analysis is more robust and conservative, identifying fewer 
but more reliable differentially expressed genes. Also, the variability preservation allowed 
the identification of new differentially expressed genes. Using the proposed approach, 
we have identified differentially expressed genes involved in pathways in cancer and 
confirmed some molecular markers already reported in the literature. 

Keywords: delta method, pixel-level uncertainty, spot quantification, optimal LOWESS normalization, two-color 
microarray, variability preservation, parameter selection

INTRODUCTION

The growing number of omics datasets (e.g., genomics, transcriptomics, proteomics, metabolomics) 
and the recent advances in multi-omics integration approaches have contributed to the better 
understanding of biological mechanisms and also the emergence of the personalized medicine. 
However, the lack of reliability and reproducibility in omics studies stands as one of the biggest 
obstacles in bridging the gap between research and practice of personalized medicine (Alyass et al., 
2015; Karczewski and Snyder, 2018). Considering that inflated variability and non-robust estimation 
may lead to inaccurate and misleading results, this paper proposes improvements to the conventional 
estimation and normalization of the intensity values obtained from omics experiments. Specifically, 
the proposal is to estimate the intensity values by a method that accounts for the variability due to 
pixel-level uncertainties and to normalize these values by using LOWESS with suitably selected 
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parameter values, preserving variation that may be relevant to 
subsequent analyses.

Image processing and fluorescence analysis are the preferred 
approaches for data quantification in microarray technologies. 
Although microarrays have been predominantly used since 
the end of the nineties to measure gene expression levels, they 
remain widely used to detect other omics data types, including 
microRNA expression, DNA methylation, single-nucleotide 
polymorphisms (SNPs), and copy number variants (CNVs) 
(Goodwin et al., 2016). After hybridization and cleaning of 
the target molecules, the array is scanned by activation with 
lasers at different wavelengths (one for each of the fluorophores 
used), and each laser channel generates an image. The pixel 
intensities within each spot in these microarray images are 
summarized to represent the hybridization signal. Depending 
on the platform (e.g., gene expression array, DNA methylation 
array, SNP array, and comparative genomic hybridization [CGH] 
array), the interpretation of this signal is different (e.g., gene 
expression levels, methylation levels, allele frequencies, and copy 
number alterations).

The continuance of the microarray technology can be mainly 
explained by the availability of many datasets in public repositories, 
such as the Gene Expression Omnibus (GEO) (Edgar et al., 2002; 
Barrett et al., 2012) and ArrayExpress (Kolesnikov et al., 2015), 
by the existence of well-established strategies for data analysis 
and experimental design, and by the low cost compared with the 
next-generation sequencing technologies. However, given that 
microarray analysis is still facing reliability and reproducibility 
problems, more robust and rigorous methods are needed to 
account for the high variability and biases introduced in all steps 
of a microarray experiment.

Several preprocessing and normalization procedures have 
been proposed to remove biases due to the inhomogeneity of 
the background and the different fluorescence properties of the 
dyes. However, biases introduced in the image analysis step, 
which includes spot segmentation and signal extraction, have not 
received the same attention, and those may partially explain the 
existing reliability and reproducibility problems in omics studies. 
Particularly, several factors, including image resolution, scanner 
settings, effectiveness of the segmentation algorithm, and 
unexpected behaviors during hybridization, may lead to errors 
in spot localization and classification of the pixels (as foreground 
or background, depending on whether it is situated within or 
around the spot). Thus, spot intensities are usually noisy and that 
high pixel–level variability leads to uncertainty in microarray 
quantification and correlates with variability between replicate 
spots on duplicate slides (Brown et al., 2001).

Given that even state-of-art image processing tools are 
susceptible to errors that significantly influence the variability of 
the data derived from microarray images (Ahmed et al., 2004), new 
segmentation and intensity extraction algorithms are still being 
developed in order to improve precision in spot quantification 
(Li et al., 2017; Karthik and Manjunath, 2018; Shao et al., 2019). 
Usually, these tools combine sophisticated algorithms and pixel-
level analyses in order to obtain an accurate estimate of the signal 
intensity in each spot. However, to allow subsequent analyses to 
take into account possible errors and uncertainties arising from 

the image processing, the method output usually includes not 
only statistical measures of location (e.g., mean and median) of 
the foreground and background intensities of each channel of 
each spot but also measures of dispersion, including standard 
deviation and covariance between both channels.

Despite the common use of pixel-level variability measures 
as data quality criteria for filtering purpose, the conventional 
microarray analysis is solely based on statistical measures of 
location of the spot intensities (Yang et al., 2002; Sun et al., 
2011; Brady and Vermeesch, 2012). To improve robustness 
and reliability in microarray analysis, pixel-level uncertainties 
should be accounted for in the intensity log-ratio estimation and 
propagated to the next steps of the analysis.

Pixel-level uncertainties have been taken into account by 
many spot quantification algorithms in the literature, but 
requiring all pixel values to be available. Some of them are 
interested in improving the log-ratio estimator. Particularly, the 
method proposed by (Dodd et al., 2004) is a log-ratio estimator 
that corrects for signal saturation by regressing all pixel 
intensities at both test and control channels using a censored 
regression model. The META algorithm (Chan and Chang, 
2009) estimates the intensity log-ratio by grouping the pixels 
according to their distance to the center of the spot and then 
weighting the log-ratio of each group in inverse proportion to 
its sample variance. A method that only uses pixel-level mean 
and variance summary statistics is the hierarchical maximum-
likelihood estimator (Bakewell and Wit, 2005). However, it is 
not exactly based on the standard log-ratio representation of the 
spot intensity. It models the gene expression signal at control 
and treatment channels separately, incorporating the sample 
within-spot deviation and then performs the estimation using 
maximum likelihood. To the best of our knowledge, there is no 
intensity log-ratio estimator to be used after the image analysis 
phase (i.e., based solely on the pixel-level summary statistics) 
that takes into account pixel-level uncertainties. 

The first contribution of this paper is a more robust estimator 
for the intensity log-ratio (M) and average log intensity (A) of 
a microarray spot that accounts for pixel-level variance and 
covariance between channels. For a spot t, these values are 
denoted by Mt and At, respectively (Dudoit et al., 2002). We 
derive these estimators by using the multivariate delta method 
(Casella and Berger, 1990). Specifically, we approximate the 
expected values of Mt and At by using their second-order Taylor’s 
expansions, and the variance of Mt and At by using their first-
order Taylor’s expansions. These expansions depend on the 
pixel-level variance and covariance between channels of the spot, 
whose sample estimates are readily accessible through standard 
output files of microarray image analysis tools. 

After spot intensity estimation, it is necessary to perform a 
within-slide normalization to remove array-specific effects, 
intensity-dependent dye biases, and other systematic trends of 
the microarray data. The within-slide normalization based on the 
robust locally weighted regression (LOWESS) (Cleveland, 1979) 
is one of the most used techniques. The choice of the LOWESS 
parameters, particularly the smoothing parameter (also known 
as neighborhood size or bandwidth), dramatically affects the 
intensity and quality of the microarray data calibration. Although 

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Variance-Preserving Estimation of Intensity ValuesRibeiro et al.

3 September 2019 | Volume 10 | Article 855Frontiers in Genetics | www.frontiersin.org

the smoothing parameter is still commonly set arbitrarily 
(around 0.2 and 0.4) (Dudoit et al., 2002; Smyth and Speed, 2003; 
Drăghici, 2012), some data-driven methods have been proposed 
to select its optimal value (Berger et al., 2004; Futschik and 
Crompton, 2004a; Lee et al., 2008). All these methods are similar 
in that they choose the smoothing parameter by minimizing 
a measure of error of the LOWESS fit. Berger et al. (2004) use 
the mean-squared difference between the LOWESS estimates 
and the corresponding normalization reference levels as cost 
function. These normalization levels are the true spot-specific 
calibration errors, which are usually unknown. Thus, Berger et al. 
suggest to estimate them from control transcripts and replicate 
slides. However, they are not always available for all genes in a 
typical microarray experiment, making it hard to reliably use 
the method. Futschik and Crompton’s selection method, named 
OLIN (Futschik and Crompton, 2004a; Futschik and Crompton, 
2004b), has the advantage of not relying on a reference level. Its 
optimization procedures use the generalized cross-validation 
(GCV) criterion, an estimator of the prediction mean square 
error (PMSE), as cost function. Lee et al. (2008) proposes to 
select the smoothing parameter by minimizing the bootstrap 
estimate of the mean integrated square error (MISE) and show 
that their results are comparable to OLIN. 

Although all these methods have shown superiority over 
LOWESS normalization with a fixed arbitrarily chosen 
smoothing parameter, they lack in taking into account any 
heteroskedasticity in the data. In addition, they usually suffer 
from a poor bias–variance trade-off, tending to choose small 
smoothing values, which yield unnecessarily complicated (with 
high variance) LOWESS fits. 

The second contribution of this paper is a data-driven 
method for selecting the smoothing parameter of the LOWESS 
normalization process. Inspired by the previous proposed 
methods, we choose the optimal smoothing value by minimizing 
a mean squared error criterion. However, our selection method 
also takes into account heteroskedasticity of the microarray data 
and offers a better bias–variance trade-off by selecting from 
among the low-MSE fits the one that is the most parsimonious. 
The parameter selection is obtained by solving a discrete 
optimization problem and is based on conventionally accepted 
ideas for analysis of M-plots—a graphical tool showing the 
curve of the MSE against the effective degrees of freedom of the 
estimate (Cleveland et al., 1988).

Given that the primary application of DNA microarrays has 
been to measure gene expression levels, we focus in this paper 
on variation-preserving estimation and normalization methods 
for gene expression levels from two-channel (or two-color) 
microarrays. However, it is straightforward to adapt the same 
ideas to improve analysis of other types of microarray data, even 
from single-channel technologies. 

The proposed methods were evaluated by a differential gene 
expression analysis from real intestinal metaplasia and normal 
microarray samples. The proposed estimators for the Mt and 
At values were compared with the conventional estimators that 
neglect the pixel-level variability. In addition, we compared 
the proposed method for selecting the LOWESS smoothing 
parameter with OLIN, as it is conceptually similar to the 

other existing methods and can be applied even to microarray 
experiments with few or no replicates. Results show that a more 
robust and conservative analysis is performed when the LOWESS 
smoothing parameter is selected by our method, potentially 
reducing the number of false-positive differential expressions. 
Besides, both the pixel-level variabilities incorporated by the 
proposed estimators for the Mt and At values and the variability 
preserved by our more parsimonious normalization method 
contributed to the identification of new differentially expressed 
genes. Thus, the proposed methods may also reduce the false-
negative rate. 

MATERIALS AND METHODS

Two procedures that critically affect the adequacy of microarray 
data analysis are the spot quantification, which extracts 
summarized quantitative measures of the pixel intensities 
within each spot of the microarray slide, and the within-slide 
normalization, which removes dye-specific biases and other 
systematic noises simultaneously from all logged spot intensities 
(Mt and At values). 

In the section Intestinal Metaplasia Database, we describe 
a gene expression dataset used to illustrate the application of 
our proposed methods. In the section Improved Estimators 
for the Mt and At values, we show our improved estimation 
method for the Mt and At values that incorporates pixel-level 
variability. In the section Estimators for the Variances of the 
Mt and At Values, we discuss some criteria that can be used for 
proper setting of the parameters of the LOWESS within-slide 
normalization and we propose an algorithm for selecting the 
optimal value for the smoothing parameter (denoted by f). 

Intestinal Metaplasia Database
Due to a chronic inflammatory process, the normal squamous 
mucosa of the stomach may be replaced by columnar intestinal-
type epithelium, characterizing a disease called intestinal 
metaplasia of the stomach. Since adenocarcinoma of the stomach 
and inflamed intestinal mucosa are strongly associated (Coussens 
and Werb, 2002), intestinal metaplasia may be a significant risk 
factor for gastric cancer. 

We analyzed data from a two-color microarray experiment with 
tissues samples from 90 different subjects, being 35 from tissues 
representing type II intestinal metaplasia and 55 from tissues 
representing the normal condition, obtained from the Tumor Bank 
at A.C. Camargo Cancer Center/Antonio Prudente Foundation. 

It was used the standard reference design (Churchill, 2002), in 
which each sample is hybridized against a pool of normal tissues 
using the same orientation of dye labeling. Gene expression levels 
were measured on Agilent Whole Human Genome Microarrays 
4x44K G4112F (design ID 014850), each slide containing 41,093 
unique probes. The scanned images of the microarray slides were 
processed by Agilent Feature Extraction software, version 9.5, 
where statistics (mean, standard deviation, and covariance) of 
the foreground and local background pixels were computed for 
each spot, in both test and reference channels. Each microarray 
spot contains about 60 foreground pixels. 
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This study was carried out in accordance with the 
recommendations of the international guidelines for 
investigations involving human beings with written informed 
consent from all subjects. All subjects gave written informed 
consent in accordance with the Declaration of Helsinki. The 
protocol was approved by the Ethics Institutional Committee of 
the A.C. Camargo Cancer Center (process number 1023/07).

Improved Estimators for the Mt and 
At Values
Usually, in microarray analysis, the test channel is denoted 
by  (red), and the reference channel is denoted by G (green), 
following this usual notation, denoted by Rtj and by Gtj, the 
intensity value of the jth pixel within the th spot, respectively, in 
the test and reference channel. The relative expression of pixel j 
within spot  is denoted by Mtj and defined as follows:

 
M

R
G

R Gtj
tj

tj
tj tj log log ( ) log ( ).2 2 2
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 The average expression of pixel  within spot  is denoted by Atj 
and defined as follows: 
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Usually, image analysis software does not provide all pixel 
intensity values within each spot. Nonetheless, it provides several 
descriptive statistics of the foreground and background pixel 
intensities, including sample estimates for the mean, median, 
variance, and covariance between the two channels. 

To incorporate the pixel-level variability in the analysis, we 
derived an approximation of the expected values of Mtj and Atj  by 
using the multivariate delta method (Casella and Berger, 1990). 
Assuming that the functions (1) and (2) are twice differentiable 
on an open interval which contains the point  ( (), )R Gtj tj( ) , we 
computed their second-order Taylor’s expansions, around the 
point  ( (), )R Gtj tj( ) , and then derived their expected values. 
The derivation is presented in Appendix 4. 

It is reasonable to assume that the variables Rtj, Gtj, Mtj and 
Atj have a distribution with well-defined mean and variance. 
Particularly, Hoyle et al. (Hoyle et al., 2002) empirically showed 
that the distribution of the pixels within a spot is heavy-tailed 
(a non-Gaussian distribution) and well-approximated by a 
log-normal distribution. Consequently, Mtj and Atj follow 
a distribution which is well-approximated by a Gaussian 
distribution and all the variables have at least the first and second 
moments finite. 

Let Rtc  and Gtc  be non-zero estimates of, respectively, 
( )Rtj  and ( )Gtj , which represent average foreground signals 
after correction for removing the background influence. The 
subscript  indicates dependence on the background correction. 
Also, let ˆ ( )σ 2 Rt  and ˆ ( )σ 2 Gt  be estimates of, respectively, Var 
(Rtj) and Var (Gtj), which are assumed to be independent of the 

background correction. Note that mean and variance estimates 
are calculated across observed foreground pixel intensities within 
the spot  at the respective channel. 

We can derive improved estimators for ( )Mtj  and ( )Atj  
as follows: 
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Note that the conventional estimators for the Mtj and Atj 
values, given by

 
ˆ log ( ) log ( ),M R Gt tc tc 2 2−  (5)
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are approximations of, respectively, ( )Mtj  and ( )Atj  
derived from only the zeroth-order Taylor’s expansion of 
the functions that define Mtj and Atj. Thus, the conventional 
estimators ignore the known measures of pixel-variability, which 
represent uncertainties in the gene expression measurements. 

Figure 1 illustrates the differences between the estimators for 
the ( )Mtj  and ( )Atj  for a randomly chosen microarray slide 
of the database described in the section Intestinal Metaplasia 
Database. Since these estimators may suffer from numerical 
instability if the corrected foreground signals, Rtc  and Gtc,  
are very close to zero, we removed the background influence 
by applying the normexp method (Ritchie et al., 2007) with 
offset equals to 50. The top 20 spots with the highest pixel-level 
variability are highlighted in red plus symbols. Several of these 
spots have low average intensity (small estimates for ( )Atj ) and 
a small difference between the intensities of the two channels 
(estimates for ( )Mtj  close to zero), but they are not the 
majority. The differences between the proposed estimators, 
defined in Eq. (3) and (4), and the conventional estimators, 
defined in Eq. (5) and (6), are shown in Figures 1C, D. These 
differences are due to the distinct parts between their respective 
formulas. When computing the M j  estimates, the ratio of the 
pixel-level variability to the squared expected value in the test 
channel appears in Eq. (3) with an opposite sign to the same term 
in the reference channel. Thus, positive and negative differences 
between the estimates for ( )Mtj  may occur if such terms do 
not cancel each other out. Figure 1C shows the ilde Mt  estimates 
were smaller than the M̂t  estimates for the genes with highest 
pixel-level variance, indicating a larger variance in their test 
channels. Figure 1D shows some At  estimates were smaller than 
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the Ât  estimates. The reduction is explained by the fact that the 
additional terms in Eq. (4) are negative for any positive pixel-
level variability in any channel.

Estimators for the Variances of the Mt and At Values
Since we have also available the sample covariance between Rtj 
and Gtj, denoted by ˆ( , )σ R Gt t , we applied the multivariate delta 
method for deriving estimators for the variances of the Mtj and Atj. 
We calculated the variance of the first order Taylor’s expansion of 
the functions (1) and (2) that define, respectively, Mtj and Atj, as 
shown in Appendix 5. The variance estimators for Mtj and Atj, for 
pixels j within spot t are: 
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The variances of Mtj and  represent pixel-level uncertainties 
of the th spot. They can be used, for instance, for assessing the 
quality of the th spot or for constructing confidence intervals for 
the parameters ( )Mtj  and ( )Atj . 

Optimal Selection of the LOWESS 
Parameters
To simplify the notation, we will denote the estimates for ( )Mtj  
and ( )Atj , independently of the estimation method used, by, 
respectively, Mt and At values.

It is necessary to remove from these Mtj intensity values the 
dependent dye-specific biases and other systematic errors by 
using some within-slide normalization method. 

In the LOWESS within-slide normalization method, one 
estimates for each microarray slide a smoothing function µ̂  that 
maps each At observed value to a smoothed Mt value, ˆ( )µ At . 
Since ˆ( )µ At  is considered an estimate of a dye-dependent bias, it 
must be subtracted from the corresponding observed Mt value to 
obtain a residual value representing, presumably, the biologically 
relevant gene expression level. 

An appropriate LOWESS estimation depends on the choice 
of its parameters. According to loader (Loader, 1999), the 

FIGURE 1 | Comparison between conventional and proposed estimation methods for the Mt and At values for the microarray slide with ID 251485069395_1.4. 
The M-A plots in (A) and (B) were obtained by using, respectively, the conventional and improved estimators for the Mt and At values. Plots (C) and (D) show the 
conventional against the improved estimates for, respectively, the Mt and At values. Top 20 genes with the highest pixel-level variance are highlighted in red plus 
symbols. The test channel contains RNA samples of normal gastric mucosa, and the control channel contains samples from a common reference. The background 
influence was removed from the foreground signals by the normexp method with offset.
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weight function and the number of iterations of the robustness 
algorithm are not critical parameters. Cleveland (Cleveland, 
1979) comments that good choices for these parameters are, 
respectively, the tricube function and three iterations. However, 
the degree of the local polynomials and the smoothing parameter 
f, which, in the nearest neighbor method, is a number between  
and  indicating the proportion of data used in each local fit, 
affects the bias and the variance of the fit. 

Specifically, the higher the degree of the local polynomial 
(related to the complexity of the model), the lower the bias of the 
fit (probably, fitting the data very well). However, the additional 
parameters of this more complex model increase the variance of 
the fitted values, yielding a poor generalization ability (i.e., the 
model will have a large error). Thus, to avoid unstable LOWESS 
estimates, several references as (Loader, 1999; Yang et al., 2001; 
Dudoit et al., 2002; Smyth and Speed, 2003) recommend using 
local polynomials of degree one, mainly in the presence of 
sparsity, as is the case of microarray data. 

The effects of the smoothing parameter f on the bias and 
variance of the fit are opposite to those of the degree of the 
local polynomials. Since the f parameter indicates the number 
of observations that will be used in the local polynomial 
estimation, when f value is large, a simple polynomial may 
not fit well to all observations in the neighborhood, distorting 
or ignoring essential features. In other words, the estimation 
of the smoothing function can be significantly biased. On 
the other hand, when a low f value is chosen, the number 
of observations may be insufficient to capture the general 
behavior of the data, resulting in a very noisy (large variance) 
fitness function. 

In the next section, we propose a method for selecting 
a value for the f parameter, focusing on microarray data 
normalization. Our method takes into account the intrinsic 
characteristics of the bias and variance of the fit as well as of 
gene expression data. 

Lowess Smoothing Parameter Selection
For microarray data normalization, the ideal LOWESS fitted 
curve captures only trends and effects from systematic errors, 
retaining all biological variation. However, it critically depends 
on the choice of the f parameter value. 

Figure 2 illustrates the MA plot of the microarray slide shown 
in Figure 1B, with different LOWESS fits yielded by f values 
varying from 0.05 to 0.9. The improved estimation method was 
used to obtain the Mt and At values, that is, the Mt  and At  
estimates.

The quality of a LOWESS estimator can be assessed by the 
MSE, which measures how close the estimator µ̂  is of the true 
mean function μ : 

MSE( ) [( ) ].ˆ ˆµ µ µ= − 2

Since the real curve μ is unknown, we need a criterion to evaluate 
the MSE. Under the assumption of heteroskedasticity, Cleveland 
and Devlin (Cleveland and Devlin, 1988) propose the Mallows’ Cp 

criterion for local fitting that can be used as as MSE estimator. In 
the presence of heteroskedasticity, as usual for microarray data, the 
heteroskedasticity-robust Cp (HRCp) criterion, proposed by Liu 
and Okui (Liu and Okui, 2013), may be a more appropriate MSE 
estimator. We detail this MSE estimator next. 

Considering {( , )}A Mt t t
T

=1  within-slide data points, the 
evaluation of the LOWESS smoothing function  on any point  
is given by a linear combination of the  observed points, whose 
weights {( }( )l At t

T
=1  are assigned according to the distance of A to 

the At observed points: 

ˆ ( )( ) .µ A l A M
t

T

t t=
=

∑
1

Consider the T × T matrix L which maps the observed to the 
fitted values: 
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Two commons definitions of the effective degrees of freedom 
of µ̂  are: (1) v1 tr ( )L  and (2) v2  tr ( )′L L , where tr stands 
for the trace operator. 

Supposing that the variance of Mt, across T spots of a 
microarray slide, is constant and equals to σ2, the Mallows’ Cp 
for local fitting is defined as: 

Cp M A T v
t

T

t t( ) ( ( )) .ˆ ˆµ µ= − − +
=

∑1 22
1

2
1σ

Cleveland et al. (1988) shows that σ2 can be estimated as 
follows:

FIGURE 2 | MA plot for the slide 251485069395_1.4, with Mt and At values 
estimated by the proposed method and LOWESS fits yielded by f values 
ranging from 0.05 to 0.9.
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ˆ ˆ[ ( )] .σ µ2 1
2

2 12


Σt
T

t tM A
n v v

= −
+ −

When heteroskedasticity is present, Mallows’ Cp criterion 
is not an appropriate MSE estimator. Considering the T × T 
diagonal matrix Σ, whose th diagonal element is given by a non-
homogeneous variance σ t

2  of Mt, a robust MSE estimation can 
be achieved by using the HRCp criterion, defined as: 

HRCp M A
t

T

t t( ) ( ( )) ( ).ˆ ˆµ µ= − +
=

∑
1

2 2tr  ΣL

According to Loader (1999), σ t
2  can be estimated locally 

by calculating the error variance (the residual sum of squares 
divided by the corresponding degrees of freedom) of a nearly 
unbiased LOWESS fit, which can be yielded using a very small 
value for the smoothing parameter (e.g., f = 0.1. Since the local 
variance estimates can be very noisy, it may be appropriate to 
smooth them using a gamma kernel. 

Several authors suggest to choose the f value which minimizes 
a measure of error of the LOWESS fit, such as the MSE criterion 
(Berger et al., 2004; Futschik and Crompton, 2004a; Lee et al., 
2008). However, other authors (Mallows, 1973; Cleveland and 
Devlin, 1988; Loader, 1999) argue that a selection based only 
on minimizing the MSE criterion is a poor procedure since it 
ignores the intrinsic information of the bias and variance of the 
fit. Therefore, following their suggestion, we propose a method 
based on a graphical tool called M-plot. It is a graph of the MSE 
estimate as a function of the effective degrees of freedom of the fit.

M-plots illustrating the f parameter selection method for a 
typical microarray slide (ID 251485069395_1.4) are shown in 
Figure 3. Dots show MSE estimates (by HRCp criterion) and 
respective degrees of freedom (by v2 definition) of LOWESS 
fits (on the M̂t  and Ât  estimates, in the first M-plot, and 
on the Mt  and At , in the second M-plot) obtained with f 
parameter varying from  to 0.2 We fixed the other LOWESS 
parameters (local polynomials of degree one, tricube weight 
function, and three iterations) so that the M-plot curve 
shows only the effect of the f parameter on the bias–variance 
compromise. Large f values tend to yield simple fits (with 
fewer degrees of freedom), which have a small variance, but a 
large bias. On the other hand, minimal f values tend to yield 
complex fits (with many degrees of freedom), which have a 
small bias, but a large variance.

For the microarray slide in Figure 3, a selection method 
based only on the minimization of the MSE curve would choose 
the smallest evaluated f value (0.2). However, any f value within 
the flattening region near to the minimum (the region with 
light-colored dots) is a good choice, in the sense that it yields 
a low-MSE fit (Cleveland and Devlin, 1988; Loader, 1999). 
Depending on the type of application, we can choose between 
one value which yields a low-bias fit (with more degrees of 
freedom) or a low-variance fit (with fewer degrees of freedom). 
Since we want to estimate a natural phenomenon behavior, we 
propose to select from the flattening region the f value which 
yields the simplest LOWESS fit (the one with fewest effective 
degrees of freedom). The biggest dot in each M-plot indicates 
the selected f value. The detection of the flattening region is 
made by searching points for which the derivative of the MSE 
curve is small. We check for each sequence of three points near 
the minimum whether the difference between the MSE values 

FIGURE 3 | Selection of the LOWESS f parameter by using HRCp criterion. The M-plots illustrate the selection process for a particular microarray slide (ID: 
251485069395_1.4). The flattening region is represented by the light-colored dots and the selected f value by the biggest dot. The LOWESS fits were yielded using  
values ranging from 1 to 0.2 (from lowest to highest degree of freedom).
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is small. If so, these points are considered as belonging to the 
flattening region. 

The f parameter selection method can be summarized in 
the following discrete and constrained optimization problem. 
Consider a sequence of l different values for f, {f1, f2, ... , fl}, and 
denoted by µ̂ fk , the LOWESS fit yielded by using the value fk for 
the f parameter. Also, let: 

 = ∈ … < = … −+{ ; { , , , },  ,  , , }µ̂ f k l k kk
f f f f f f for k l1 2 1 1 1 ;;

argmin   ( ), ;ˆ ˆf HRCp such that

f
f

f f
k

k kmin

max

= ∈µ µ 

== ∈

=
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f

f f

MSE

k
k k

HRCp such that andµ µ 

∆ 0.. (  ( )  ( )).ˆ ˆ
max min

05 HRCp HRCpf fµ µ−

Since v2 function provides the effective degrees of freedom of 
a given fit, the selected f value is the solution f*, if it exists, of the 
following problem: 
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If the minimum of the M-plot curve is far away of the 
point corresponding to the second lowest MSE estimate, the 
previous problem has no solution. In that case, the f value 
that yields the fit with lowest MSE estimate is selected. 
Specifically, the f parameter value is selected by solving the 
following problem: 

f
f

f f
k

k k
* argmin ( ), .ˆ ˆ
  HRCp  such thatµ µ ∈

APPLICATION ON INTESTINAL 
METAPLASIA DATA

To investigate the effects of the proposed methods, we preprocessed 
the data described in the section Intestinal Metaplasia Database 
by using all discussed methods and compared the identified 
differentially expressed genes. 

First, we applied the normexp method with offset value of  
for removing the background influence. Then, we compute the 
Mt and At values both by the conventional estimation methods, 
defined in Eq. (5) and (6), and by the proposed estimation 
methods, defined in Eq. (3) and (4). The LOWESS within-
slide normalization was carried out as discussed in the section 
Optimal Selection of the LOWESS Parameters. For comparison 

purpose, the f smoothing parameter was selected both by the 
OLIN method (considered by us as a conventional approach) 
and by the proposed method, discussed in the section LOWESS 
Smoothing Parameter Selection. Since data from all microarray 
slides present overdispersion, we used the HRCp criterion as cost 
function of our selection method.

Therefore, the following four preprocessing procedures were 
applied separately to the original data:

1. Conventional estimation for Mt and At and LOWESS within-
slide normalization using f parameter selected by OLIN;

2. Improved estimation of Mt and At and LOWESS within-slide 
normalization using f parameter selected by OLIN;

3. Conventional estimation of Mt and At and LOWESS within-
slide normalization using f parameter selected by the proposed 
method;

4. Improved estimation of Mt and At and LOWESS within-slide 
normalization using  parameter selected by the proposed 
method.

Figure 4 shows the distribution of the optimal values for 
the LOWESS f parameter, according to the proposed selection 
method with HRCp criterion, for the entire database, separated 
by normal and intestinal metaplasia conditions (both, hybridized 
against a pool of normal tissues). In the first plot, the LOWESS 
curve was fitted on the M̂t  and Ât  estimates and, in the second 
plot, on the Mt  and At  estimates. The average of the selected f 
values was close to 0.5.

As expected from a method that neither takes into account 
heteroskedasticity of the data nor attempts to make a good 
balance between bias and variance, the OLIN method selected 
the smallest evaluated  value (0.2) for most of the slides. Same 
results were obtained when the Mt and At values were estimated 
by the conventional and by the proposed estimator. Such 
behavior has been reported in the literature, implying that the 
optimal f values according OLIN are usually close to the default 
one (Chiogna et al., 2009).

After preprocessing the data, a two-sample t-test assuming 
unequal variance was performed for each spotted gene to 
determine whether its expression is statistically different 
between gastric tissues in normal and intestinal metaplasia 
groups. However, since we are interested in directly assessing the 
impact of each proposed method on the t-statistics and p-values 
rather than making inference about differential expression, the 
comparative study was performed before applying a multiple 
testing correction. 

Comparison of the Results
Results of a pairwise comparison among the p-values and 
t-statistics obtained by the four preprocessing methods are 
shown in Figure 5. In the left-column plots, we compare the 
p-values and, in the right-column plots, we show the changes in 
the difference between the group means (the absolute value of 
the t-statistic numerator) and in the within-group variability (the 
denominator of the t-statistic). Only genes with p-value less than 
5% were considered.
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The left-column plots show that most of the points are 
distributed around the 45-degree line. Thus, the p-values and, 
consequently, the total number of differentially expressed 
genes, even at a lower significance level, were similar among 
the four methods. 

The first- and second-row plots show how p-values and 
t-statistics were affected by estimating the Mt and At values 
with the proposed method, which takes into account the pixel-
level uncertainties. The genes represented by blue plus signs 
were identified as differentially expressed only when using the 
proposed estimator for the Mt and At values.

The genes represented by green crosses were identified 
as differentially expressed only when using the conventional 
estimator for the Mt and At values. 

When the LOWESS f parameter is selected by OLIN (first-row 
plots), it is clear that the within-group variability decreases when 
using the proposed estimators for the Mt and At values. When 
the LOWESS  parameter is selected by our method (second-row 
plots), there is still a reduction in the within-group variability. 
However, this impact is less clear because of the variability 
introduced when the LOWESS f parameter is selected by our 
method. 

The third- and fourth-row plots compare p-values and 
t-statistics obtained by OLIN and the proposed approach for 
selecting the LOWESS f parameter. The genes represented 
by blue plus signs were identified as differentially expressed 
only when f was selected by the proposed method. The genes 
represented by green crosses were identified as differentially 
expressed only when selecting f by OLIN. It is clear that, for 
most genes, both within-group variabilities increased, implying 
that the normalization procedure was more conservative, and 
thus, more potentially relevant information is retained. In 
addition, for many genes, the increase in the within-group 
variability was counterbalanced by an increase in the distance 
between the groups. Such effect is even most pronounced when 
the proposed estimator for the Mt and At values are used. Thus, 
their respective p-values reduced enough to consider them as 
differentially expressed genes. 

The diagrams in Figure 6 show a comparison of the 
methods with respect to the total number of genes with p-value 
less than 5%. On the left, the p-values were not corrected for 
multiple tests, while on the right, the p-values were adjusted 
by the false discovery rate (FDR) correction (Benjamini and 
Hochberg, 1995).

Note that the four methodologies are quite different 
in terms of which genes were identified as differentially 
expressed. As a consequence of the more conservative 
(milder) noise reduction performed in the LOWESS within-
slide normalization procedure with f parameter selected 
by our method, fewer genes are identified as differentially 
expressed. However, regardless of the normalization method, 
more genes could be identified as differentially expressed 
when the Mt and At values were estimated by the proposed 
estimation method that incorporates pixel-level variability. 
Given that both proposed methods make the analysis more 
robust by incorporating and preserving information neglected 
by the conventional methods, we can argue that they are 
contributing to the reduction of both false-positive and false-
negative rates. 

Validation Analysis
To check the consistency of our analysis, we compared our 
results with those reported in the literature. Out of the genes 
which are associated with intestinal metaplasia according to the 
Gene Expression Omnibus platform (Edgar et al., 2002) of the 
NCBI (National Center for Biotechnology Information) website, 
80 spotted genes (corresponding to 63 unique genes) have 
p-value (before FDR correction) less than 5%, and 35 spotted 
genes (corresponding to 29 unique genes) have p-value (after 
FDR correction) less than 5%. These findings are summarized 
respectively in Tables 1, 2. In addition, Figure 7 compares the 
total number of validated genes identified by each method with 
p-value less than 5% (before FDR correction).

Greater differences in inference were observed among the 
genes whose p-value is close to the significance level. These 

FIGURE 4 | Distribution of the selected f values by normal and metaplasia intestinal conditions when the Mt and At values are estimated by using the conventional 
(left) and the proposed (right) method.
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genes have a more subtle differential expression, which can be 
easily damaged by measurement errors and poor estimation 
and normalization methods. Thus, the more accurate and 
careful analysis provided by the proposed methods is especially 
important for making decisions on the differential expression of 
these more sensitive genes. 

Two replicates of the HSPB1 gene could not be identified 
as differentially expressed when using both the conventional 
estimators for the Mt and At values and our selection method for 
the LOWESS f parameter. Thus, the estimation of the Mt and At 

values by the proposed estimators was crucial in determining the 
differential expression of the HSPB1 gene. 

The genes PTEN, CTNNB1, MLH1, CXCR4, and CXCR1 could 
only be identified as differentially expressed when the LOWESS  
parameter was selected by our proposed method. Particularly, 
the gene CXCR4 only was determined as differentially expressed 
when the improved estimators for the Mt and At values were 
also used. In contrast, the gene KRT14 was no longer identified 
as differentially expressed when the LOWESS f parameter was 
selected by our proposed method. 

FIGURE 5 | Pairwise comparison between the proposed and the conventional methods. Left-column plots compare the FDR-corrected p-values, and the right-
column plots compare the difference between the absolute values of the numerators with the difference between the denominators of the t-test statistic.
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In the following, we briefly describe the association of those 
genes with intestinal metaplasia of the stomach according to the 
literature data: 

• HSPB1 (heat-shock protein beta-1, also known as HSP27—
heat-shock protein 27): It has a protective role against 
stress-induced cell damage, and its expression has been 
considered critical for mucosal protection in the stomach (Ebert 
et al., 2005). Also, it has been reported as down-regulated in 
esophageal adenocarcinoma (Lv et al., 2019).

• PTEN (phosphatase and tensin homolog): It has been 
identified as overexpressed in intestinal metaplasia and is a 
known marker for tumorigenesis and progression of gastric 
carcinoma (Yang et al., 2003).

• CTNNB1 (beta-catenin 1): It is a canonical oncogene that has 
been identified as overexpressed in intestinal metaplasia and 
gastric adenocarcinomas (Werner et al., 2001; Huang et al., 2018).

• MLH1 (mutL homolog 1): Its expression has been reported as 
absent or downregulated in intestinal metaplasia, dysplasia, 
and gastric cancers (Takeda et al., 2012; Hu et al., 2018).

• CXCR4 (chemokine receptor type 4): Its expression has been 
associated with the staging of gastric cancer, being reduced in 
the majority of gastrointestinal tumors and significantly higher 
in patients with advanced stages of gastric cancer (Shibuta 
et al., 1997; Hannelien et al., 2012; Nikzaban et al., 2014).

• CXCR1 (C-X-C motif chemokine receptor 1): It has been 
reported to be strongly expressed in gastric carcinoma (Eck 
et al., 2003; Hannelien et al., 2012).

• KRT14 (keratin 14): It is a squamous cell marker that is down-
regulated by CDX2 transfection (Liu et al., 2007). In addition, 
although it has been determined as significantly overexpressed 
in intestinal metaplasia by our analysis when the  parameter 
was selected by OLIN, it has been reported as down-regulated 

in esophageal adenocarcinoma when compared to normal 
esophagus (Lv et al., 2019).

Genes Involved in Cancer
By performing a gene enrichment analysis, we identified, at a 
significance level of 5% (after FDR correction), 31 differentially 
expressed genes that are involved in cancer. Their respective 
p-values and fold changes are shown in Table 3. We remark that 
their association with intestinal metaplasia has not been clearly 
demonstrated yet. Thus, further investigation has to be done to 
confirm such conclusions.

Particularly, two replicates of the CCND1 gene and the 
LAMB2 gene were identified as differentially expressed only by 
the conventional approaches, suggesting that they may be false 
positives. Next, we briefly describe their association with cancer: 

• CCND1 (cyclin D1): In contrast to its underexpression 
identified by the conventional analyses, it has been frequently 
reported as overexpressed in intestinal metaplasia, human 
neoplasias, and several tumors (Hosokawa and Arnold, 1998; 
Franchi et al., 2015).

• LAMB2 (laminin subunit beta 2): Although its expression has 
been associated with some carcinomas, ts expression is tightly 
regulated in normal human tissues and in disease (Wewer 
et al., 1994; Ljubimova et al., 2006).

DISCUSSIONS

Faced with the growing trend of multi-omics data integration 
in the midst of a replication crisis, improved microarray 
data analyses are crucial to identifying more reliable results 
(Ritchie et al., 2015a).

FIGURE 6 | Venn diagram illustrating the total number of differentially expressed genes identified in each variant of the database at a significance level of 5%. On the 
left, p-values were not corrected for multiple tests, while on the right, p-values were adjusted by the false discovery rate (FDR) correction.
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TABLE 1 | Genes reported in the literature as associated with intestinal metaplasia of the stomach that were identified as differentially expressed in our analysis at a significance level of 5% (after FDR correction). 

Gene Improved estimation for the  and  values Conventional estimation for the Mt and At values 

f by our method f by OLIN f by our method f by OLIN 

p adj. p FC p adj. p FC p adj. p FC p adj. p FC

CLND3 2.70 × 10−12 4.28 × 10−8 2.86 1.84 × 10−12 2.32 × 10−8 2.74 2.77×10−12 4.01 × 10−8 2.86 1.87 × 10−12 2.33 × 10−8 2.74
CLND3 2.23 × 10−5 1.35 × 10−3 0.59 1.63 × 10−5 1.07 × 10−3 0.60 2.23 × 10−5 1.35 × 10−3 0.59 1.55 × 10−5 1.04 × 10−3 0.60
MUC2 3.51 × 10−11 1.32 × 10−7 1.73 3.14 × 10−11 1.06 × 10−7 1.71 3.21 × 10−11 1.21 × 10−7 1.73 3.06 × 10−11 1.04 × 10−7 1.71
MUC2 1.90 × 10−4 6.56×10−3 0.24 2.14 × 10−4 7.19 × 10−3 0.24 1.96 × 10−4 6.69 × 10−3 0.24 2.35 × 10−4 7.74 × 10−3 0.23
CDX1 4.22 × 10−10 6.05 × 10−7 2.15 4.53 × 10−10 6.74 × 10−7 2.13 4.03 × 10−7 5.94 × 10−7 2.16 4.40 × 10−10  6.98 × 10−7  2.14
ANPEP 4.28 × 10−10 6.05 × 10−7 3.14 5.31 × 10−10 7.19 × 10−7 3.08 4.37 × 10−10 6.17 × 10−7 3.13 5.19 × 10−10 7.03 × 10−7 3.07
CLCA1 2.55 × 10−9 1.69 × 10−6 3.75 7.18 × 10−10 8.49 × 10−7 3.85 2.71 × 10−9 1.70 × 10−6 3.75 7.15 × 10−10 8.93 × 10−7 3.85
DMBT1 2.79 × 10−9 1.75 × 10−6 3.39 4.22 × 10−9 2.43 × 10−6 3.26 2.77 × 10−9 1.71 × 10−6 3.39 3.98 × 10−9 2.33 × 10−6 3.26
GUCY2C 3.07 × 10−9 1.86 × 10−6 2.31 9.58 × 10−9 4.07 × 10−6 2.20 3.10 × 10−9 1.84 × 10−6 2.31 9.70 × 10−9 4.06 × 10−6 2.19
CLDN7 3.78 × 10−9 2.17 × 10−6 2.37 2.21 × 10−9 1.56 × 10−6 2.23 1.24 × 10−9 1.13 × 10−6 2.27 2.30 × 10−9 1.59 × 10−6 2.22
CDH17 4.21 × 10−9 2.27 × 10−6 2.69 4.83 × 10−9 2.64 × 10−6 2.65 4.16 × 10−9 2.24 × 10−6 2.69 4.73 × 10−9 2.59 × 10−6 2.65
CDX2 5.67 × 10−9 2.80 × 10−6 1.01 7.29 × 10−9 3.40 × 10−6 1.00 6.00 × 10−9 2.82 × 10−6 1.01 7.67 × 10−9 3.51 × 10−6 1.00
DEFA5 1.17 × 10−7 2.48 × 10−5 3.33 1.17 × 10−7 2.45 × 10−5 3.29 1.18 × 10−7 2.46 × 10−5 3.32 1.17 × 10−7 2.43 × 10−5 3.28
VDR 2.82 × 10−7 4.94 × 10−5 1.15 1.61 × 10−7 3.23 × 10−5 1.12 2.60 × 10−7 4.64 × 10−5 1.15 1.57 × 10−7 3.17 × 10−5 1.12
ISX 5.26 × 10−7 8.04 × 10−5 1.33 5.57 × 10−7 8.25 × 10−5 1.32 5.37 × 10−7 8.06 × 10−5 1.33 5.83 × 10−7 8.03 × 10−5 1.31
CLDN4 1.15 × 10−6 1.43 × 10−4 1.20 1.33 × 10−6 1.62 × 10−4 1.19 1.15 × 10−6 1.40 × 10−4 1.19 1.33 × 10−6 1.60 × 10−4 1.18
ACSL5 2.44 × 10−6 2.49 × 10−4 1.45 2.29 × 10−6 2.42 × 10−4 1.45 2.17 × 10−6 2.26 × 10−4 1.46 2.16 × 10−6 2.30 × 10−4 1.45
REG4 3.24 × 10−6 3.06 × 10−4 2.50 3.53 × 10−6 3.35 × 10−4 2.45 3.21 × 10−6 3.02 × 10−4 2.50 3.49 × 10−6 3.31 × 10−4 2.45
REG4 3.62 × 10−4 1.08 × 10−2 1.28 1.41 × 10−3 2.84 × 10−2 1.11 3.57 × 10−4 1.06 × 10−2 1.28 1.35 × 10−3 2.76 × 10−2 1.11
RUNX1 1.11 × 10−5 7.87 × 10−4 −0.56 6.91 × 10−6 5.50 × 10−4 −0.57 1.01 × 10−5 7.16 × 10−4 −0.55 7.59 × 10−6 5.93 × 10−4 −0.57
FOXA2 1.12 × 10−5 7.90 × 10−4 −1.13 9.18 × 10−6 6.75 × 10−4 −1.14 1.10 × 10−5 7.72 × 10−4 −1.13 9.51 × 10−6 6.96 × 10−4 −1.13
FOXA2 1.67 × 10−4 5.93 × 10−3 −0.86 2.12 × 10−4 7.16 × 10−3 −0.85 1.73 × 10−4 6.10 × 10−3 −0.86 2.22 × 10−4 7.42 × 10−3 −0.85
FOXA2 7.25 × 10−3 8.39 × 10−2 −0.61 8.20 × 10−3 9.01 × 10−2 −0.60 7.71 × 10−3 8.67 × 10−2 −0.61 8.13 × 10−3 9.03 × 10−2 −0.60
SOX2 1.62 × 10−5 1.05 × 10−3 −0.87 1.44 × 10−5 9.73 × 10−4 −0.87 1.56 × 10−5 1.01 × 10−3 −0.87 1.38 × 10−5 9.41 × 10−4 −0.87
SOX2 1.48 × 10−4 5.50 × 10−3 −0.77 3.23 × 10−4 9.87 × 10−3 −0.74 1.55 × 10−4 5.62 × 10−3 −0.76 3.26 × 10−4 1.00 × 10−2 −0.73
SERPINB5 2.42 × 10−5 1.44 × 10−3 1.04 2.55 × 10−5 1.51 × 10−3 1.03 2.46 × 10−5 1.45 × 10−3 1.05 2.67 × 10−5 1.58 × 10−2 1.03
SERPINB5 1.15 × 10−4 4.59 × 10−3 0.64 1.18 × 10−4 4.65 × 10−3 0.64 1.13 × 10−4 4.49 × 10−3 0.64 1.14 × 10−4 4.52 × 10−3 0.64
SERPINB5 1.73 × 10−2 1.42 × 10−1 0.11 1.18 × 10−2 1.14 × 10−1 0.12 1.66 × 10−2 1.39 × 10−1 0.11 1.22 × 10−2 1.16 × 10−1 0.11
FAS 6.35 × 10−5 2.95 × 10−3 0.41 6.54 × 10−5 3.02 × 10−3 0.41 6.46 × 10−5 2.97 × 10−3 0.41 6.93 × 10−5 3.12 × 10−3 0.41
CDHI 2.13 × 10−4 7.14 × 10−3 0.62 1.97 × 10−4 6.74 × 10−3 0.60 1.88 × 10−4 6.50 × 10−3 0.62 2.05 × 10−4 6.94 × 10−3 0.60
EMPI 6.05 × 10−4 1.57 × 10−2 0.94 6.45 × 10−4 1.65 × 10−2 0.90 5.77 × 10−4 1.51 × 10−2 0.94 6.61 × 10−4 1.68 × 10−2 0.90
EMPI 7.22 × 10−3 8.36 × 10−2 0.37 5.94 × 10−3 7.37 × 10−2 038 7.02 × 10−3 8.19 × 10−2 0.37 5.95 × 10−3 7.39 × 10−2 0.37
FGFR2 7.50 1.86 × 10−2 −0.57 9.15 × 10−4 2.12 × 10−2 −0.58 7.44 × 10−4 1.83 × 10−2 −0.57 9.13 × 10−4 2.11 × 10−2  −0.57
FGFR2 8.37 × 10−3 9.20 × 10−2 −0.12 7.95 × 10−3 8.85 × 10−2 −0.12 9.07 × 10−3 9.65 × 10−2 −0.12 8.47 × 10−3 9.23 × 10−2 −0.12
PGC 9.29 × 10−4 2.15 × 10−2 −1.71 1.47 × 10−3 2.92 × 10−2 −1.45 7.65 × × 10−4 1.87 × 10−2 −1.64  1.46 × 10−3 2.91 × 10−2 −1.45
LRIG1 9.74 × 10−4 2.22 × 10−2 −0.67 4.82 × 10−4 1.34 × 10−2 −0.67 8.72 × 10−4 2.04 × 10−2 −0.66 5.07 × 10−4 1.39 × 10−2 −0.67
KRT20 1.05 × 10−3 2.32 × 10−2 1.49 1.18 × 10−3 2.52 × 10−2 1.46 1.02 × 10−3 2.26 × 10−2 1.49 1.17 × 10−3 2.50 × 10−2 1.46

Each column shows the p-value (p), the FDR-corrected p-value (adj. p), and the fold change (FC) obtained in a variant of the database. P-values greater than 5% are shown in bold type.
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TABLE 2 | Other genes reported in the literature as associated with intestinal metaplasia of the stomach that were identified as differentially expressed in our analysis at a significance level of 5% (without FDR correction).

Gene Improved estimation for the Mt and At values Conventional estimation for the Mt and At values 

f by our method f by OLIN f by our method f by OLIN 

p adj. p FC p adj. p FC p adj. p FC p adj. p FC

VEGFA 3.76 × 10−3 5.52 × 10−2 −0.76 4.16 × 10−3 5.84 × 10−2 −0.75 3.54 × 10−3 5.28 × 10−2 −0.76 4.21 × 10−3  × 10−2 −0.75
VEGFA 4.03 × 10−2 2.35 × 10−1 −0.25 3.93 × 10−2 2.29 × 10−1 −0.25 4.65 × 10−2 2.54 × 10−1 −0.25 4.52 × 10−2  × 10−1 −0.25
PPP1R1B 3.96 × 10−3 5.70 × 10−2 0.76 4.07 × 10−3 5.76 × 10−2 0.75 3.89 × 10−3 5.60 × 10−2 0.76 4.03 × 10−3  × 10−2 0.75
MUC5AC 4.07 × 10−3 5.79 × 10−2 −1.08 3.54 × 10−3 5.24 × 10−2 −1.08 4.18 × 10−3 5.87 × 10−2 −1.07 3.58 × 10−3  × 10−2 −1.08
MUC5AC 4.60 × 10−3 6.30 × 10−2 −0.83 4.51 × 10−3 6.15 × 10−2 −0.82 4.78 × 10−3 6.40 × 10−2 −0.82 4.50 × 10−3  × 10−2 −0.82
CLDN18 4.78 × 10−3 6.46 × 10−2 −1.05 5.12 × 10−3 6.69 × 10−2 −1.03 4.83 × 10−3 6.44 × 10−2 −1.04 5.03 × 10−3  × 10−2 −1.03
ASCC1 6.62 × 10−3 7.90 × 10−2 0.18 1.42 × 10−2 1.27 × 10−1 0.17 6.57 × 10−3 7.85 × 10−2 0.18 1.43 × 10−2  × 10−1 0.17
FOXA3 6.85 × 10−3 8.09 × 10−2 −0.57 4.87 × 10−3 6.47 × 10−2 −0.57 6.98 × 10−3 8.15 × 10−2 −0.56 5.01 × 10−3  × 10−2 −0.57
FOXA3 1.96 × 10−2 1.54 × 10−1 −0.53 2.05 × 10−2 1.58 × 10−1 −0.52 1.98 × 10−2 1.54 × 10−1 −0.53 1.98 × 10−2  × 10−1 −0.52
GAST 8.99 × 10−3 9.60 × 10−2 −1.48 1.24 × 10−2 1.17 × 10−1 −1.31 9.15 × 10−3 9.69 × 10−2 −1.48 1.21 × 10−2  × 10−1 −1.32
PIK3CA 1.02 × 10−2 1.04 × 10−1 −0.16 7.28 × 10−3 8.42 × 10−2 −0.17 9.62 × 10−3 9.97 × 10−2 −0.16 6.62 × 10−3  × 10−2 −0.17
BHLHA15 1.04 × 10−2 1.05 × 10−1 −0.63 9.50 × 10−3 9.93 × 10−2 −0.63 1.11 × 10−2 1.09 × 10−1 −0.62 9.79 × 10−3  × 10−1 −0.63
SLPI 1.07 × 10−2 1.06 × 10−1 −0.71 7.96 × 10−3 8.86 × 10−2 −0.70 1.41 × 10−2 1.26 × 10−1 −0.70 7.91 × 10−3  × 10−2 −0.70
SLPI 1.80 × 10−2 1.46 × 10−1 −0.64 1.13 × 10−2 1.10 × 10−1 −0.66 1.74 × 10−2 1.43 × 10−1 −0.64 1.18 × 10−2  × 10−1 −0.65
KLF5 1.22 × 10−2 1.15 × 10−1 0.54 1.60 × 10−2 1.36 × 10−1 0.49 1.24 × 10−2 1.16 × 10−1 0.54 1.55 × 10−2  × 10−1 0.49
CXCR2 1.26 × 10−2 1.18 × 10−1 0.23 1.30 × 10−2 1.20 × 10−1 0.23 1.25 × 10−2 1.17 × 10−1 0.23 1.34 × 10−2  × 10−1 0.23
MGMT 1.28 × 10−2 1.19 × 10−1 −0.30 1.09 × 10−2 1.08 × 10−1 −0.31 1.30 × 10−2 1.20 × 10−1 −0.30 1.09 × 10−2  × 10−1 −0.31
MOS 1.32 × 10−2 1.21 × 10−1 0.14 5.84 × 10−3 7.29 × 10−2 0.16 1.24 × 10−2 1.16 × 10−1 0.14 6.22 × 10−3  × 10−2 0.16
IL10 1.35 × 10−2 1.23 × 10−1 0.05 1.74 × 10−2 1.43 × 10−1 0.05 1.26 × 10−2 1.17 × 10−1 0.05 1.73 × 10−2  × 10−1 0.05
GHRL 1.39 × 10−2 1.26 × 10−1 1.08 1.24 × 10−2 1.17 × 10−1 1.06 1.34 × 10−2 1.22 × 10−1 1.08 1.23 × 10−2  × 10−1 1.06
KRT7 1.56 × 10−2 1.35 × 10−1 0.40 1.81 × 10−2 1.47 × 10−1 0.39 1.58 × 10−2 1.35 × 10−1 0.40 1.81 × 10−2  × 10−1 0.39
CDKN1A 1.70 × 10−2 1.41 × 10−1 0.25 1.91 × 10−2 1.51 × 10−1 0.24 1.70 × 10−2 1.40 × 10−1 0.24 1.94 × 10−2  × 10−1 0.24
CDKN1A 3.48 × 10−2 2.17 × 10−1 0.42 4.19 × 10−2 2.37 × 10−1 0.39 3.34 × 10−2 2.11 × 10−1 0.42 4.17 × 10−2  × 10−1 0.39
PDPK1 2.65 × 10−2 1.85 × 10−1 0.17 4.31 × 10−2 2.41 × 10−1 0.15 2.61 × 10−2 1.82 × 10−1 0.17 4.25 × 10−2  × 10−1 0.15
PDX1 2.72 × 10−2 1.87 × 10−1 0.06 2.29 × 10−2 1.69 × 10−1 0.06 2.28 × 10−2 1.68 × 10−1 0.06 2.07 × 10−2  × 10−1 0.06
HSPB1 3.22 × 10−2 2.07 × 10−1 −0.58 4.43 × 10−2 2.45 × 10−1 −0.55 4.65 × 10−2 2.53 × 10−1 −0.53 4.43 × 10−2  × 10−1 −0.55
HSPB1 3.66 × 10−2 2.23 × 10−1 −0.56 3.55 × 10−2 2.17 × 10−1 −0.55 5.03 × 10−2 2.65 × 10−1 −0.52 3.63 × 10−2  × 10−1 −0.55
HSPB1 3.66 × 10−2 2.23 × 10−1 −0.51 4.63 × 10−2 2.52 × 10−1 −0.48 5.63 × 10−2 2.80 × 10−1 −0.46 4.73 × 10−2  × 10−1 −0.48
THBSI 3.27 × 10−2 2.08 × 10−1 −0.10 3.86 × 10−2 2.27 × 10−1 −0.10 3.36 × 10−2 2.11 × 10−1 −0.10 3.94 × 10−2  × 10−1 −0.10
PTEN 3.30 × 10−2 2.09 × 10−1 0.16 6.99 × 10−2 3.12 × 10−1 0.14 3.17 × 10−2 2.04 × 10−1 0.16 6.90 × 10−2  × 10−1 0.14
LGR5 3.63 × 10−2 2.22 × 10−1 −0.07 3.64 × 10−2 2.20 × 10−1 −0.07 4.22 × 10−2 2.41 × 10−1 −0.07 3.88 × 10−2  × 10−1 −0.07
SHH 3.96 × 10−2 2.32 × 10−1 −0.07 2.68 × 10−2 1.85 × 10−1 −0.08 4.82 × 10−2 2.59 × 10−1 −0.07 3.10 × 10−2  × 10−1 −0.08
TJP1 3.98 × 10−2 2.33 × 10−1 0.31 4.33 × 10−2 2.41 × 10−1 0.30 4.14 × 10−2 2.39 × 10−1 0.31 4.56 × 10−2  × 10−1 0.29
PTGS2 4.02 × 10−2 2.35 × 10−1 0.21 3.90 × 10−2 2.28 × 10−1 0.20 4.00 × 10−2 2.34 × 10−1 0.21 3.73 × 10−2  × 10−1 0.21
SOX9 4.48 × 10−2 2.48 × 10−1 −0.29 4.02 × 10−2 2.32 × 10−1 −0.30 4.45 × 10−2 2.48 × 10−1 −0.29 4.04 × 10−2  × 10−1 −0.30
CTNNB1 4.53 × 10−2 2.50 × 10−1 0.33 5.05 × 10−2 2.63 × 10−1 0.33 4.83 × 10−2 2.59 × 10−1 0.33 5.31 × 10−2  × 10−1 0.32
MLH1 4.55 × 10−2 2.51 × 10−1 −0.23 6.82 × 10−2 3.08 × 10−1 −0.22 4.97 × 10−2 2.63 × 10−1 −0.22 6.80 × 10−2  × 10−1 −0.22
CDKN1B 4.56 × 10−2 2.51 × 10−1 −0.22 4.90 × 10−2 2.59 × 10−1 −0.22 4.41 × 10−2 2.46 × 10−1 −0.23 4.69 × 10−2  × 10−1 −0.22
CXCR4 4.83 × 10−2 2.58 × 10−1 −0.43 5.72 × 10−2 2.81 × 10−1 −0.42 5.00 × 10−2 2.64 × 10−1 −0.43 5.77 × 10−2  × 10−1 −0.42
CXCR1 4.98 × 10−2 2.63 × 10−1 0.19 5.38 × 10−2 2.72 × 10−1 0.18 4.64 × 10−2 2.53 × 10−1 0.19 5.18 × 10−2  × 10−1 0.18
KRT14 5.11 × 10−2 2.67 × 10−1 0.19 3.65 × 10−2 2.20 × 10−1 0.19 5.15 × 10−2 2.68 × 10−1 0.19 3.95 × 10−2  × 10−1 0.19

Each column shows the p-value (p), the FDR-corrected p-value (adj. p), and the fold change (FC) obtained in a variant of the database. P-values greater than 5% are shown in bold type.
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Given that several pixel-level summary statistics are 
readily available in microarray databases, but are usually 
discarded in conventional approaches, we propose an 
improved estimation method for the Mt and At values, which 
takes into account the pixel-level variability. Specifically, we 
applied the multivariate delta method to derive estimators for 
the expected values of Mt and At, considering their Taylor’s 
expansion up to the second-order terms. The conventional 
estimators, nonetheless, approximate the expected values 
considering only the zeroth-order term. Since the functions 
that define Mt and At are analytic (they are combinations of 
logarithmic function through addition or subtraction), the 
higher the number of terms of the Taylor expansion, the 
better the approximation of the function. Thus, we expect 
that the proposed estimators provide a better quantification 
of the hybridization signal. Also, by using these improved 
estimators, pixel-level dispersion can play an essential role in 
the analysis, increasing reliability. 

To minimize the propagation of errors, the Mt and At values 
have to be properly normalized. Thus, we also propose a 
method for selecting the LOWESS smoothing parameter f that 
provides an optimal bias–variance compromise, considering 
some specific characteristics of microarray experiments, such 
as heteroskedasticity. This optimal normalization method 
leads to a more parsimonious correction of the systematic 
biases and, consequently, to greater preservation of the 
biological variation of interest. 

By using the proposed methods, more variability information 
is considered and retained, improving inferences and preventing 
false conclusions. Thus, we expect to perform a more conservative 
analysis, where possibly fewer but more reliable differentially 

expressed genes are identified. In other words, we expect a 
reduction in both the false-positive and false-negative error rates. 

Besides the theoretical support, relevant empirical observations 
could be drawn by a comparative study between the methods 
using real intestinal metaplasia microarray data. The results shows 
that inferences on differential gene expression were moderately 
affected by the incorporation of the pixel-level variability in the 
estimation of the Mt and At values and significantly affected by 
the LOWESS within-slide normalization using a smoothing 
parameter selected by the method. Both proposed methods tend 
to increase the within-group variability (the denominator of the 
t-statistic). However, for many genes, such increase occurred along 
with an increase in the difference between the group means (the 
absolute value of the t-statistic numerator), significantly reducing 
their respective p-values. Thus, many genes were identified as 
differentially expressed only when the proposed methods were 
used and some of them have been validated by other studies. 

It is important to remark that most of the genes reported in the 
literature as differentially expressed in intestinal metaplasia were 
validated with a very strong association with the disease. Thus, 
these genes are probably more robust to difference approaches 
for estimating and normalizing the gene expression levels. On 
the other hand, genes sensitive to methods that address essential 
uncertainties in measurements are precisely those plagued with 
major reproducibility issues. Measurement error is one of the 
most damaging sources of error and has been neglected in many 
published analyses, thereby increasing uncertainty in parameter 
estimates and even inflating the estimates of effect sizes (Loken and 
Gelman, 2017). Thus, particularly for those sensitive genes, a more 
robust analysis is needed so that false conclusions are not made. 

In this paper, we focused on gene expression from two-
color microarray data, but it is possible to use the same ideas 
to improve estimation and normalization of any fluorescent 
signal quantified by microarray image analysis. Also, the 
proposed methods could be adapted for oligonucleotide 
(one-color) microarray data. Particularly, the cyclic 
LOWESS normalization method (Bolstad et al., 2003) could 
be extended by just considering that the Mt and At values 
are defined by comparing pairs of arrays instead of pairs 
of channels and that the LOWESS normalization is applied 
to all distinct combination of two arrays. Although not so 
straightforward, it is also possible to adapt our methods to 
handle next-generation sequencing (NGS) data. Recently, 
Law et al. (Law et al., 2014) showed that RNA-Seq counts 
after log transformation and normalization by sequencing 
depth (log-counts per million, or log-cpm) can be properly 
analyzed by methods based on the normal distribution if a 
precision weight for each observation is taken into account. It 
was used to adapt all methods in the limma package (initially 
developed for microarrays) to also handle RNA-Seq and 
other sequence count data (Ritchie et al., 2015b). Therefore, 
considering the current need for accounting and propagating 
measurement uncertainties through analyses of NGS data 
(O’Rawe et al., 2015), a possible future work is to adapt our 
ideas to improve transcriptome profiling from RNA-Seq data. 
Specifically, one could investigate whether it is possible to use 
the delta method for incorporating a measure of uncertainty 

FIGURE 7 | Venn diagram for the total number of genes already identified 
as differentially expressed in intestinal metaplasia according to the literature. 
Inferences were made at a significance level of 5%.
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TABLE 3 | Genes belonging to the “pathways in cancer” category identified as differentially expressed between normal and intestinal metaplasia groups at a significance level of 5% (after FDR correction).

Gene Improved estimation for the Mt and At values Conventional estimation for the Mt and At values 

f by our method f by OLIN f by our method f by OLIN 

p adj. p FC p adj. p FC p adj. p FC p adj. p FC

PLD1 4.08 × 10−7 6.60 × 10−5 1.03 3.54 × 10−7 5.86 × 10−5 0.99 4.31 × 10−7 6.73 × 10−5 1.03 3.60 × 10−7 5.89 × 10−5 0.99 
PLD1 2.50 × 10−6 2.53 × 10−4 0.43 3.49 × 10−6 3.32 × 10−4 0.42 2.36 × 10−6 2.41 × 10−4 0.43 3.34 × 10−6 3.24 × 10−4 0.42 
PLD1 9.73 × 10−5 4.06 × 10−3 0.49 9.90 × 10−5 4.14 × 10−3 0.49 1.07 × 10−4 4.35 × 10−3 0.48 1.08 × 10−4 4.37 × 10−3 0.48 
MITF 2.68 × 10−6 2.68 × 10−4 −0.69 6.38 × 10−6 5.19 × 10−4 −0.69 2.70 × 10−6 2.67 × 10−4 −0.68 6.29 × 10−6 5.19 × 10−4 −0.69 
MAX 6.06 × 10−6 4.93 × 10−4 0.43 7.72 × 10−6 6.00 × 10−4 0.43 5.26 × 10−6 4.37 × 10−4 0.43 7.13 × 10−6 5.67 × 10−4 0.43 
MAX 1.61 × 10−3 3.10 × 10−2 0.35 1.35 × 10−3 2.75 × 10−2 0.35 1.36 × 10−3 2.77 × 10−2 0.35 1.31 × 10−3 2.68 × 10−2 0.35 
NOS2 7.08 × 10−6 5.52 × 10−4 1.37 7.61 × 10−6 5.93 × 10−4 1.34 6.59 × 10−6 5.19 × 10−4 1.37 7.28 × 10−6 5.76 × 10−4 1.34 
CDKN2B 8.14 × 10−6 6.14 × 10−4 0.98 8.41 × 10−6 6.38 × 10−4 0.97 7.79 × 10−6 5.94 × 10−4 0.98 8.20 × 10−6 6.25 × 10−4 0.97 
CDKN2B 4.00 × 10−4 1.16 × 10−2 0.24 5.72 × 10−4 1.51 × 10−2 0.23 3.33 × 10−4 1.01 × 10−2 0.24 4.84 × 10−4 1.34 × 10−2 0.24 
VEGFB 1.23 × 10−5 8.41 × 10−4 −0.95 7.23 × 10−6 5.68 × 10−4 −0.89 4.36 × 10−6 3.78 × 10−4 −0.94 6.65 × 10−6 5.35 × 10−4 −0.89 
VEGFB 1.09 × 10−4 4.40 × 10−3 −0.55 1.05 × 10−4 4.32 × 10−3 −0.55 1.09 × 10−4 4.38 × 10−3 −0.54 1.04 × 10−4 4.26 × 10−3 −0.55 
ITGA6 2.80 × 10−5 1.60 × 10−3 0.63 3.92 × 10−5 2.06 × 10−3 0.59 2.43 × 10−5 1.44 × 10−3 0.64 3.63 × 10−5 1.96 × 10−3 0.59 
RXRA 3.03 × 10−5 1.71 × 10−3 0.25 4.33 × 10−5 2.23 × 10−3 0.26 3.05 × 10−5 1.72 × 10−3 0.25 4.76 × 10−5 2.39 × 10−3 0.25 
PIAS3 4.53 × 10−5 2.29 × 10−3 −0.55 2.93 × 10−5 1.68 × 10−3 −0.57 4.81 × 10−5 2.38 × 10−3 −0.55 2.85 × 10−5 1.65 × 10−3 −0.57 
ITGA2 5.24 × 10−5 2.53 × 10−3 0.48 7.52 × 10−5 3.33 × 10−3 0.47 5.88 × 10−5 2.76 × 10−3 0.48 7.43 × 10−5 3.30 × 10−3 0.47 
FZD8 6.00 × 10−5 2.83 × 10−3 −0.60 5.09 × 10−5 2.51 × 10−3 −0.60 6.05 × 10−5 2.81 × 10−3 −0.60 4.83 × 10−5 2.42 × 10−3 −0.61 
FOXO1 1.54 × 10−4 5.65 × 10−3 −0.53 1.03 × 10−4 4.25 × 10−3 −0.53 1.39 × 10−4 5.24 × 10−3 −0.53 1.00 × 10−4 4.16 × 10−3 −0.54 
FOXO1 2.70 × 10−3 4.46 × 10−2 −0.20 2.66 × 10−3 4.33 × 10−2 −0.20 2.80 × 10−3 4.51 × 10−2 −0.20 2.42 × 10−3 4.06 × 10−2 −0.21 
EGLN1 1.85 × 10−4 6.42 × 10−3 0.50 4.00 × 10−4 1.16 × 10−2 0.46 1.73 × 10−4 6.10 × 10−3 0.50 3.96 × 10−4 1.16 × 10−2 0.46 
TGFBR2 2.88 × 10−4 9.06 × 10−3 −0.36 8.86 × 10−5 3.78 × 10−3 −0.37 2.68 × 10−4 8.46 × 10−3 −0.36 8.71 × 10−5 3.73 × 10−3 −0.37 
WNT3 4.16 × 10−4 1.19 × 10−2 0.51 4.13 × 10−4 1.19 × 10−2 0.51 4.00 × 10−4 1.15 × 10−2 0.51 4.22 × 10−4 1.21 × 10−2 0.50 
CKS1B 7.02 × 10−4 1.76 × 10−2 −0.29 1.91 × 10−3 3.46 × 10−2 −0.27 1.04 × 10−3 2.29 × 10−2 −0.27 2.01 × 10−3 3.56 × 10−2 −0.27 
AXIN2 7.63 × 10−4 1.88 × 10−2 −0.53 8.64 × 10−4 2.02 × 10−2 −0.53 7.62 × 10−4 1.86 × 10−2 −0.53 8.52 × 10−4 2.01 × 10−2 −0.53 
CCND1 9.74 × 10−4 2.22 × 10−2 −0.55 7.00 × 10−4 1.75 × 10−2 −0.55 9.79 × 10−4 2.21 × 10−2 −0.55 6.73 × 10−4 1.70 × 10−2 −0.56 
CCND1 3.34 × 10−3 5.12 × 10−2 −0.76 2.81 × 10−3 4.51 × 10−2 −0.77 3.45 × 10−3 5.19 × 10−2 −0.76 2.88 × 10−3 4.58 × 10−2 −0.77 
CCND1 3.49 × 10−3 5.23 × 10−2 −0.26 4.11 × 10−3 5.80 × 10−2 −0.26 3.19 × 10−3 4.95 × 10−2 −0.27 3.75 × 10−3 5.45 × 10−2 −0.26 
ITGAV 1.03 × 10−3 2.30 × 10−2 −0.36 1.06 × 10−3 2.34 × 10−2 −0.35 9.39 × 10−4 2.15 × 10−2 −0.36 1.04 × 10−3 2.29 × 10−2 −0.35 
CEBPA 1.50 × 10−3 2.96 × 10−2 0.63 1.79 × 10−3 3.32 × 10−2 0.60 1.36 × 10−3 2.77 × 10−2 0.63 1.76 × 10−3 3.27 × 10−2 0.60 
JUN 1.60 × 10−3 3.09 × 10−2 −0.58 1.57 × 10−3 3.04 × 10−2 −0.54 1.94 × 10−3 3.48 × 10−2 −0.56 1.56 × 10−3 3.03 × 10−2 −0.54 
WNT11 2.98 × 10−3 4.76 × 10−2 0.28 2.96 × 10−3 4.65 × 10−2 0.28 3.06 × 10−3 4.81 × 10−2 0.28 2.97 × 10−3 4.67 × 10−2 0.28 
LAMB2 5.18 × 10−3 6.76 × 10−2 −0.52 2.58 × 10−3 4.25 × 10−2 −0.49 4.42 × 10−3 6.10 × 10−2 −0.49 2.61 × 10−3 4.28 × 10−2 −0.49 

 Each column shows the p-value (p), the FDR-corrected p-value (adj. p), and the fold change (FC) obtained in a variant of the database. P-values greater than 5% are shown in bold type.
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to each base call, usually provided by base-calling algorithms, 
into the log-cpm estimator, leading to a more accurate gene 
expression quantification from RNA-Seq data. 
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APPENDIX

Estimation of E(Mtj) and E(Atj) by the Delta 
Method
Let f (Rtj, Gtj) be a twice differentiable function of two random 
variables, Rtj and Gtj.The second-order Taylor’s expansion of  at 
( ( ), ( )) R Gtj tj  is:
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An approximation of ( ( ( )), f R Gtj tj  can be determined by the 
expected value of the second-order Taylor’s expansion of f: 

    ( ( , )) [ ( ( ), ( )))] ( (f R G f R G f
R

Rtj tj tj tj
tj

tj≈ + ∂
∂

)), ( )) ( ( ))

( ( ), ( )) (

  

  

G R R

f
G

R G

tj tj tj

tj
tj tj

− +

∂
∂

GG G

f
R

R G R

tj tj

tj
tj tj tj

− +

∂
∂

−



   

( ))

( ( ), ( )) [( (1
2

2

2 RR

f
R G

R G R

tj

tj tj
tj tj tj

)) ]

( ( ), ( )) [(

2

2

2

+





∂
∂ ∂

−   (( ))( ( ))]

( ( ), ( )) [(

R G G

f
G

R G

tj tj tj

tj
tj tj

− +

∂
∂



  
2

2 GG ( )) ]) .tj tjG−



 2

Considering that 

Var 

Var 

( ) [( ( )) ],

( ) [( (

R R R

G G G
tj tj tj

tj tj

= −

= −

 

 

2

ttj

tj tj tj tj tjR G R R G G

)) ],

Cov ( , ) [( ( ))( (

2 and

  = − −   ttj ))],

the following simplified expression for the expected value of f 
(Rtj, Gtj) is obtained: 
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Since 
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the first and second derivatives of the function that defines Mtj are:
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Assuming that ( )Rtj  and ( )Gtj are non-zero, an 
approximation of  ( ) (log ( ) log ( ))M R Gtj tj tj= −2 2  can be 

obtained by using its second-order Taylor’s expansion:
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Let the non-zero background-corrected signals be estimators 
for the expected values of the foreground signals, i.e.,

ˆ ( ) , , R R Rtj tc tc= ≠with 0

ˆ ( ) , . G G Gtj tc tc= ≠with 0

Denote the sample variance estimators, obtained across the 
pixel intensities within each spot, as ˆ ( )σ 2 Rt  (for the test channel) 
and ˆ ( )σ 2 Gt  (for the control channel). Also, assume that these 
estimators do not depend on thebackground correction. We can 
derive an estimator for ( )Mtj  as follows: 
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Since 
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we can estimate ( )Atj  in a similar way to ( )Mtj . The first and 
second derivatives of Atj are: 
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An approximation of ( )Atj  is obtained by using its second-
order Taylor’s expansion:
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Considering the sample estimators of the expected values 
and variances of Rtj and Gtj, we can derive the following 
estimator for ( )Atj : 
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A.2.Estimation of Var (Mtj) and Var (Atj) by 
the Delta Method
We can derive an estimator for Var (f (Rtj, Gtj)) by computing 
the variance of the first-order Taylor’s expansion of f (Rtj, Gtj) at 
( ( ), )( ) R Gtj tj :
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The second-order term was not considered because Var ( )Rtj
2  

and Var ( )Gtj
2  cannot be usually estimated. 

Since M f R G R Gtj tj tj tj tj= −( , ) log ( ) log ( ) 2 2 , with the first 

and second derivative showed in Appendix 5, we can obtain an 
approximation of Var (Mtj) as follows: 
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Consider the sample estimators of the expected values of Rtj 
and Gtj, denoted by, respectively, Rtc  and Gtc , and assume that 
they are non-zero. Also, consider their variance and covariance 
sample estimators, denoted by, respectively, ˆ ( )σ 2 Rt , ˆ ( )σ 2 Gt

, and ˆ( , )tσ Rt G , and assume that they are independent of the 
background correction. We can derive the following estimator 
for Var (Mtj) : 
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Considering that Atj is defined by the function 
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we can estimate Var (Atj) in a similar way to Var (Mtj). 
By using the first and second derivatives of Atj, which are 

showed in Appendix (Barrett et al., 2012), we obtain the following 
approximation of Var (Atj): 
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Rewriting the above expression using the sample estimators 
for the expected value, variance and covariance of Rtj and Gtj, we 
derive the following estimator for Var (Atj) : 
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