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Tuberculosis (TB), caused by the human pathogens Mycobacterium tuberculosis (Mtb) 
and Mycobacterium africanum, has plagued humanity for millennia and remains the 
deadliest infectious disease in the modern world. Mycobacterium tuberculosis and M. 
africanum can be subdivided phylogenetically into seven lineages exhibiting a low but 
significant degree of genomic diversity and preferential geographic distributions. Human 
genetic variability impacts all stages of TB pathogenesis ranging from susceptibility to 
infection with Mtb, progression of infection to disease, and the development of distinct 
clinical subtypes. The genetic study of severe childhood TB identified strong inborn single-
gene errors revealing crucial pathways of vulnerability to TB. However, the identification of 
major TB-susceptibility genes on the population level has remained elusive. In particular, 
the replication of findings from candidate and genome-wide association studies across 
distinct human populations has proven difficult, thus hampering the characterization of 
reliable host molecular markers of susceptibility. Among the possible confounding factors 
of genetic association studies is Mtb genomic variability, which generally was not taken 
into account by human genetic studies. In support of this possibility, Mtb lineage was 
found to be a contributing factor to clinical presentation of TB and epidemiological spread 
of Mtb in exposed populations. The confluence of pathogen and human host genetic 
variability to TB pathogenesis led to the consideration of a possible coadaptation of Mtb 
strains and their human hosts, which should reveal itself in significant interaction effects 
between Mtb strain and TB-susceptibility/resistance alleles. Here, we present some of 
the most consistent findings of genetic susceptibility factors in human TB and review 
studies that point to genome-to-genome interaction between humans and Mtb lineages. 
The limited results available so far suggest that analyses considering joint human–Mtb 
genomic variability may provide improved power for the discovery of pathogenic drivers 
of the ongoing TB epidemic.
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INTRODUCTION

The out-of-Africa migration exposed human populations to 
changing environments and hence introduced new immunological 
challenges caused by newly encountered microbial populations. 
The interaction with these microorganisms, especially human 
pathogenic species, resulted in strong selective pressures that 
shaped our immune system (Barreiro and Quintana-Murci, 
2010; Nedelec et al., 2016; Quintana-Murci, 2019). Likewise, 
pathogens experienced selection via their need to overcome or 
avoid host defenses and to be able to spread from host to host 
or between host and environment. Pathogens and humans have 
been genetically shaped by this interplay of selective forces. 
Despite the incomplete mechanistic understanding of how this 
host–pathogen interplay impacted host and pathogen genetics, 
new concepts about host–pathogen coevolution have emerged 
(Brites and Gagneux, 2015).

An illustrative example for the above statements is provided 
by the adaptation of different strains of Helicobacter pylori to 
human populations of distinct ancestry (Kodaman et al., 2014). 
The coevolution of H. pylori, a main risk factor of human gastric 
cancers, and its human hosts was studied in two Colombian 
populations. The two populations displayed different admixture 
proportions of African, Amerindian, and European ancestries 
but presented very similar high H. pylori colonization levels with 
strikingly different incidences of gastric cancer. Helicobacter pylori 
isolates affecting both populations were derived from four ancestral 
lineages originating from Africa, Europe (2×), and Asia. Cancer 
incidence was found to be lowest when African ancestry of the 
host was matched with African ancestry of H. pylori. In contrast, 
gastric cancer risk was highest in hosts where the bacterial strain 
ancestry was divergent from the host ancestry (Kodaman et al., 
2014). This work highlighted the importance of considering the 
coevolution of host and pathogen to better understand clinical 
progression of diseases involving infectious agents and suggested 
that resistance and susceptibility to infectious diseases are probably 
best understood when considering both the genetic make-up of 
the pathogen and the host. A hotly debated question in the field 
of tuberculosis (TB) is to what extent a similar coadaptation of 
Mycobacterium tuberculosis (Mtb), the major etiological agent 
of TB, and the human host has occurred. Host-centric genetics 
studies in TB have provided some insight in host vulnerabilities 
to Mtb. However, the identification of strong genetic drivers of TB 
susceptibility has remained elusive (Orlova and Schurr, 2017; Abel 
et al., 2018; Dallmann-Sauer et al., 2018). In this review, we present 
selected findings from the field of host genetics of TB, describe 
the results of studies that implicated Mtb lineage as susceptibility 
driver, and focus on results that support a joint effect of both host 
and Mtb genomic variability on TB disease.

TUBERCULOSIS DISEASE

Human TB is caused by acid-fast bacilli belonging to the Mtb 
complex (MTBC) group, namely, Mtb and Mycobacterium 
africanum. The disease affects mainly the lungs, causing 
pulmonary TB (PTB), but it can spread to virtually any part of the 

body leading to distinct clinical phenotypes such as TB meningitis 
(TBM), a severe form of the disease characterized by progressive 
meningoencephalitis with necrotizing and granulomatous 
inflammation leading to obstruction of cerebrospinal fluid 
passage or infarcts of intracerebral arteries (Thwaites et al., 
2013; Zumla et al., 2013). Tuberculosis is an ancestral infectious 
disease that accounted for an estimated 1 billion deaths in 
the last 200 years globally (Paulson, 2013), which is broadly 
consistent with the estimate of 1 billion deaths over the last 
2,000 years in Europe only (Kerner et al., 2019). Tuberculosis is 
generally treatable, yet despite substantial efforts to control the 
disease, it remains the main cause of deaths by an infectious 
agent in the world. In 2017, the World Health Organization 
estimated 10 million new cases resulting in 1.57 million 
deaths worldwide (World Health Organization, 2018). This is 
partly due to the emergence of multidrug resistance including 
rifampicin-resistant Mtb for which treatment success remains 
low. Moreover, the TB control challenge is exacerbated by the 
HIV epidemic as people living with HIV are at increased risk 
of becoming infected by Mtb and of developing severe clinical 
forms of TB. In 2017, more than 460,000 new cases of HIV–
TB were detected, and approximately 300,000 deaths occurred 
among HIV-positive patients due to TB (World Health 
Organization, 2018).

HUMAN GENETICS OF TB

Several biological factors contribute to susceptibility to TB. 
Among these, host genetics plays a clear role in modulating risk 
for development of TB and its clinical forms. Early evidence for 
the impact of host genetics on TB susceptibility came from the 
observation of familial aggregation (Puffer, 1944) and a higher 
concordance rate of TB in monozygotic compared to dizygotic 
twins (Kallmann and Reisner, 1943). Likewise, an often-quoted 
example for the role of host genetics in TB risk is the Lübeck 
accident, which occurred in 1929 (Fox et al., 2016). Due to the 
accidental contamination of bacillus Calmette–Guérin (BCG) 
vaccines, 251 newborns received Mtb-contaminated batches 
of BCG. Of the total number of vaccinated babies, 228 (90.8%) 
developed diverse forms of clinical TB. A year after the accident, 
77 infants had died, and 69 of these deaths were confirmed to be 
related to TB. Surprisingly, 23 infants (9.2%) did not present any 
clinical signs for the disease, and 68% of the clinically confirmed 
TB cases progressed to spontaneous cure. These events suggested 
that host genetic factors played a role in TB susceptibility and 
severity of the disease. Interestingly, it was also shown that high 
levels of contamination overrode intrinsic TB resistance factors 
(Fox et al., 2016). These older studies along with more recent 
examples provide the persistent motivation for the investigation 
of host genetics in TB (Abel et al., 2018).

A widely accepted model for TB pathogenesis assumes two 
main stages of the disease process. In step 1, exposed persons 
become infected with Mtb without any clinical signs of disease. 
These individuals are distinguished by converting to positivity in 
immune assays such as the in vivo tuberculin skin test (TST) or 
ex vivo release of interferon γ by blood cells in response to Mtb 
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antigen (IGRA tests). Such persons are thought to carry Mtb bacilli 
and to suffer from latent TB infection (LTBI). In step 2, a subset of 
those who are classified as LTBI will develop TB, mostly within the 
first 2 years of LTBI conversion (Behr et al., 2018). In TB, natural 
resisters to infection have been inferred from heavy Mtb exposure 
settings in which subjects failed to convert to LTBI, and this 
infection resistance phenotype has been shown to have a genetic 
component (Orlova and Schurr, 2017; Abel et al., 2018; Simmons 
et al., 2018; Dallmann-Sauer et al., 2018). Studies of resistance 
to TST conversion have consistently implicated chromosome 
region 11p14, both in families from a hyperendemic area in South 
Africa (logarithm of the odds [LOD] score = 3.81, P = 1.4 × 10−5) 
(Cobat et al., 2009) and in a sample of ethnically mixed French 
families with low TB endemicity (LOD score = 3.65, P = 2.08 × 
10−5; combined sample populations: LOD score = 4.54, P = 2.4 × 
10−6) (Cobat et al., 2015). In an Ugandan population, chromosome 
regions 2q21-2q24 and 5p13-5q22 reached suggestive P values 
(P = 3 × 10−4 and 5 × 10−4, respectively) for linkage with persistent 
TST negativity (Stein et al., 2008), and in a Ghanaian sample, IL10 
haplotypes were associated with low circulating cytokine levels, 
which were enriched in TST-positive versus TST-negative persons 
(odds ratio [OR] = 2.09, P = 1.7 × 10−2) (Thye et al., 2009).

In PTB, chromosome region 8q12–q13 was linked to disease 
in 96 Moroccan families (LOD score = 3.49, P = 3 × 10−5) 
(Baghdadi et al., 2006), and subsequent fine mapping revealed 
association between PTB and a cluster of single-nucleotide 
variants (SNVs) in high linkage disequilibrium overlapping the 
TOX gene. This SNV cluster initially failed to be significantly 
associated with PTB in a Malagasy sample. However, stratifying 
the analysis for patients with age at onset of TB younger than 
25 years replicated the association for rs2726600 in TOX (Grant 
et  al., 2013). Moreover, a PTB-susceptibility locus has been 
detected on chromosome region 20q13 by a genome-wide linkage 
study in Malawi and South African families (LOD score = 3.1, 
P = 8 × 10−5) (Cooke et al., 2008). This linked region was further 
screened with 40 SNVs, and association tests using selected 
markers in combined samples found protective associations for 
MC3R (OR = 0.67, P = 4 × 10−3) and CTSZ (OR = 0.49, P = 9 × 
10−3) with PTB. Additional genome-wide linkage studies reached 
suggestive significance on chromosome 20q13 for families from 
Uganda (Stein et al., 2008) and Thailand (Mahasirimongkol 
et al., 2009). An independent study employing a South African 
population found association of variants present in MC3R and 
CTSZ with PTB (P = 4 × 10−4 and <1 × 10−4, respectively) (Adams 
et al., 2011), but in an Iranian sample, only MC3R variants were 
associated (OR = 1.56, P = 5 × 10−3) (Hashemi et al., 2013). 
Chromosome 11 also harbors evidence of genetic factors 
controlling PTB. A genome-wide association study (GWAS) of a 
Ghanaian sample found the variant rs2057178 located on region 
11p13 downstream of the WT1 gene associated with protection 
from TB (OR = 0.77, P = 2.63 × 10−9). This association was 
replicated with diminished effect size in Gambian (OR = 0.8, 
P = 4.87 × 10−4) and Russian samples (OR = 0.91, P = 0.02) 
(Thye et al., 2012). Two independent GWAS replicated marker 
rs2057178 in two samples from South Africa (OR = 0.62, P = 
2.71 × 10−6) (Chimusa et al., 2014) and Morocco (OR = 0.78, P = 
0.043) (Grant et al., 2016).

To date, the HuGE navigator’s phenopedia search engine 
lists more than 200 genes with variants that had been reported 
by candidate gene studies or GWAS as being associated with 
either susceptibility or protection to PTB. The top genes in 
the number of publications reporting significant genotypic 
associations are HLA-DRB1, VDR, and SLC11A. Variants in 
these genes were almost exclusively detected by candidate gene 
approach (Stein et al., 2017). HLA-DRB1 is the exception given 
that it has been recently identified in a GWAS employing a 
large Icelandic population of 277,643 controls and 8,162 cases 
(Sveinbjornsson et al., 2016). A shared aspect of genetic studies 
of TB susceptibility is the poor replication of risk variants across 
independent studies and different populations. Associations of 
variants in the SLC11A1 gene are among the most stable findings 
across different populations, although with varying effect sizes 
(Stein et al., 2017; Abel et al., 2018).

One of the strongest protective genetic effects for PTB 
detected at the population level has been described for 
chromosome region 5q33.3 in a combined sample of Ugandan 
and Tanzanian HIV patients (Sobota et al., 2016). After following 
up HIV patients from TB hyperendemic areas, 314 HIV-infected 
patients remained free of TB, whereas 267 developed active 
disease. Contrasting these two groups in a case-control GWAS 
identified the risk SNV rs4921437 located in an intron of the 
UBLCP1 gene at 51 kb downstream from IL12B (OR = 0.37, 
P = 2.11 × 10−8). The variant mapped to an annotated histone 
modification site, suggesting an impact on RNA expression 
levels and potentially an important role of epigenetic effects in 
TB susceptibility. However, no functional data for this SNV with 
either gene were reported (Sobota et al., 2016). The implication 
of IL12B alleles as genetic vulnerability to TB is interesting due 
to its link to Mendelian susceptibility to mycobacterial disease 
(MSMD). Patients with MSMD, who are characterized by severe 
clinical disease caused by weakly virulent mycobacteria, often 
harbor deleterious mutation in genes controlling IFNG/IL12-
mediated immunity that can also predispose to TB (Abel et al., 
2018). While individual mutations in MSMD genes are rare, it 
has been shown that a collection of loss of function mutations 
in MSMD genes can explain a substantial proportion of TB 
cases (Alcais et al., 2005). Another example for an important 
role of loss of function mutations in genes of the IFNG/IL12/
IL23 circuitry is provided by TYK2 deficiency. Homozygosity for 
the common TYK2 P1104A allele is a strong risk factor for TB 
explaining an estimated 1% of TB deaths in Europe (Boisson-
Dupuis et  al., 2018; Kerner et al., 2019). Interestingly, the data 
suggested a strong selective pressure against the susceptibility 
allele since the frequency of P1104A in Europeans has decreased 
from 9% to 4.2% over the last 4,000 years (Boisson-Dupuis et al., 
2018). Given its very strong impact on TB risk, the P1104A allele 
does provide a good opportunity to test for an interaction with 
Mtb strains and possible coadaptation.

An unexpected outcome of genetic studies trying to 
pinpoint TB-susceptibility genes was the limited success in the 
identification of common (minor allele frequency >1%) alleles 
as genetic risk factors for TB susceptibility. It is possible that 
genetic heterogeneity resulting from the combination of different 
common and rare DNA variants may give rise to a complex model 
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of inheritance in which candidate gene or GWAS approaches fail 
to capture major genetic susceptibility drivers (Abel et al., 2018; 
Dallmann-Sauer et al., 2018). In this respect, it remains to be seen 
whether the application of whole genome or exome sequencing 
including the approach of focusing on extreme phenotypes 
and less common variants with strong effect, such as described 
for TYK2, can provide further insights. Perhaps, an equally 
important issue is phenotype definition. For example, the clinical 
definition of PTB may encompass distinct disease stages that 
are under distinct genetic control as has been shown in a mouse 
model of mycobacterial infection (Di Pietrantonio et al., 2010). 
Aside from host-centric characteristics, the genetic variability 
of the Mtb strain infecting subsets of subjects within a sample 
may partially account for the low success of genetic studies, 
from the low effect findings to poor marker consistency between 
different populations. Mounting experimental evidence suggests 
that MTBC lineages interact differently with the immune system 
potentially leading to distinct clinical manifestations (Tientcheu 
et al., 2017), and some genetic studies have been proof of concept 
that considering Mtb lineage in the analysis allows the finding of 
signals otherwise missed (Caws et al., 2008).

MTB LINEAGE CHARACTERISTICS AND 
GEOLOCALIZATION

The MTBC group, of which Mtb is part, comprises human- and 
animal-adapted species capable of causing disease in a wide range 
of hosts. The MTBC group consists of bacterial species with 
high DNA sequence similarity; however, genomic markers exist 
that allow classification of mycobacterial lineages (Brites and 
Gagneux, 2017). Within human-adapted strains, M. tuberculosis 
sensu stricto and M. africanum are divided in seven phylogenetic 
lineages, which cluster into preferred geographical locations. 
Mycobacterium tuberculosis strains are divided into lineages 1 
to 4, along with lineage 7, while M. africanum strains fall into 
lineages 5 and 6. In terms of geographical spread, lineages 5 to 
7 are more restricted occurring mainly in West Africa (lineages 
5 and 6) and Ethiopia (lineage 7). The distribution of lineages 1 
and 3 is more diffuse, with lineage 1 mainly found in proximity 
to the Indian Ocean (hence also known as Indo-Oceanic strain), 
whereas lineage 3 is more commonly found in East Africa as well 
as Central and South Asia. The remaining lineage 2 (alias East 
Asia lineage) and lineage 4 (alias Euro-American lineage) are 
widely distributed globally. The Beijing family of Mtb strains are 
prominent members of lineage 2, whereas Harlem strains belong 
to lineage 4. In addition, strains of lineages 2, 3, and 4 carry the 
genomic deletion TBD1 and are referred to as modern strains 
(Brites and Gagneux, 2017).

EVIDENCE FOR MTB LINEAGE 
ASSOCIATION WITH HUMAN ETHNICITY

The geographical distribution of lineages leads to a clear 
association with specific human populations (Gagneux et al., 
2006). This sympatric pathogen–host relationship is reflective 

of comigration and coexpansion of human populations and Mtb 
(Comas et al., 2013; Luo et al., 2015; Stucki et al., 2016). The 
concept of Mtb and human host coadaptation gained additional 
support by a study of two Swiss cohorts. Subjects were followed 
for 8 and 10 years, and preferential infection by lineage 4 (Euro-
American) was found in individuals born in Europe. Conversely, 
non-Europeans were more likely to be infected by other strains. 
The preferential host ethnicity–Mtb lineage relationship was 
maintained despite social mixing of subjects and after correction 
by age and sex (Fenner et  al., 2013). These observations were 
consistent with other studies that also reported preferential 
associations of bacterial lineage with the phylogeographic region 
where TB patients were born even in areas with high pathogen 
and host ethnicity admixture (Hirsh et al., 2004; Reed et al., 2009; 
Pareek et al., 2013; Rasigade et al., 2017; Guthrie et al., 2018). For 
M. africanum, coadaptation with specific African subpopulations 
has been hypothesized as cause for its much restricted 
geographical distribution (Asante-Poku et al., 2015; Otchere 
et al., 2018); however, additional molecular epidemiology studies 
are needed. A major challenge in the interpretation of these 
results is the possibility of social contact bias, in which subjects 
from the same ethnicities tend to interact more frequently, hence 
increasing the chances for preferential ethnicity-lineage pairings. 
However, the case for true association is strengthened by the 
observation that preferential pairing of host ethnicity and Mtb 
lineage is not maintained in the case of HIV–TB coinfection, 
which occurs in the context of low CD4 T-cell counts (Fenner 
et al., 2013). Likewise, alterations in the transmission dynamics 
in defined geographical areas by introduction of foreign, 
more virulent strains can disrupt preferential pairings. For 
example, Beijing family strains (lineage 2) were shown to be 
overtransmitted in a Kinh Vietnamese population in contrast to 
lineage 1. The increased virulence of Beijing strains in this setting 
was supported by shorter times of progression to active disease, 
wider geographical dispersal, and higher incidence of infection 
in younger individuals (Holt et al., 2018).

THE INTERPLAY OF MTB LINEAGE AND 
THE HUMAN HOST

It is known from murine studies that infection with different 
strains of Mtb results in significant differences in survival times 
for a given mouse strain. For instance, immunocompetent CB-17 
mouse strains infected with Mtb HN878 (Lineage 2) resulted 
in increased mortality when contrasted against NHN5, HN60, 
CDC1551 and H37Rv strains (Manca et al., 2001). Likewise, 
when infecting different strains of inbred mice with the same Mtb 
strain, there are significant differences in survival times (Schurr 
and Kramnik, 2008). Variable disease outcomes promoted by Mtb 
lineages have also been demonstrated with common marmosets, 
an animal model that more closely resembles human TB. In 
contrast to mouse models, these animals develop lung pathology 
and infection with ancient (lineage 6) or modern lineages (2 and 
4), resulting in different profiles of pulmonary damage, bacterial 
dissemination, and survival (Via et al., 2013). Distinct patterns 
of host responsiveness have also been observed for human 
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studies. For example, a recent study assessed bacterial virulence 
of Mtb obtained from 153 Vietnamese TB patients employing 
a monocyte-derived macrophage lysis model. A high degree of 
macrophage lysis (i.e., high virulence) was associated with higher 
bacterial concentrations in sputum. High virulence strains also 
replicated faster in the macrophages and induced lower secretion 
of tumor necrosis factor α (TNF-α) and IL-6, but higher 
production of IL-1β. This high virulence bacterial phenotype 
was strongly associated with lineage 2 strains (Tram et al., 2018). 
However, this study did not address a possible “fit” between host 
and Mtb genetic background. The latter question was addressed 
by a human study, which analyzed cytokine production by 
monocyte-derived macrophages obtained from members of 
three ethnicities following infection with different strains of Mtb. 
In univariate analyses, both Filipino ethnicity and Mtb strain 
CDC1551 were significant predictors of cytokine production. 
However, there was no evidence for significant interaction 
between ethnicity and Mtb strain possibly arguing against 
coadaptation in this sample (Nahid et al., 2018). Considering 
that a large number of tests were conducted (nine cytokines vs. 
four Mtb strains) in three groups with only 45 subjects per group, 
it is clear that power to detect such interactions was modest. 
Similar studies employing larger sample size and live bacterium 
challenges may provide different results.

A study of TB patients of Eurasian versus African ancestry (83 
vs. 43 individuals) from London, UK, took a different approach. 
A large number of hematological parameters and soluble 
factors were determined at time of initiation of TB treatment, 
and five were found to be significantly different among the two 
ethnic groups. Similarly, whole blood was stimulated with Mtb 
antigens, soluble factors were determined, and IL-1RA and IL-12 
concentrations were found significantly different between the two 
ethnicity groups (Coussens et al., 2013). However, in agreement 
with earlier studies, it was shown that these ethnicity-specific 
differences in immune responsiveness were independent of the 
lineage of the causative Mtb strain arguing against an interaction 
of strain and host genomes. In contrast, the observation of a 
strong genotypic impact of a VDBP polymorphisms on the 
response profile further supported the hypothesis that differences 
in immune responsiveness are primarily driven by host genetic 
variability (Coussens et al., 2013). While there was no significant 
impact of Mtb lineage by univariate analysis, it is possible 
that a significant interaction effect might have been detected; 
however, this was not tested. The genetic control for differences 
in immune response between European or African ancestry 
was investigated by genome-wide approaches, and extensive 
differences in inflammatory responses were detected by RNA 
sequencing (Nedelec et al., 2016). Along the line of unbiased 
genome-wide approaches, a detailed human–Mtb protein–
protein interaction map has recently been described (Penn et al., 
2018). Unfortunately, Mtb lineage- or strain-specific data for the 
map are not yet available.

A common observation among studies was the reduced/
delayed triggering of a proinflammatory response upon infection 
of host cells with “modern lineages” (lineages 2–4) and a 
corresponding increased intracellular growth rate by lineages 2 
and 4 Mtb strains (reviewed in (Coscolla and Gagneux, 2014)). 

However, strong heterogeneity was observed across studies. For 
example, Krishan et al. demonstrated a higher production of 
proinflammatory cytokines (i.e., TNF and IL1β) in macrophages 
elicited by East Asian/Beijing and Indo-Oceanic strains in 
comparison to Euro-American lineages, whereas this modulation 
was less pronounced in dendritic cells (Krishnan et al., 2011) 
and absent from peripheral blood mononuclear cells (Portevin 
et al., 2011). By contrast, another study described low and high 
cytokine induction by lineages 1 and 2 in contrast to lineage 4, 
respectively (Reiling et al., 2013).

Differences in transmissibility of Mtb strains from patients to 
contacts have been noted repeatedly (Malik and Godfrey-Faussett, 
2005). For example, lineages 2 and 4 are often referred to as the 
most transmissible strains, which could reflect the modulation of 
host immune response and hence increased virulence (Parwati 
et al., 2010). Indeed, a meta-analysis identified lineage 2 as the 
only lineage with a significantly increased risk of transmission 
employing lineage 4 strains as reference group (Wiens et al., 
2018). However, there was substantial heterogeneity of results 
across studies. For example, lineage 2 was not overtransmitted 
in geographically diverse settings in Vietnam, The Gambia, 
Canada (Montreal and Alberta), and South Africa (Cape Town) 
(de Jong et al., 2008; Marais et al., 2009; Albanna et al., 2011; 
Buu et al., 2012; Langlois-Klassen et al., 2013). By contrast, 
lineage 3 (East African Indian strains) was undertransmitted in 
a Canadian study, even when analysis was conducted in patients 
where the strains are most frequently encountered (Albanna 
et al., 2011). This is in agreement with the results of the meta-
analysis, which found lineage 3 strains presented reduced risk 
of transmission in Europe and Americas (Wiens et al., 2018). 
The same meta-analysis also found substantially increased risk 
of overtransmission of lineage 2 strains in East Asia (compared 
to other regions), whereas lineage 1 strains were associated with 
overtransmission only in East Asia (Wiens et al., 2018). It is not 
known if geographical differences in risk of transmission of 
certain Mtb strains reflect coadaptation of Mtb to specific human 
populations, other epidemiological or demographic factors, 
or the emergence of lineage substrains with greatly increased 
virulence and transmission potential (Rajwani et al., 2017).

Given that extrapulmonary TB cases present a lower risk for 
transmission of TB, we might expect preponderance of PTB as a 
result of coadaptation. Indeed, transmission potential has been 
linked to different pathways of pathogenesis (Verma et al., 2019). 
A study from Birmingham and Solihull, UK, reported increased 
extrathoracic TB for the East Asian lineage (lineage 2), but not for 
East African Indian lineage (lineage 1), using strains of the Euro-
American lineage (lineage 4) as reference (Pareek et al., 2013). 
Similarly, Beijing strains (lineage 2) resulted in higher frequency 
of extrapulmonary TB compared to non-Beijing strains (Kong 
et al., 2007). By contrast, a retrospective study (2004-2015) in 
British Columbia, Canada, found that strains of the Indo-Oceanic 
lineage (lineage 1) were significantly enriched among cases with 
extrapulmonary TB compared with all other lineages (Guthrie 
et al., 2018). Consistent with the Canadian observations, a large 
US study of 32,000 TB cases with known Mtb lineage and disease 
site found that relative to all other lineages, lineage 2 (East Asian) 
was underrepresented among extrapulmonary TB cases. These 
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results remained unchanged when adjusted for ethnicity or place 
of birth of the index case and collectively argued against a genetic 
interaction of Mtb and the human host in the determination of 
the clinical site of TB. However, given the conflicting results from 
different studies, it seems possible that lineage and ethnicity are 
too crude classifications and that a higher-resolution approach 
may be required.

Overall, these findings show a major impact of Mtb lineage on 
TB pathogenesis, which is a necessary factor for the coevolution 
of Mtb and its human host. Curiously, the strongest data in 
favor of human–Mtb coevolution arose in a host-free study. In 
a landmark study, Comas et al. (2010) found direct evidence for 
the action of selective pressures on the Mtb genome. Intriguingly, 
it was found that the strongest signs of selection were favoring 
conservation of T-cell epitopes across a large panel of Mtb strains 
(Comas et al., 2010). The most parsimonious explanation for 
this finding was that Mtb has adapted to human T-cell immunity 
and that aspects of the host T-cell response are beneficial 
for the transmission of Mtb (Comas et al., 2010; Sassetti and 
Rubin, 2010). However, much of the Mtb lineage impact on TB 
pathogenesis appears to transcend host genetics. For example, 
lineage 2 increases TB transmission and together with lineage 4 
is more likely to cause severe pulmonary infection, irrespective of 
age, sex, and ethnicity (Rasigade et al., 2017; Wiens et al., 2018).

EVIDENCE FOR HOST GENE/MTB 
GENOTYPE INTERACTION

To address the problem of strain-specific genetic control in 
susceptibility to mycobacterial infection, a study employed 
recombinant congenic mice infected with BCG Russia and 
BCG Pasteur. In this design controlled for infection dosage 
and host genetic makeup, a strong linkage hit on chromosome 
1 was identified for spleen-specific bacterial burden for 
both BCG Pasteur and BCG Russia infection. Interestingly, 
additional BCG Russia–specific linkage hits were detected 
on chromosomes 11 and 13 (Di Pietrantonio et al., 2010). By 
analyzing the host pathogen contribution to widely used read-
outs of host responsiveness to mycobacteria such as secretion 
of interferon γ, IL-4, IL-6, and IL-12, it was possible to detect 
significant interaction of host genetics and pathogen strain on 
cytokine production (Di Pietrantonio et al., 2011). These results 
established that under strictly controlled experimental conditions 
strain-specific differences in host susceptibility can be detected 
and that specificity exists in the host–mycobacteria interaction 
(Di Pietrantonio and Schurr, 2013).

In human populations, careful studies were able to 
demonstrate evidence for a human–Mtb genetic interplay, 
despite the experimental challenges such as disease 
heterogeneity among cases or low study power as consequence 
of sample size. These results are particularly encouraging, 
considering the intrinsic challenges of transmission studies 
and the complexity of TB pathogenesis. The first report for 
lineage-dependent SNV association with human TB was based 
on a case-control Vietnamese sample with mixed cases of PTB 
and TBM. In this work, contrasting controls to a subset of 

patients infected with the East Asian/Beijing lineage revealed 
the SNV T597C in TLR2 as a risk factor for TB. Further study 
of the lineage-dependent effect showed that the association 
was driven by the smaller subset of TBM patients infected with 
the Beijing genotype (OR = 1.91, P  = 1 × 10−3) (Caws et al., 
2008). Expanding the previous studied sample and applying 
a discovery and validation case-control design, two TLR9 
SNVs in strong LD were found associated with a combined 
TB phenotype, with rs352142 displaying the most significant 
association signal (OR = 2.33, P = 4 × 10−3). To test for a 
lineage-specific effect, discovery and validation samples were 
combined, and rs352142 showed a trend of association with a 
subsample infected by Mtb belonging to the Indo-Oceanic or 
Euro-American lineages (χ2 = 3.67, P = 0.056) (Graustein et al., 
2015). In Vietnamese subjects, SNV markers in the macrophage 
receptor MARCO were found associated with increased risk to 
PTB (rs2278589, OR = 1.6, P = 1 × 10−3; rs6751745, OR = 1.4, 
P = 9 × 10−3). Interestingly, a significant association was found 
between these two markers and the Beijing lineage, which was 
strongest under a heterozygous model (OR = 1.7, P = 1 × 10−3; 
and OR = 1.5, P = 1 × 10−2, respectively) (Thuong et al., 2016). 
Testing of host genotypes with preferential association of Mtb 
lineage was conducted in two additional studies. An Indonesian 
study identified a strong association of SLC11A1 alleles with 
Beijing strains genotype, whereas a study of South Africans 
identified HLA class I alleles that were associated with strains 
of the Beijing group. While associations of host genotypes with 
Mtb lineage support the concept of host Mtb coadaptation, the 
reported results should be considered tentative until a better 
understanding of the implicated alleles with TB risk has been 
established (van Crevel et al., 2009; Salie et al., 2014).

In a Ghanaian sample, testing association of 18 polymorphisms 
in the IRGM gene with PTB resulted in no significant findings 
for the total sample. However, stratifying patients by Mtb or 
M. africanum/Mycobacterium bovis strain detected a protective 
association of rs9637876 (5′ UTR in IRGM) against Mtb (OR = 
0.66, P = 4.5 × 10−3). Further study revealed the protective effect 
of the IRGM variant to be significantly stronger for Mtb strains 
belonging to the Euro-American lineage (Intemann et al., 2009). 
Reinvestigating the Ghanaian case-control cohort revealed 
rs1800451 in MBL2 to be associated with protection from PTB 
caused by M. africanum but not by Mtb (OR = 0.6, P = 0.008) 
(Thye et al., 2011). Following the findings for IRGM in West 
Africa, a study conducted in Indonesians failed to associate 
SNVs in IRGM and 13 additional autophagy-related genes with 
TB. Analysis stratified by patient Mtb isolate lineage reached 
borderline nominal significance for two genes, but remained 
non-significant after multiple-testing correction (Songane et al., 
2012). To date, the only GWAS that took lineage into account 
was conducted in a combined set of two Thai population 
samples. Total sample screening failed to find SNVs associated 
with TB. However, stratified analysis based on Mtb lineage found 
association of rs1418425 (OR = 1.62, P = 1.58 × 10−7, chromosome 
region 1p13, intergenic region of CD53 and LRIF1) in patients 
infected with non-Beijing lineage strains (61% of patients, 49% 
being infected by East African Indian/Indo-Oceanic lineage). 
Further stratification based on non–Beijing-infected subjects 
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older than 45 years yielded more significant results (OR = 1.74, 
P = 2.54 × 10−8) (Omae et al., 2017). Like the Mtb lineage-
dependent host genotype associations, these results need to be 
replicated in an independent sample to confirm the validity of 
the stratification approach.

CONCLUSION

While intuitively attractive and supported by conceptually 
consistent observations, strong data showing Mtb-human 
coevolution are still missing. There are data that show how 
infectious pathogens have shaped the human genome with 
major impact on genes encoding proteins of the innate immune 
system. Yet, the identification of the specific pathogens that 
underlie selection of specific human variants has proven more 
difficult. Well-powered studies specifically designed to address 
the role of human–Mtb coadaptation are needed to follow up on 
the general concept, and such studies need to be complemented 
with specific examples of gene–gene interaction between the 
human host and Mtb isolates. From the human side, it may 
be interesting to focus on studies employing strong dominant 
acting Mtb resistance alleles, most likely to be found by 
studying Mtb infection, or strong recessive acting susceptibility 
alleles, such as provided by the TYK2 example. On the bacterial 

side, a follow-up on protective epitopes stratified by human 
hosts may be equally informative. In general terms, it seems 
likely that the stratification by bacterial linages is too crude to 
allow significant conclusions. Future studies likely will need to 
consider high-resolution genomic substrains (Coll et al., 2014; 
Stucki et al., 2016), which, unfortunately, will increase the 
required sample size. While the challenges are daunting, they 
may well be worth the effort. The study of biological problems 
and their relevance for human health has provided numerous 
examples that ignoring the powerful forces of evolution may 
not be a wise choice.
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