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Maize is an excellent nutritional source and is consumed as a staple food in different 
parts of the world, including India. Developing a maize genotype with a combination of 
higher lysine and tryptophan, along with β-carotene, can help alleviate the problem of 
protein-energy malnutrition (PEM) and vitamin A deficiency (VAD). This study is aimed 
at improving lysine and tryptophan content by transferring opaque-2 (o2) gene from 
donor HKI163 to β-carotene-rich inbred lines viz., UMI1200β+ and UMI1230β+. For this 
purpose, F1, BC1F1, BC2F1, BC2F2, and BC2F3 plants were developed using an o2 line 
HKI163 and two β-carotene-rich inbred lines, UMI1200β+ and UMI1230β+, as the parents. 
Foreground selection using the associated marker umc1066 for the o2 gene and the 
marker crtRB1 3′TE for the crtRB1 gene was used to select the target genes. A total of 
236 simple sequence repeat (SSR) markers distributed evenly across the maize genome 
were employed for the background selection. To fix the crtRB1 allele in the BC1F1 stage, 
individual plants homozygous at the crtRB1 locus and heterozygous at the o2 locus were 
selected and used for backcrossing to produce BC2F1 plants. Furthermore, the selected 
heterozygous BC2F1 plants from both crosses were selfed to obtain the BC2F2 plants, 
which were then selected for the target gene and selfed to generate the BC2F3 lines. 
From each cross, five improved lines with homozygous marker alleles for the crtRB1 and 
o2 genes with a recurrent parent genome (RPG) recovery ranging from 86.75 to 91.21% 
in UMI1200β+×HKI163 and 80.00 to 90.08% in UMI1230β+×HKI163 were identified. The 
improved lines had good agronomic performance and possessed high lysine (0.294–
0.332%), tryptophan (0.073–0.081%), and β-carotene (6.12–7.38 µg/g) content. These 
improved lines can be used as genetic resources for maize improvement.
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INTRODUCTION

Maize (Zea mays L.) is a staple food crop and currently 
grown in more than 150 countries, with a total harvest area of 
approximately 187 million hectares, producing 1138 million 
tonnes worldwide (FAOSTAT, 2018). It has good nutritional 
value, that is, 68.5% carbohydrates, 8% fat, 4% ash, 3% crude 
fiber, and 16.5% protein (Ullah et al., 2010). In addition, 
maize carotenoids contain both provitamin A (α-carotene, 
β-carotene, and β-cryptoxanthin) and non-provitamin A 
(lutein and zeaxanthin) components. Maize, therefore, is 
of special importance for the nutrition of people from many 
countries in Africa, Asia, and Latin America, where protein-
energy malnutrition (PEM) and vitamin A deficiency (VAD) 
affect more than a billion people. The demand for maize has 
steadily increased over the past decades and is expected to 
continue to rise in the forthcoming years, at least up until 
2050 (Rosegrant et al., 2009). However, normal maize protein 
possesses low nutritional significance to humans because of 
very limited amounts of major amino acids, such as lysine 
(1.6–2.6%) and tryptophan (0.2–0.6%) (Moro et al., 1996), 
which is less than half of the recommended dose specified for 
human nutrition. Over the past three decades, many natural 
maize mutants associated to quality protein maize (QPM) with 
higher lysine and tryptophan content have been identified, 
that is, opaque-2 (o2) in chromosome 7 (Mertz et  al., 1964), 
floury-2 (fl2) in chromosome 8 (Nelson et al., 1965), opaque-7 
(o7) in chromosome 8 (Ma and Nelson, 1975), opaque-6 (o6) 
in chromosome 8 (McWhirter, 1971), and floury-3 (fl3) in 
chromosome 8 (Ma and Nelson, 1975). Among them, o2 
mutant has been more popular and widely utilized in breeding 
programs for the improvement of protein quality. The recessive 
o2 allele improves the endosperm lysine and tryptophan levels 
by nearly two-fold. The gene-linked simple sequence repeat 
(SSR) markers umc1066, phi112, and phi057 have been used 
to identify the o2 gene (Yang et al., 2005; Gupta et al., 2013; 
Surender et al., 2017).

VAD is one of the serious health issues in developing and low-
income countries and critically affects over 7 million pregnant 
women and 125 million children (Giuliano, 2017). β-Carotene 
is the best provitamin A (vitamin A precursor), and maize is 
a predominant source of β-carotene; however, very few maize 
varieties are rich in β-carotene, and many exhibiting varieties 
are inherently deficient in β-carotene (Muthusamy et al., 2014). 
Yan et al. (2010) revealed that crtRB1 is a major gene responsible 
for the β-carotene content in maize. This gene is positioned at 
chromosome 10 and encodes β-carotene hydroxylase, which is 
responsible for the biosynthesis of lycopene. Association mapping 
approach led to the identification of three polymorphisms, 
5’TE (in the 5’-Untranslated Region), InDel4 (in the coding 
region), and 3’TE (spanning the sixth exon and 3’-Untranslated 
Region), in the crtRB1 gene that were significantly influencing 
the β-carotene content. Since then, polymerase chain reaction 
(PCR)-based codominant markers were developed based on these 
polymorphisms, and these markers aided breeders to identify 
and develop higher β-carotene content lines using marker-
assisted selection (MAS). Moreover, Yan et al. (2010) reported 

the 3’TE favorable allele (allele 1, 543 bp) that is responsible for 
reduced transcript expression of the gene associated with higher 
β-carotene content, with an average increase of 6.50 μg/g in the 
maize endosperm in comparison with the unfavorable allelic 
class. Recently, this allele-based marker was successfully used to 
detect the crtRB1 gene in diverse maize lines (Muthusamy et al., 
2014; Zunjare et al., 2018; Sagare et al., 2019).

To date, numerous maize hybrids with either provitamin A 
or QPM have been released and commercialized, but genotypes 
with both the nutritional traits are very limited. This situation 
necessitates developing maize genotypes with the combination 
of QPM and provitamin A. Our previous attempts have led 
to the development of two β-carotene-rich inbred lines viz., 
UMI1200β+ and UMI1230β+. In this study, our objective was 
aimed to introgress the o2 gene from HKI163 into UMI1200β+ 
and UMI1230β+. We, therefore, applied marker-assisted 
backcross (MAB) breeding using gene-specific markers for 
foreground selection and polymorphic SSRs for background 
selection. Our goal was to obtain innovative breeding materials 
with high β-carotene, lysine, and tryptophan contents.

MATERIALS AND METHODS

Plant Genetic Materials
HKI163 is an inbred line containing the opaqueness gene 
(o2). Its grain lysine content is 0.340% in protein, and its 
tryptophan content is 0.082% in protein (Zunjare et al., 
2018). It was obtained from Chaudhary Charan Singh 
Haryana Agricultural University, Uchani, India. UMI1200β+ 
and UMI1230β+ are improved inbred lines containing the 
β-carotene-associated gene crtRB1, with a grain lysine 
content of 0.130 and 0.150%, respectively, and tryptophan 
content of 0.024 and 0.029%, respectively. These β-carotene-
rich inbred lines were developed by transferring crtRB1 gene 
from donor HP46715 (CIMMYT, Mexico) to local popular 
inbred lines viz., UMI1200 and UMI1230. The β-carotene 
contents of UMI1200β+ and UMI1230β+ were 9.073 and  
9.232 µg/g, respectively.

Development of Backcross Progenies
MAB breeding scheme that includes crossing, backcrossing, and 
selfing was undertaken as mentioned in Figure 1. Backcross 
progenies were developed by crossing UMI1200β+ and 
UMI1230β+ (recurrent parents) with HKI163 (donor parent) 
following two cycles of backcrosses during 2016 to 2019. 
UMI1200β+ and UMI1230β+ were used as recurrent parents and 
crossed with HKI163 (donor) for developing F1 plants. Then, F1 
plants were confirmed by foreground selection with crtRB1 and 
o2-linked markers. These F1 plants were used as the male parents 
to develop the BC1F1s. Likewise, another round of backcross was 
followed for UMI1200β+×HKI163 and UMI1230β+×HKI163 
to develop BC2F1s using MAB breeding to reduce the linkage 
drag and to increase the recurrent parent genome percentage. 
Furthermore, selected BC2F1 plants that were heterozygous at the 
o2 loci and homozygous at the crtRB1 loci were self-pollinated to 
produce BC2F2 plants and BC2F3 plants.
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Genomic DNA Isolation and PCR Analysis
Young leaf tissues from two-week-old plants were ground into 
powder using liquid nitrogen and stored at -80°C. Genomic 
DNA was isolated using the cetyl trimethylammonium bromide 
(CTAB) method (Murray and Thompson, 1980). The DNA was 
checked for its quantity and quality on a 0.8% agarose gel. The 
PCR for crtRB1 3′TE gene-specific and SSR primers and agarose 
gel electrophoresis were carried out following the method by 
Muthusamy et al. (2014) and Pukalenthy et al. (2019).

Foreground and Background Selection
o2 gene- and crtRB1 gene-linked markers were used for the 
foreground selection in backcross and selfed lines (Table 1). 
Based on marker polymorphism between donor and recurrent 
parents, three SSR markers, umc1066, phi 112, and phi057, 
linked to the o2 gene and crtRB1 3′TE, which is linked to 
the crtRB1, were employed for foreground selection. For the 
background selection, a total of 236 SSR markers distributed 
on all 10 chromosomes of maize genome were used to identify 
polymorphic markers between the donor and recurrent parents. 
Furthermore, the SSR markers that showed polymorphism 
among the parents were used in the background selection 
to determine the recurrent parent genome (RPG) recovery 

percentage at each backcross generation. All of the SSR primer 
sequences used in background selection were obtained from the 
maize genome database (www.maizegdb.org) and synthesized 
by Eurofin Ltd, Bangalore, India.

Kernel Modification
The parents and heterozygous plant (O2/o2) seeds from 
backcrossed and selfed progenies (BC1F1, BC2F1, BC2F2, and 
BC2F3) were harvested and examined for the kernel modification 
using a standard light box screening method (Vasal et al., 1980). 
Maize kernels were categorized into five types viz., type 1, not 
opaque; type 2, 25% opaqueness; type 3, 50% opaqueness; type 
4, 75% opaqueness; and type 5, 100% opaqueness (Vivek et al., 
2008). In all of the generations, the kernels with 25% opaqueness 
were selected and forwarded to the next generation to fix the 
o2 allele in its homozygous recessive state and to reduce the 
undesirable traits caused by the modifier genes acting in the 
maize endosperm.

Investigation of Morphological Traits 
in Improved Lines
For the BC2F3 improved lines, observations for 15 morphological 
traits that were categorized and presented chronologically 

FIGURE 1 | Scheme for the development of o2 and crtRB1 genes-derived improved lines using marker-assisted foreground and background selection.

TABLE 1 | Sequence information of the markers used for polymorphic studies and foreground screening.

S. No. Marker name Forward sequence (5’-3’) Reverse sequence (5’-3’) Annealing

1 phi112 TGCCCTGCAGGTTCACATTGAGT AGGAGTACGCTTGGATGCTCTTC 53°C
2 umc1066 ATGGAGCACGTCATCTCAATGG AGCAGCAGCAACGTCTATGACACT 60°C
3 phi 057 CTCATCAGTGCCGTCGTCCAT CAGTCGCAAGAAACCGTTGCC 63°C
4 crtRB1 ACACCACATGGACAAGTTCG ACACTCTGGCCCATGAACAC (R1) 62°C -54°Ca

ACAGCAATACAGGGGACCAG (R2) 54°C 

aIn total of 19 cycles, reduction of temperature by 0.5°C on each cycle starting from the initial 54–62°C.
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according to the plant stage data were taken using standard 
maize descriptors formulated by the International Board 
for Plant Genetic Resources (IBPGR) (Anonymous, 1991). 
Morphological traits viz., days to tasselling (days), days to silking 
(days), plant height (in centimeters), ear height (in centimeters), 
tassel length (in centimeters), number of tassel branches, leaf 
length (in centimeters) and leaf width (in centimeters), cob 
length (in centimeters), cob girth (in centimeters), number of 
kernel rows per cob, number of kernels per row, cob weight (in 
grams), single plant yield (in grams), and 100-kernel weight (in 
grams) were taken.

Estimation of Lysine, Tryptophan, 
and β-Carotene Contents
The lysine, tryptophan, and β-carotene contents were estimated 
in seeds of BC2F3 improved lines. The shelled seeds taken for 
estimation were shade dried and stored at 22–26°C before the 
analysis. Lysine and tryptophan contents in the endosperm 
were estimated according to the method described by Galicia 
et al. (2008). The estimations were done with two replications 
consisting of two blanks, four checks, and the samples using 
the spectrophotometer V- 770 UV-VIS-NIT (Japan). The 
absorbances of lysine and tryptophan were recorded at 390 
and 560 nm, respectively. The estimated lysine and tryptophan 
values were measured with the unit (in percent) (Moro et al., 
1996). β-Carotene extraction was done according to the method 
described by Kurilich and Juvik (1999). The β-carotene content 
was estimated by high-performance liquid chromatography 
(HPLC), and samples were eluted by C30 column (5 μm, 4.6 × 
250 mm). The mobile phase was composed of acetonitrile:dichlo
romethane:methanol (75:20:5). The retention and the spectrum 
of the carotenoid compounds were found to have a flow rate 
of 0.4 ml/min and were compared to those of the standard 
(β-carotene standard-M/s Sigma Aldrich, India). Furthermore, 
it was reconstituted in the acetonitrile mixture in three different 
concentrations (1, 10, and 100 ppm).

Statistical Analysis
In BC1F1, BC2F1, and BC2F2 generations, the segregation distortion 
was studied by chi-square analysis for the deviation from the 
expected Mendelian ratio. In the background selection, the 
amplicons were scored as A for recurrent parent, B for donor 
parent, and H for heterozygous plants. The recovery percentage 
of the recurrent genome was calculated using the formula  
RPG (%) = [A + (0.5H)/(A + B + H)] × 100 (Benchimol et al., 2005).

RESULTS

Development of Maize Inbred Lines 
With the O2 and crtRB1 Genes
Three SSR markers, umc1066, phi112, and phi057, located 
within the o2 gene were investigated for their polymorphisms 
among the donor HKI163 and the two recurrent parents viz., 
UMI1200β+ and UMI1230β+. Among them, umc1066 was 
found to be polymorphic between the donor and each of the 
two recurrent parents. This informative SSR marker was further 

used for the foreground selection. F1 progenies were produced 
from two independent crosses of UMI1200β+×HKI163 and 
UMI1230β+×HKI163. BC1F1 progenies were obtained by 
backcrossing the F1 plants with UMI1200β+ and UMI1230β+ 
as the recurrent parents. In the BC1F1 generation, individual 
plants homozygous at the crtRB1 and heterozygous at the o2 
locus were identified using the crtRB1 and o2-gene specific 
markers and utilized for next backcrossing with the recurrent 
parent. Furthermore, BC2F1 progenies were obtained from the 
selected BC1F1 plants based on the dual-selection procedure 
involving foreground selection and light box screening. 
Applying similar selection procedures and selfing, progenies 
of BC2F1 generation were advanced to BC2F2 (Figure 2) 
and BC2F3. Finally, from each cross, five BC2F3 lines with 
homozygous marker alleles for the CrtRB1 and o2 genes were 
developed (Figure 3). The segregation patterns of backcross 
progenies are presented in Table 2.

SSR-Based Genetic Background Analysis 
of Improved Lines
A set of 236 SSR markers distributed uniformly across the 
maize genome was used in polymorphism screening to select 
polymorphic markers between donor and recurrent parents. 
Among them, 104 and 107 SSR markers showed polymorphism 
between UMI1200β+ and HKI163 and UMI1230β+ and HKI163, 
respectively. The polymorphism percentage was recorded as 
44.6 and 49.57%, respectively. Furthermore, these polymorphic 
markers were employed to screen the progenies derived from 
backcross and selfed generation for the recovery of RPG (Figure 4). 
In BC1F1 generation, a total of 22 and 18 foreground positive 
plants from UMI1200β+×HKI163 and UMI1230β+×HKI163 were 
screened, which showed a recovery of RPG of 54.81% and 53.21%, 
respectively. Furthermore, the recovery of RPG increased in 
subsequent generations. The 22 and 31 selected positive plants from 
UMI1200β+×HKI163 and UMI1230β+×HKI163 in BC2F1 showed 
82.21 and 79.81%, of RPG, respectively. Eight and six positive 
plants from UMI1200β+×HKI163 and UMI1230β+×HKI163 in 
BC2F2 showed 87.48 and 86.51% recovery of RPG, respectively. 
The highest recoveries of RPG 91.21% and 90.08% were obtained 
in each of five BC2F3 plants from UMI1200β+×HKI163 and 
UMI1230β+×HKI163.

Kernel Modification
Opaqueness is the indicator for the presence of o2 allele, it is 
also tightly linked to the o2 gene, selecting the kernels along 
with the least opaqueness from generation to generation ensures 
that the o2 gene is fixed in its homozygous recessive state. Thus, 
we observed the opaqueness in selected foreground positive 
progenies from backcrossed and selfed progenies, along with 
HKI163, UMI1200β+, and UMI1230β+ for kernel modification. 
HKI163 kernels showed 25 and 50% opaqueness, whereas 
UMI1200β+ and UMI1230β+ exhibited 0% opaqueness. BC1F1, 
BC2F1, and BC2F2 progenies showed 0–100% opaqueness. 
Among them, progenies showing 25% were further selected 
and advanced to next generation, whereas the remainder were 
rejected. In maize, the endosperm modifier genes play a major 
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role to produce undesirable characteristics, which affect the crop 
yield. Thus, we selected the progenies with 25% opaqueness to 
reduce the effect of the o2 modifier gene action. As a result, the 
recessive allele of o2/o2 was fixed in maize kernels and all of the 
BC2F3 lines showed 25% opaqueness (Figure 5).

Morphological Characteristics of 
Improved Lines
The morphological traits of the improved lines along with their 
donor and recurrent parents were presented in Table 3. Five 
UMI1200β+×HKI163-based improved lines showed phenotypic 

FIGURE 2 | Foreground screening in BC2F2 progenies. (A and B) UMI1200β+xHKI163 (C and D) UMI1230β+xHKI163, (M) Marker 100bp, (P1) UMI1200β+/
UMI1230β+, (P2) HKI163 and (1-16) BC2F2 progenies.

FIGURE 3 | PCR screening of five improved BC2F3 lines using o2 SSR and crtRB1 gene specific marker. (A and B) UMI1200β+ × HKI163 and (C and D) 
UMI1230β+ × HKI163. (M) Marker 100 bp, (P1) UMI1200β+/UMI1230β+, (P2) HKI163. (1-5) Improved lines  from  UMI1200β+×HKI163 (1-DBT6-1-5/25-8/25-4/25-
4/25, 2- DBT6-1-5/25-8/25-9/25-9/25, 3- DBT6-1-5/25-10/25-15/25-15/25, 4- DBT6-1-5/25-10/25-17/25-17/25, 5- DBT6-1-5/25-14/25-11/25-11/25) and 
UMI1230β+×HKI163 (1- DBT7-1-6/25-9/25-37/25-37/25, 2- DBT7-1-6/25-9/25-57/25-57/25, 3- DBT7-1-6/25-12/25-23/25-23/25, 4- DBT7-1-6/25-27/25-3/25-
3/25, 5- DBT7-1-6/25-27/25-67/25-67/25).
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resemblance ranging from 71.43% (number of kernels per row) 
to 98.38% (days to silking). Among them, DBT6-1-5/25-10/25-
17/25-17/25 and DBT6-1-5/25-14/25-11/25-11/25 possessed high 
phenotypic resemblance with the recurrent parent. For instance, 
days to tasselling, days to silking, plant height, ear height, tassel 
length, cob girth, cob weight, 100-kernel weight, and single plant 
yield showed more than 90% similarity to UMI1200β+. Likewise, 
five UMI1230β+×HKI163-based improved lines showed 
phenotypic resemblance ranging from 82.43% (ear height) to 
99.66% (100-kernel weight). DBT7-1-6/25-12/25-23/25-23/25 
showed maximum similarity with the recurrent parent, followed 
by DBT7-1-6/25-27/25-67/25-67/25. These two lines exhibited 
more than 90% similarity to UMI1230β+ for the traits days to 
tasselling, days to silking, plant height, ear height, tassel length, 
leaf length, cob length, cob girth, cob weight, 100-kernel weight, 
and single plant yield (Figure 6).

Analysis of Lysine, Tryptophan, and 
β-Carotene
All of the improved lines showed that lysine and tryptophan 
content increased many-fold over for both the β-carotene-rich 

parents viz., UMI1200β+ and UMI1230β+. Lysine and tryptophan 
contents varied from 0.294 to 0.332% and 0.073 to 0.081%, with 
an average of 0.314 and 0.077%. Among the improved lines, 
DBT 7-1-6/25-27/25-3/25-3/25 from UMI1230β+×HKI163 
possessed higher levels of lysine (0.332%) and tryptophan 
(0.081%). Furthermore, accumulation of the β-carotene content 
was estimated in improved lines, which ranged from 6.127 
to 7.387 µg/g with an average of 6.80 µg/g and higher than 
the QPM parent HKI163. DBT6-1-5/25-8/25-4/25-4/25 from 
UMI1200β+×HKI163 was found to have a high β-carotene 
content of 7.387 µg/g among improved lines. The lysine, 
tryptophan, and β-carotene contents of the improved lines are 
presented in Table 4.

DISCUSSION

The Value of the Pyramiding O2 and 
crtRB1 Genes
Lysine, tryptophan, and β-carotene are the key nutritional 
traits in maize. The genetic nature and environmental factors 

FIGURE 4 | Background Screening of improved lines using SSR makers. (A) 1200β+xHKI163, (B) UMI1230β+xHKI163. (M) Marker 100bp, (P1) UMI 1200β+/UMI 
1230β+, (P2) HKI163, (1-5) Improved lines from 1200β+xHKI163 (1-DBT6-1-5/25-8/25-4/25-4/25, 2-DBT6-1-5/25-8/25-9/25-9/25, 3- DBT6-1 5/25-10/25-15/25-
15/25, 4-DBT6-1-5/25-10/25-17/25-17/25, 5- DBT6-1-5/25-14/25-11/25-11/-25) and 1230β+xHKI163(1- DBT7-1-6/25-9/25-37/25-37/25, 2-DBT6-1-6/25-9/25-
57/25-57/25, 3- DBT7-1-6/25-12/25-23/25-23/25, 4- DBT7-1-6/24-27/25-3/25-3/25, 5-DBT7-1-6/25-27/25-67/25-67/25).

TABLE 2 | Segregation pattern of o2 allele in the backcross and selfed generation of UMI1200β+×HKI163 and UMI1230β+×HKI163.

S. No. Cross Generation No. of plants 
genotyped

Genotypic class χ2 P value

No. of A No. of H No. of B

1 UMI1200β+ × HKI163 BC1F1 197 74 123 0 12.18782** 0.000481
BC2F1 194 84 110 0 03.484536ns 0.061945
BC2F2 126 33 082 11 19.143** 0.000069

2 UMI1230β+ × HKI163 BC1F1 175 40 135 0 51.5714286** 0.00006903
BC2F1 100 43 057 0 01.96ns 0.161513
BC2F2 106 36 040 30 07.566ns 0.0294

**Significant different (p < 0.01), the markers were significantly distorted from the expected segregation ratio (1:2:1); nsnon-significant (p ≥ 0.01), the markers were non-significant and 
fitted to the normal Mendalian ratio.
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have an influence on these traits. crtRB1 and o2 genes present 
on chromosomes 10 and 7 (Mertz et al., 1964; Vasal, 2000; 
Yang et  al., 2004) provide increased β-carotene, lysine, and 
tryptophan contents. Molecular markers linked to these genes 
are available to facilitate direct selection in the breeding 
process. In this study, we successfully pyramided the o2 and 
crtRB1 genes in maize by MAS and several generations of 
backcrossing. The β-carotene content of the improved lines was 
increased by five- to six-fold for both crosses when compared 
to the QPM parent. The lysine and tryptophan contents of 
the improved lines were increased by two- and seven-fold 
for both crosses compared to the β-carotene parents. Thus, 
o2 and crtRB1 genes can work together in the same genetic 
background to control the content of lysine, tryptophan,  
and β-carotene.

Development of Improved Lines Through 
MAB Breeding
Parental polymorphism screening revealed that recurrent 
parents UMI1200β+ and UMI1230β+ were clearly distinguishable 
with o2 gene and CrtRB1 gene-linked markers umc1066 and 
crtRB1 3′TE from the donor line HKI163 and thus were used 
for foreground selection in the F1, BC1F1, BC2F1, BC2F2, and 
BC2F3 generations. In foreground selection, F1 and BC1F1 
generations screening with crtRB1 allele indicated that all of 
the genotypes were heterozygous in the F1 generation and the 
segregation distortion in the BC1F1 generation (Babu et  al., 
2013). From the BC1F1 generation, the lines were fixed for 
the crtRB1 allele by selecting the plants with favorable allele 
(543bp) and rejecting the heterozygous plants with both allele 
(543bp+296bp). Therefore, no segregation existed for crtRB1 
allele in the forwarded generations. Screening for the o2 gene 
revealed that BC2F1 of UMI1200β+×HKI163 and BC2F1 and 
BC2F2 of UMI1230β+×HKI163 showed approximately 50% of 
heterozygous plants with respect to the expected Mendalian 

ratio (1:1) in the backcross generations and (1:2:1) in the selfed 
generations. However, segregation distortion was observed 
in BC1F1 and BC2F2 of UMI1200β+×HKI163 and BC1F1 of 
UMI1230β+×HKI163. These results are in accordance with the 
previous reports (Liu et al., 2015; Tripathy et al., 2017; Goswami 
et al., 2019; Sagare et al., 2019). Furthermore, background 
analysis using genome-wide SSR markers revealed 91.21 and 
90.08% recovery of RPG in each of the five BC2F3 plants from 
UMI1200β+×HKI163 and UMI1230β+×HKI163 and coupled 
with the earlier findings (Feng et al., 2015; Sarika et al., 2018).

Characteristics of Improved Lines
In addition to the background selection, phenotypic 
characterization is also useful to find the recovery percentage 
of recurrent parents (Manna et al., 2005; Gunjaca et al., 2008; 
Choudhary et al., 2014; Hossain et al., 2018). Phenotypic 
characterization among the parents and the improved lines 
showed more than 90% of recovery of the recurrent parents 
in morphological traits. Among them, DBT6-1-5/25-10/25-
17/25-17/25 and DBT6-1-5/25-14/25-11/25-11/25 from 
UMI1200β+×HKI163 and DBT7-1-6/25-12/25-23/25-23/25 
and DBT7-1-6/25-27/25-67/25-67/25 from UMI1230β+×HKI 
163 possessed high phenotypic resemblance (90%) with their 
recurrent parents. Previously, several studies also reported 
more than 90% recovery of the recurrent parent characteristics 
in MAS-derived lines (Surender et al., 2017; Pukalenthy et al., 
2019; Sagare et  al., 2019). The lysine and tryptophan contents 
of the improved lines ranged from 0.294 to 0.331% and 0.073 to 
0.080% for the cross UMI1200β+×HKI163 and 0.298 to 0.332% 
and 0.073 to 0.081% for the cross UMI1230β+×HKI163. On the 
average, lysine and tryptophan contents of the improved lines 
were 0.314 and 0.077%; they are at par with the QPM parent, 
three and seven-fold increases from the recurrent parents. 
Likewise, the average β-carotene contents of the improved 
lines for UMI1200β+×HKI163 and UMI1230β+×HKI163 were 
6.846 and 6.766 µg/g, respectively, which were comparable to 
the β-carotene parents, six-fold higher than the QPM parent. 
Similar results were obtained by various studies (Muthusamy 
et al., 2014; Zunjare et al., 2018; Goswami et al., 2019). Overall, 
the improved inbred lines gained lysine and tryptophan contents 
but a slight reduction in β-carotene content (>2 ug) and grain 
yield. We followed the dual-selection procedure of molecular 
and light box screening to fix the o2 allele, which is the reason 
behind increasing lysine and tryptophan contents. We selected 
the progenies based on the good agronomic performance (>90%) 
and β-carotene content, even though some of the progenies 
recorded β-carotene contents at par with the recurrent parents 
with less agronomic performance. Thus, a slight reduction was 
observed in β-carotene content (>2 ug) of improved inbred 
lines. Moreover, introgression of o2 and crtRB1 genes caused a 
reduction in the grain yield. It is reported that QPM lines have 
some undesirable characteristics because of the modifier gene 
action in the endosperm. Thus, we used dual selection procedure 
to select the progenies and developed the improved inbred lines 
with less undesirable traits along with o2 and crtRB1 genes. 
However, it is not possible to stop the modifier gene (o2) activity 
and remove the undesirable traits completely. It might influence 

FIGURE 5 | Endosperm modification of BC2F3 (A and B) of UMI1200β+xHKI163 
and UMI1230β+xHKI163. (A) Five improved lines form the cross 
UMI1200β+xHKI163(1-DBT6-1-5/25-8/25-4/25-4/25, 2-DBT6-1-5/25-
8/25-9/25-9/25, 3-DBT6-1-5/25-10/25-15/25-15/25, 4-DBT6-15/25-
10/25-17/25-17/25, 5-DBT6-1-5/25-14/25-11/25-11/25) (B) Five improved 
lines from the cross UMI1230β+XHKI163(6-DBT7-1/25-9/25-37/25-37/25, 
7-DBT7-1-6/25-9/25-57/25-57/25, 8-DBT7-1-6/25-12/25-23/25-23/25, 
9-DBT7-1-6/25-27/25-3/25-3/25, 10-DBT7-1-6/25-27/25-67/25-67/25).
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TABLE 3 | Comparison of BC2F3 improved lines from UMI1200β+×HKI163 and UMI1230β+×HKI163 with the parents for the recovery percentage of morphological traits.

Morphological traits UMI1200β+

(Recurrent 
parent)

HKI163
(Donor 
parent)

Identified positive lines Recovery percentage (%) for morphological trait

(UMI1200β+ × HKI163) DBT6-1-
5/25-8/25-
4/25-4/25

DBT6-1-
5/25-8/25-
9/25-9/25

DBT6-
1-5/25-
10/25-
15/25-
15/25

DBT6-
1-5/25-
10/25-
17/25-
17/25

DBT6-
1-5/25-
14/25-
11/25-
11/25

DBT6-1-
5/25-8/25-
4/25-4/25

DBT6-1-
5/25-8/25-
9/25-9/25

DBT6-
1-5/25-
10/25-
15/25-
15/25

DBT6-
1-5/25-
10/25-
17/25-
17/25

DBT6-1-
5/25-14/25-

11/25-
11/25

Days to tasseling (days) 59.00 63.00 56.00 57.00 58.00 58.00 57.00 94.91 82.60 98.30 98.30 96.61
Days to silking (days) 62.00 65.00 58.00 60.00 61.00 60.00 59.00 93.54 96.77 98.38 96.77 95.16
Plant height (cm) 126.88 110.00 118.00 121.40 123.50 119.90 122.70 93.00 95.68 97.33 94.49 96.70
Ear height (cm) 71.00 62.00 68.00 67.70 69.30 68.30 68.00 95.77 95.35 97.60 96.19 95.77
Tassel length (cm) 21.00 26.20 18.00 19.20 18.10 19.50 20.30 85.71 91.42 86.19 92.38 96.66
Number of tassel 
branches

12.00 16.00 10.00 11.00 10.00 11.00 10.00 83.33 91.66 83.33 91.66 83.33

Leaf length (cm) 61.65 63.00 58.20 59.40 59.20 58.00 54.70 94.40 96.35 96.02 94.07 88.72
Leaf width (cm) 06.10 06.00 05.80 05.80 05.70 05.60 05.00 95.08 95.08 93.44 91.80 81.96
Cob length (cm) 15.20 17.00 13.00 13.80 14.00 13.00 12.40 85.52 90.78 92.10 85.52 81.57
Cob girth(cm) 13.80 13.00 12.00 11.50 13.00 12.70 13.10 86.95 83.33 94.20 92.02 94.92
Number of kernel rows 
per cob

14.00 12.00 12.00 10.00 12.00 10.00 10.00 85.71 85.71 71.43 85.71 71.43

Number of kernels 
per row

21.00 26.00 18.00 17.00 17.00 18.00 17.00 85.71 80.95 80.95 85.71 94.92

Cob weight (g) 108.00 112,00 98.00 92.80 94.30 101.00 97.90 90.74 85.92 87.31 93.51 90.64
100-kernel weight (g) 24.00 22.00 23.00 22.30 22.80 23.10 22.80 95.83 92.91 95.00 96.25 95.00
Single plant yield (g) 90.67 57.00 82.11 83.07 84.11 86.21 87.32 90.55 91.61 92.76 95.08 96.31

(UMI1200β+ × HKI163) UMI1230β+ 

(Recurrent 
parent)

HKI163
(Donor 
parent)

DBT7-1-
6/25-9/25-

37/25-
37/25

DBT7-1-
6/25-9/25-

57/25-
57/25

DBT7-
1-6/25-
12/25-
23/25-
23/25

DBT7-
1-6/25-
27/25-

3/25-3/25

DBT7-
1-6/25-
27/25-
67/25-
67/25

DBT7-1-
6/25-9/25-

37/25-
37/25

DBT7-1-
6/25-9/25-

57/25-
57/25

DBT7-
1-6/25-
12/25-
23/25-
23/25

DBT7-
1-6/25-
27/25-

3/25-3/25

DBT7-1-6
/25-27/25-

67/25-
67/25

Days to tasseling (days) 61.00 63.00 58.00 58.00 59.00 60.00 58.00 95.08 95.08 96.72 98.36 95.08
Days to silking (days) 63.00 65.00 61.00 60.00 62.00 62.00 60.00 96.82 95.23 98.41 98.41 95.23
Plant height (cm) 112.00 110.00 110.50 109.70 104.60 101.00 105.20 98.66 97.94 93.39 90.17 93.92
Ear height (cm) 74.00 62.00 61.00 72.00 71.00 72.10 72.90 82.43 97.29 95.94 97.43 98.51
Tassel length (cm) 24.10 26.20 23.40 22.80 23.70 23.90 22.80 97.09 94.60 98.34 99.17 94.60
Number of tassel 
branches

14.00 16.00 13.00 12.00 13.00 12.00 12.00 92.85 85.71 92.85 85.71 85.71

Leaf length (cm) 61.00 63.00 58.40 60.20 59.00 59.20 58.90 95.73 98.68 96.72 97.04 96.55
Leaf width (cm) 06.50 06.00 06.30 6.10 05.70 05.80 05.90 96.92 93.84 87.69 89.23 90.76
Cob length (cm) 16.00 17.00 14.00 15.60 14.90 15.80 15.30 87.50 97.50 93.12 98.75 95.62
Cob girth (cm) 12.50 13.00 11.00 11.80 12.10 11.60 12.00 88.00 94.40 96.80 92.80 96.00
Number of kernel rows 
per cob

16.00 12.00 14.00 14.00 14.00 14.00 14.00 87.50 87.50 87.50 87.50 87.50

Number of kernels per 
row

23.00 26.00 22.00 22.00 22.00 21.00 19.00 95.65 95.65 95.65 91.30 82.60

Cob weight (g) 124.70 112.00 122.60 118.30 113.80 120.90 121.00 98.31 94.86 91.25 96.95 97.03
100-kernel weight (g) 29.50 22.00 27.40 28.10 28.90 29.40 28.70 92.88 95.25 97.96 99.66 97.28
Single plant yield (g) 76.98 57.00 72.11 69.43 71.67 72.11 73.31 93.67 90.19 93.10 93.67 95.23
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the yield attributing traits and reduces the yield performances. 
Thus, we obtained a reduction in the grain yield similar to a 
previous study (Lauderdale, 2000).

In the present study, using MAB breeding approach, we 
successfully pyramided the o2 and crtRB1 genes and developed 
the nutrition-rich inbreds, but introgression of multiple genes 
caused a slight reduction in the yield. To utilize these newly 
developed inbred lines effectively, our future research focus 
is on conducting multilocation trial (MLT) in various maize-
growing regions and identifying the superior inbred lines to 
develop new hybrids. In addition, these inbred lines can be 
used as genetic resources for maize biofortification programs.
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FIGURE 6 | Morphological traits of parents and improved lines of UMI1200β+xHKI163 and UMI1230β+xHKI163. (A) UMI1200β+, (B) HK163, (C) DBT6-1-5/25-
10/25-17/25- 17/25, (D) UMI1230β+, (E) HKI163 (F) DBT7-1-6/25-12/25-23/25-23/25.

TABLE 4 | Lysine and tryptophan concentrations in parents and BC2F3 improved lines from UMI1200β+×HKI163 and UMI1230β+×HKI163.

Carotenoid/
Amino acids

UMI1200β+ UMI1230β+ HKI163 (UMI1200β+ × HKI163) (UMI1230β+ × HKI163)

DBT6-
1-5/25-
8/25-

4/25-4/25

DBT6-
1-5/25-
8/25-
9/25-
9/25

DBT6-
1-5/25-
10/25-
15/25-
15/25

DBT6-1-
5/25-10/25-

17/25-
17/25

DBT6-
1-5/25-
14/25-
11/25-
11/25

DBT7-
1-6/25-
9/25-
37/25-
37/25

DBT7-
1-6/25-
9/25-
57/25-
57/25

DBT7-
1-6/25-
12/25-
23/25-
23/25

DBT7-
1-6/25-
27/25-
3/25-
3/25

DBT7-
1-6/25-
27/25-
67/25-
67/25

β- carotene 
(µg/g)

9.073 9.232 0.800 7.387 6.127 6.665 7.187 6.865 7.123 7.265 6.321 6.812 6.312

Lysine (%) 0.130 0.150 0.340 0.294 0.312 0.299 0.322 0.331 0.298 0.317 0.308 0.332 0.327
Tryptophan (%) 0.024 0.029 0.082 0.077 0.079 0.080 0.073 0.080 0.073 0.077 0.079 0.081 0.075
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