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Populus trichocarpa is an important biofuel feedstock that has been the target of 
extensive research and is emerging as a model organism for plants, especially woody 
perennials. This research has generated several large ‘omics datasets. However, only 
few studies in Populus have attempted to integrate various data types. This review will 
summarize various ‘omics data layers, focusing on their application in Populus species. 
Subsequently, network and signal processing techniques for the integration and analysis 
of these data types will be discussed, with particular reference to examples in Populus.
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INTRODUCTION

Poplar species (Populus sp.) are promising sources of cellulosic biomass for biofuels because of 
their fast growth rate, high cellulose content, and moderate lignin content (Sannigrahi et al., 2010). 
Ragauskas et al. (2006) outline areas of research needed “to increase the impact, efficiency, and 
sustainability of biorefinery facilities,” such as research into modifying plants to enhance favorable 
traits, including altered cell wall structure leading to increased sugar release, as well as resilience 
to biotic and abiotic stresses. One particular research target in Populus is the decrease/alteration of 
the lignin content of cell walls. The Populus genus contains a considerable amount of variation, is 
estimated to contain approximately 30 different species (Taylor, 2002), and is considered a model 
species for trees and woody species. Major Populus species and their characteristics can be found in 
the review by Taylor (2002).

There is an increasing movement towards integrating multiple layers of ‘omics data in a systems 
biology approach to understand gene–phenotype relationships and assist in plant breeding programs 
[see Ingvarsson et al. (2016), Weckwerth (2011), and Valledor et al. (2018) for reviews]. Increasing 
systems biology knowledge through data integration in Populus species represents an important 
step in the development of Populus as a model system, as well as an efficient feedstock for biofuels 
through selective breeding programs and accelerated domestication (Tuskan, 2007). This review will 
discuss different sources of ‘omics data layers with a particular focus on those previously applied 
in P. trichocarpa or other Populus species. We will also briefly mention ‘omics layers that have not 
yet been applied in Populus species, but would be useful tools to consider to extend the systems 
biology knowledge of Populus species. Subsequently, we will review network and signal processing 
approaches to representing, analyzing, and integrating multiple ‘omics data layers, again providing 
examples in Populus species where possible.
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SOURCES OF ‘OMICS DATA LAYERS

Overview
Different ‘omics layers each provide information on a different 
aspect of a complex biological system (Table 1). Below, we 
discuss different ‘omics layers and the information they can 
provide about the system. We also present examples each of 
the ‘omics data layers in the literature, focusing on examples in 
Populus species where available.

Genomics
Genome and Annotation
The genome sequence of Black Cottonwood, Populus trichocarpa 
(Torr. & Gray) was released in 2006 (Tuskan et al., 2006). This 
genome, a single female genome “Nisqually-1,” was the first tree 
to have its complete genome sequenced, and it became a model 
system for studies on woody perennial plants (Wullschleger et al., 
2012; Jansson and Douglas, 2007). The P. trichocarpa genome 
consists of 19 chromosomes, with chromosome 19 predicted to 
be evolving into a sex chromosome (Yin et al., 2008). Analysis 
of homologous regions of the genome showed evidence for 
several whole-genome duplication events; the most recent being 
the Salicoid duplication event, which is contained within the 
family Salicaceae, the next termed the Eurosid duplication shared 
among Eurosids, and an ancient duplication event shared by all 
land plants (Tuskan et al., 2006).

Since initial sequencing, the genome assembly has gone 
through several revisions and is now in its fourth version. 
Furthermore, a genome-wide association study (GWAS) 
population of ~1,000 natural accessions from the United States 
and Canada was propagated in multiple common gardens and 
resequenced, providing a rich resource for studies of the variation 
in natural P. trichocarpa populations as well as GWASs (Tuskan 
et al., 2011; Slavov et al., 2012; Evans et al., 2014).

The genome sequence is available on Phytozome (Goodstein 
et al., 2012), and the genome along with gene and functional 
annotation such as Gene Ontology (GO) terms and PFams can 

be viewed and interacted with using the JBrowse (Skinner et al., 
2009) plugin on Phytozome (https://phytozome.jgi.doe.gov/pz/
portal.html).

This genomic data layer provides a base on which many other 
data sources can be layered, including various annotations and 
features of the genomic sequences as well as other data layers 
downstream in the central dogma of molecular biology.

Genomic Variants
Different individuals in a population can accumulate variation in 
their genome, such as single-nucleotide polymorphisms (SNPs) 
involving a nucleotide change at a single position, insertions/
deletions of a single nucleotide or larger pieces of DNA, copy 
number variations (CNVs) of DNA segments, or translocations 
(the movement of a section DNA from one location to another) 
(Abel and Duncavage, 2013).

There are two major approaches to calling SNPs in a given 
sample in a relatively high-throughput manner, namely, a 
genotyping SNP array and SNP calling from next-generation 
sequencing (NGS) data. A genotyping SNP array involves 
hybridizing extracted DNA to an array containing probes 
with known SNPs (LaFramboise, 2009) and is thus limited by 
the SNPs chosen to appear on the array. For example, the P. 
trichocarpa genotyping array is based on 34,131 SNPs located 
near/within around 3,500 selected candidate genes (Geraldes 
et al., 2013). SNP calling through NGS involves whole-genome 
shotgun sequencing of all individuals, aligning of all reads to a 
common reference genome, and then calling variants (Nielsen 
et al., 2011) using software such as GATK (McKenna et al., 2010). 
The advantage of SNP calling from NGS data is that one is not 
limited by the set of SNPs available on an array. A larger number 
of SNPs can be detected, and the discovery of new SNPs is 
possible. SNP genotyping arrays are also not able to detect other 
classes of genome variants such as translocations and inversions 
(LaFramboise, 2009).

A population of ~1,000 natural P. trichocarpa accessions 
have been clonally propagated in four common gardens 
(Tuskan et al., 2011) and resequenced in order to provide NGS 
data for SNP calling. Several studies have been published, 
making use of SNPs called across parts of this population 
(Slavov et al., 2012; Evans et al., 2014; McKown et al., 2014). 
Slavov et al. (2012) performed a study involving SNPs called 
from resequenced genomes of 16 of the genotypes within this 
P. trichocarpa population. PCA analysis of SNP genotypes 
revealed clear separation based on the geographic origin of the 
genotypes and linkage disequilibrium was reported to decay 
to r2 ≤ 0.2 within 3–6 kb. It is important to note that this is 
based on the resequencing of only 16 genotypes. A set of ~28 
million bi-allelic SNPs called across 882 genotypes from this 
population have been publicly released and are available online 
from DOI 10.13139/OLCF/1411410.

Genotype–Phenotype Associations
Phenotypes are often complex traits, in that they are 
influenced or controlled by a great number of genes (Solovieff 
et al., 2013). GWASs attempt to associate the presence/
absence of SNPs with these complex traits (Visscher et al., 

TABLE 1 | ‘Omics data layers.

‘Omics Data layer Information gained 

Genomics Primary DNA sequence, gene annotations, transposable 
elements, repetitive sequences, genome variants 

Transcriptomics Gene expression, mRNA abundances, gene 
co-expression, potential gene co-regulation, response 
of organism (cell, tissue) to different conditions at the 
mRNA level

Metabolomics Metabolite abundances, response of organism to 
different conditions at the metabolite level

Proteomics Protein abundances, post-translational modifications, 
response of organism to different conditions at the 
protein level

GWAS Associations between genomic variants and phenotypes 
in a population, potential pleiotropic/epistatic 
relationships

Epigenomics Epigenetic features such as DNA methylation, chromatin 
accessibility

DAP-Seq Transcription factor-DNA binding

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://phytozome.jgi.doe.gov/pz/portal.html
https://phytozome.jgi.doe.gov/pz/portal.html
https://doi.org/10.13139/OLCF/1411410


Data Integration in PoplarWeighill et al.

3 September 2019 | Volume 10 | Article 874Frontiers in Genetics | www.frontiersin.org

2012; Solovieff et al., 2013). This involves genotyping a large 
sample of individuals of a population, measuring phenotypes 
across these individuals and statistically determining the 
association between the presence/absence of the genotyped 
markers or SNPs and the phenotypes across the population 
(Korte and Farlow, 2013). A general concern when conducting 
GWASs is that individuals within a population that are 
genetically related can share both causal alleles, which impact 
the phenotype (Visscher et al., 2012), and non-causal alleles 
(Korte and Farlow, 2013). These causal and non-causal alleles 
could be located nearby to each other on the chromosome and 
could thus be in linkage disequilibrium (LD)—alleles that are 
correlated across a population and thus co-inherited (Flint-
Garcia et al., 2003). This LD between causal and non-causal 
alleles across related individuals could result in non-causal 
alleles being correlated with a phenotype when they have no 
actual effect on the phenotype.

GWAS analyses generally require that the individuals in the 
population are unrelated. However, some level of population 
structure due to shared ancestors can cause spurious associations 
between genotype and phenotype, and accounting for population 
structure is thus important in order to remove variance that is due 
solely to the relatedness of individuals (for a useful review, see 
Astle and Balding et al., 2009). It is thus important to account 
for population structure in association models. However, there 
is the possibility of masking true associations that happen 
to correlate with population structure because they are local 
adaptations of clades to local environments.

An important element of GWAS studies is the issue of 
multiple hypothesis correction, as a GWAS typically involves 
the calculation of thousands or millions of statistical tests. An 
exhaustive review of different GWAS approaches and multiple 
hypothesis correction is beyond the scope of this review; however, 
we discuss these topics briefly in the Supplementary Text 1, and 
we refer the readers to useful articles on these topics (Noble 2009; 
Johnson et al., 2010; Bush and Moore, 2012; Korte and Farlow, 
2013; Fadista et al., 2016; Visscher et al., 2017).

Several studies involving GWAS analyses in P. trichocarpa 
have been published. McKown et al. (2014) genotyped 448 
individuals from the P. trichocarpa GWAS population using an 
SNP array containing ~34,000 SNPs and performed GWAS on 40 
different traits measured in the population. These traits included 
biomass phenotypes such as height, volume, and height:diameter 
ratio; ecophysiological traits such as leaf shape, chlorophyll 
content, and carbon:nitrogen ratio; and phenology traits such as 
bud set, growth period, and leaf drop. A set of 1118 significant 
GWAS associations were identified involving 410 unique SNPs, 
78% of which occurred in non-coding regions and 28% occurred 
in coding regions. This resulted in 275 genes having significant 
trait associations, many of which were transcription factors 
or regulators of some kind. A subset of 42 of the 275 genes 
exhibited multiple GWAS associations with traits in different 
trait categories, exhibiting potential pleiotropy.

Evans et al. (2014) used whole-genome sequencing of 544 
individuals from the P. trichocarpa GWAS population, and 
subsequent variant calling identified 17,902,740 SNPs. They 
found that 1) nucleotide diversity was twice as high in intergenic 

space than in genic space, 2) diversity was even lower in coding 
space, and 3) a large proportion of the SNPs had a minor allele 
frequency (MAF) ≤ 0.01 and were thus considered rare alleles. 
Metrics of natural selection, such as FST, were used to identify 
candidate regions under strong selection and suggest that this 
could be driven by climate.

Tuskan et al. (2018) tested callus induction in 280 genotypes 
from within the P. trichocarpa GWAS population and performed 
a GWAS analysis to identify SNPs potentially affecting callus 
formation. Eight genes potentially associated with callus 
formation were identified. Combining GWAS results with 
co-expression information allowed for a putative regulatory 
network for callus formation to be constructed.

In a recent study by Liu et al. (2018), 64 individuals from a full-
sib family from a cross between P. deltoides and P. euramericana 
were genotyped using real-time PCR. Phenotypes used were 
stem heights and diameters over 24 years. Both a standard GWAS 
and distance correlation sure independence screening (DC-SIS) 
association tests are performed. DC-SIS is an association 
method that allows for a multi-dimensional phenotype 
(diameter measurements over time) as opposed to a single  
phenotype measurement.

Repetitive and Transposable Elements
Transposable elements (TEs) are segments of DNA that are 
mobile, in the sense that they can move from one genomic 
location to another. Type I elements, or retrotransposons, require 
an RNA intermediate, which is then reverse-transcribed into the 
genome at a different location (Slotkin and Martienssen, 2007; 
Wicker et al., 2007). This is thus a “copy and paste” mechanism. 
Type II TEs are called DNA transposons and involve the excision 
of the DNA TE and subsequent integration elsewhere. This can 
thus be described as a “cut and paste” mechanism (Slotkin and 
Martienssen, 2007; Wicker et al., 2007). Many TEs are no longer 
active because mutations have inhibited their ability to transpose. 
However, some TEs are silenced by the host. This can include 
mechanisms such as silencing by RNAi or though DNA/histone 
methylation (Slotkin and Martienssen, 2007).

Different TEs show preference for insertion at different 
locations in the genome, and thus exhibit very different 
distributions across the genome (Bennetzen and Wang, 2014). 
TEs have large impacts on genome characteristics and evolution 
(Klein and O’Neill, 2018). Firstly, they have a significant impact 
on genome size, comprising a large part of many plant genomes 
(Bennetzen and Wang, 2014), ranging from 10% of the genome 
of Medicago truncatula, 42% of P. trichocarpa, and 80% of 
Pinus taeda (loblolly pine) (Kejnovsky et al., 2012). Unequal 
homologous recombination can also result from the presence of 
multiple TEs of a given family. This can cause various genome 
rearrangements including duplications, inversions, deletions, 
and translocations (Gaut et al., 2007; Bennetzen and Wang, 
2014). TEs that insert into gene regions can cause the gene to 
become non-functional. In addition, TEs that insert near genes 
can impact the expression pattern of the genes, especially since 
some TEs contain regulatory sequences (Wicker et al., 2007; 
Bennetzen and Wang, 2014). Application of stress to an organism 
has been shown to activate TEs, leading to the hypothesis that 
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TEs create variability in the genome that could be useful under 
times of stress (Capy et al., 2000).

Since the genome release, several investigations of repeats and 
TEs have been performed in P. trichocarpa. Soon after the release 
of the P. trichocarpa genome, Zhou and Xu (2009) annotated 
repeat sequences in the genome and made them publicly 
available in a database called RepPop. However, this database 
no longer appears to be available. Cossu et al. (2012) identified 
LTR repeats in P. trichocarpa and investigated their distribution 
across the genome, finding Gypsy LTRs to be enriched in 
putative centromeric regions. Soon after, Natali et al. (2015) 
surveyed LTR retrotransposons in an updated version of the P. 
trichocarpa genome. Vining et al. (2012) investigated the number 
of repeats and genes that were methylated vs non-methylated 
in P. trichocarpa, and found that methylated retroelements, 
LTRs, hAT elements, CACTA elements, and certain LINEs 
were overrepresented when compared to their un-methylated 
versions. It was also found that the methylation patterns of TEs 
differed significantly across tissues (Vining et al., 2012). Usai 
et al. (2017) performed an investigation into the repetitive DNA 
content of seven different Populus species, including P. deltoides, 
P. nigra, P. tremula, P. tremuloides, P. balsamifera, P. simonii, and 
P. trichocarpa. LTR repeats were the dominant repeat type across 
all species, although the total repeat content varied from 33.8% in 
P. nigra to 46.5% in P. tremuloides.

In a recent study by Mascagni et al. (2018), insertion ages of 
LTR TEs were determined in P. trichocarpa by comparing the 
sequences of the 3′ and 5′ ends of LTRs. This provides an indication 
of the time since insertion because at the time of insertion, 
the 3′ and 5′ LTRs are identical, and subsequently accumulate 
mutations independently after insertion. Insertion time was also 
determined by comparing the sequences of paralogous RTs from 
the same lineages. The two methods provided conflicting results, 
with the LTR comparison method suggesting that Gypsy TEs 
were older than Copia TEs, whereas the RT comparison method 
did not find a significant difference in the age of these classes. Yi 
et al. (2018) recently published a database (SPTEdb) of TEs in P. 
trichocarpa, P. euphratica, and Salix suchowensis. This database 
provides TE annotation for these organisms using multiple TE 
identification methods and presents these in a database format as 
well as a JBrowse interface.

Transcriptomics
Transcriptomic analysis involves the measuring of the 
expression levels of messenger RNA. Various study designs 
have been implemented in P. trichocarpa to investigate a variety 
of properties of the cellular system. Several studies have focused 
on the response of the Populus transcriptome, or a subset of the 
transcriptome, to drought stress. The study by Shuai et al. (2013) 
used RNA-Seq to identify microRNAs responsive to drought 
stress, and subsequently, Shuai et al. (2014) performed RNA-
Seq on control and drought leaf samples of P. trichocarpa to 
identify long intergenic non-coding RNAs (lincRNAs) that were 
responsive to drought stress. Tang et al. (2015) used RNA-Seq 
to identify genes differentially expressed between well-watered 
and water-limited samples, and several differentially expressed 

genes and functions were identified. Genes related to energy 
metabolism and growth (cell division and tissue expansion) 
were significantly downregulated, and Potri.013G093600, a 
homolog of an Arabidopsis thaliana vacuolar pyrophosphatase 
(AVP1) was significantly upregulated. This gene had been 
previously found to improve drought and salt tolerance in 
several plants. Another transcriptomic drought study used 
Affymetrix microarrays for expression measurements of P. 
tremula × P. alba roots for six time points under drought 
stress. Differential expression and network analysis identified 
two interesting genes (PtaJAZ3 and PtaRAP2.6), which, when 
overexpressed under drought conditions, increased root growth 
(Dash et al., 2018).

Other transcriptomic studies in Populus have focused on 
variation in gene expression across tissues or across a population. 
In the study by Quesada et al. (2008), gene expression levels 
in P. trichocarpa were measured across five different tissues 
(roots, young leaves, mature leaves, nodes, and internodes) 
using NimbleGen microarrays. Genes with tissue-specific 
gene expression were identified, with stem samples having the 
highest number of tissue-specific genes. GO enrichment was 
used to determine the enriched functions of organ-specific 
genes. The expression of P. trichocarpa genes across organs was 
also compared to the expression of their A. thaliana orthologs 
across equivalent tissues, and the authors concluded that, while 
there were some similarities between expression patterns across 
these two species, significant diversification in gene expression 
regulation has occurred between orthologs. Shi et al. (2009) 
used quantitative real-time PCR (qPCR) to determine the 
expression level of 95 genes in the phenylpropanoid pathway in 
xylem, leaf, shoot, and phloem tissues, in order to determine the 
abundance and tissue specificity of genes potentially involved 
in monolignol biosynthesis. Bao et al. (2013) performed RNA-
Seq of xylem tissue from 20 P. trichocarpa individuals from 
different populations, identified a set of genes expressed in 
xylem across all individuals, and found several instances of 
alternative splicing, particularly in cell wall-related genes and 
that these alternative splicing events differed significantly 
across individuals.

An increasingly common study design is the construction of 
a gene expression atlas for a species, which involves determining 
the expression level of every gene in the genome in various 
different tissues and/or conditions. Gene expression atlas studies 
have been performed in various plant species (see, for example, 
Table 2), and several expression atlas datasets are available on 
Phytozome (phytozome.jgi.doe.gov). The P. trichocarpa RNA-Seq 
gene expression atlas consists of genome-wide gene expression 
measurements across several different samples of tissue and 
condition combinations, including root, root tip, stem, node, 
internode, bud, leaf, and flower tissues. Root and stem tissues 
included several samples varied by nitrogen source. Bud, leaf, 
and male and female flowers included several samples of different 
stages of maturity. Gene expression values for 40 of these samples 
are currently publicly available in PhytoMine on the Phytozome 
web interface (Goodstein et al., 2012; https://phytozome.jgi.doe.
gov/index.html). To our knowledge, this is the largest RNA-Seq 
expression study performed in Populus.
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Metabolomics
Metabolomics studies involve measuring the quantities of 
metabolites within a sample. While targeted metabolomics 
studies aim to only measure and identify a select few metabolites 
within a sample (for instance using standards), untargeted 
metabolomics involves the measuring as many metabolites 
as possible within a sample (Patti et al., 2012). Identification 
of metabolites in untargeted metabolomics studies is much 
more challenging than that of targeted metabolomics studies. 
While the candidate identities of many metabolite peaks can be 
determined through database matching or manual inspection of 
mass spectra with the necessary expertise, many metabolites will 
remain unidentified or partially identified.

Several targeted and untargeted metabolomics studies have 
been performed in Populus. In a study by Morreel et al. (2006), 
metabolite levels of 15 flavonoids were measured using high-
performance liquid chromatography (HPLC), and subsequently 
mQTL (metabolite quantitative trait loci) based on amplified 
fragment length polymorphisms (AFLPs) was used to identify 
potential genes involved in rate-limiting steps of flavonoid 
biosynthesis. Kaling et al. (2015) performed untargeted 
metabolomics on UV-B treated vs. control P. alba × P. tremula 
plants using Fourier transform ion cyclotron resonance mass 
spectrometry (FT-ICR-MS). This allowed for the investigation 
of the effect of UV radiation on the metabolome. Tuskan et al. 
(2012) performed gas chromatography–mass spectrometry 
(GC/MS) analysis of 16 individual trees in P. deltoides and P. 
nigra, and showed gender-specific accumulations of metabolites 
in floral buds. In Hamanishi et al. (2015), transcriptomic 
and metabolomic data of six P. balsamifera were collected 
using Affymetrix microarrays and GC/MS, respectively, to 
investigate the response of the metabolome and transcriptome 
to drought stress. Tschaplinski et al. (2014) used GC/MS-based 
metabolomics on samples of P. trichocarpa and P. deltoides roots 
colonized with Laccaria bicolor as well as control samples to 
investigate the different metabolic responses to colonization. 
One interesting result was that increased levels of defense-related 
compounds were found in the incompatible host, P. deltoides, 
whereas some defense compounds were significantly lower in 
the compatible host, P. trichocarpa. A recent study by Veach 
et al. (2018) investigated the effects on the metabolome of P. 
deltoides when downregulating PdKOR1, a glycosyl hydrolase 

gene involved in cellulose biosynthesis. GC/MS analysis of 
root tissue from PdKOR1 RNAi lines vs. control lines showed 
that caffeic acid derivatives, metabolites involved in fatty acid 
metabolism as well as salicylates and flavonoids were upregulated 
in RNAi lines when compared to control lines Veach et al. (2018). 
Additionally, Tschaplinski et al. (2019) reported the differential 
foliar metabolomic responses of P. deltoides responding to 
acute vs. chronic drought, with the former inducing the largest 
osmotic adjustment (1.42×), with the greatest accumulations 
in the large, complex higher-order salicylate conjugates, and 
hydroxycinnamic acid conjugates of salicin; the populosides 
were particularly elevated.

A GWAS using SNPs from 917 P. trichocarpa accessions 
as well as GC/MS-based metabolomics and RNA-Seq-based 
gene expression measurement identified hydroxycinnamoyl- 
CoA:shikimate hydroxycinnamoyl transferase 2 (PtHCT2) 
as a gene that is significantly associated with the levels of 
3-O-caffeoylquinic acid, and also identified transcription factors 
that regulate this gene (Zhang et al., 2018).

Proteomics
Proteomics involves identifying and quantifying the levels of the 
protein component of cells within a sample. This is an important 
layer of data to consider, as it allows for the investigation of 
the cellular components that participate directly in metabolic 
pathways, cell structure, and development (Chen and Harmon, 
2006). The relationship between protein levels and transcript 
levels varies depending on the scenario. For example, as reviewed 
by Liu et al. (2016b), while “at steady state, mRNA levels primarily 
explain protein levels,” this relationship can change when 
measuring transcript/protein levels after a state transition, as there 
is an expected delay between mRNA and protein synthesis (Liu 
et al., 2016b). The relationship between mRNA and protein levels 
is thus complicated, and we refer the readers to Liu et al. (2016b) 
for a detailed review on the dependencies between these two 
‘omics layers. It is important to note that separate identification 
and quantification of proteins is important to fully understand this 
‘omics layer, including the set of post-translational modifications 
undetectable through other ‘omics layers.

Several proteomics studies have been performed in 
Populus investigating changes in the proteome due to different 

TABLE 2 | Examples of gene expression atlas studies in plants.

Species Reference Samples Method 

Arabidopsis thaliana Schmid et al. (2005) 79 samples from various tissues and developmental stages Affymetrix GeneChip 
Sorghum bicolor McCormick et al. (2018) 47 combinations of tissues (roots, leaves, stems, panicles) and 

developmental stages (juvenile, vegetative, reproductive)
RNASeq 

Glycine max Severin et al. (2010) 14 tissues from different developmental stages RNASeq 
Lotus japonicus Verdier et al. (2013) 237 samples of 8 tissues across various conditions Affymetrix GeneChip 
Medicago truncatula Benedito et al. (2008) 18 samples from tissues across different developmental stages Affymetrix GeneChip 
Barley Druka et al. (2006) 15 tissues identified from eight developmental stages Affymetrix GeneChip 
Rice Wang et al. (2010) 31 tissues spanning life cycle of rice plant for 2 rice varieties, 8 

samples from stages in the tissue culture process
Affymetrix GeneChip 

Panicum virgatum L 
(Switchgrass)

Zhang et al. (2013) Tissues (roots, shoots, and panicle) and developmental stages (leaf 
development, stem elongation and reproduction)

ESTs

Vitis vinifera Fasoli et al. (2012) 54 samples from tissues spanning different developmental stages NimbleGen microarray and RNASeq 
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developmental stages or conditions. There is a particular abundance 
of studies investigating the response of the Populus proteome to 
drought stress. Zhang et al. (2010) investigated the sex-related 
differences proteomic response to drought stress in P. cathayana 
and found significant sex-dependent responses to drought stress, 
particularly in chloroplast-related processes such as the Calvin 
cycle, electron transport chains, and chloroplast components. They 
also found that the growth rates of male trees were less affected by 
drought than females, and that chloroplasts were less damaged by 
drought in males than females (Zhang et al., 2010). Durand et al. 
(2011) performed a proteomic study to investigate the different 
drought responses of different tissues in Populus tremula L. × P. 
alba L., illustrating how some tissues are affected sooner by drought 
than others. Abraham et al. (2018) investigated the proteome of 
P. deltoides in response to different types of drought stress. Two 
separate drought treatments were used: a cyclic drought treatment 
and a prolonged, “slow-drying” water deficit. Differentially 
abundant proteins were determined for each of the two drought 
treatments, and, interestingly, these sets of differentially abundant 
overlapped by only around 10%. This study illustrated diversity in 
responses to different types of water deficit stress.

Several studies have also investigated proteome profiles at 
different stages of development in Populus species (Liu et al., 
2015; Obudulu et al., 2016). Proteomics is thus an important data 
layer that can provide information about cellular function and 
responses that could not be gained by other ‘omics layers. As the 
“end point” of the central dogma, proteins are the biomolecules 
that provide a large part of the functional capacity of a cell, and are 
a crucial aspect of understanding the functioning of the system.

Epigenomics
DNA Methylation
Epigenetics involves the study of additions of chemical groups 
to chromatin (either the DNA or histones) that do not change 
the underlying DNA sequence. These modifications consist of 
histone methylation (Liu et al., 2010), histone acetylation (Lusser 
et al., 2001), and DNA methylation (Finnegan et al., 1998). 
Histone methylation occurs on lysine and arginine residues in 
histones and can have a silencing or activating effect on gene 
expression, depending on which lysine residue is methylated (Liu 
et al., 2010). Histone acetylation involves the addition of an acetyl 
group to the ϵ amino group of lysine residues in the N-terminal 
tails of histones that protrude from the histone octamer complex 
(Lusser et al., 2001). While histones are usually positively charged, 
and DNA is negatively charged, acetylation can neutralize the 
positive charge of the histones, resulting in a weaker association 
between the DNA and the histone complex. This can allow for 
greater access for transcription factors to the DNA and can thus 
impact gene expression (Lusser et al., 2001). DNA methylation 
involves the addition of a methyl group to cytosine residues (Law 
and Jacobsen, 2010). This is known to have a gene-silencing 
affect. DNA methylation in plants occurs mostly in repetitive 
DNA and TEs. This is thought to be a protective mechanism to 
silence transposons. DNA methylation is also found within the 
transcribed regions of genes in plants (Suzuki and Bird, 2008). 
This gene body methylation does not have a silencing effect like 

promotor methylation does, but appears to lead to stable gene 
expression across many tissues (Zilberman et al., 2007; Suzuki 
and Bird, 2008). Epigenetic modifications can be inherited from 
parents or occur as a result of a stress response (Chinnusamy and 
Zhu, 2009; Lämke and Bäurle, 2017).

Two major whole-genome sequencing-based approaches for 
determining DNA methylation across a genome are methyl-DNA 
immunoprecipitation (MeDIP) followed by sequencing (MeDIP-
Seq) (Jacinto et al., 2008) or treatment of DNA with bisulfite 
followed by sequencing (Frommer et al., 1992; Krueger et al., 2012). 
MeDIP-Seq involves shearing of DNA into small fragments of 
300–600 bp and subsequent immunoprecipitation of methylated 
DNA using an antibody raised against 5-methylcytidine. The 
resulting immunoprecipitated fragments are sequenced, and 
mapping of the reads to the reference genome reveals the regions 
of the genome that contain methylated cytosines. It is important 
to note that the resolution of the methylation results cannot 
exceed the fragment size. In bisulfite sequencing, DNA is pre-
treated with sodium bisulfite, which converts un-methylated 
cytosine residues to uracil residues, while methylated cytosine 
residues remain unchanged. Subsequent sequencing provides 
single-base resolution of methylated cytosines (Frommer et al., 
1992; Krueger et al., 2012). See published papers of Laird (2010) 
and Bock (2012) for useful reviews on DNA methylation analysis.

Vining et al. (2012) investigated DNA cytosine methylation in 
seven different tissues in P. trichocarpa, including bud, male catkin, 
female catkin, leaf, root, xylem, and phloem. DNA methylation 
was determined using MeDIP-Seq followed by mapping of reads 
to the P. trichocarpa reference genome. Reads mapped most 
frequently to intergenic regions and repeat sequences, although 
promotor methylation and gene body methylation were observed. 
Variation in methylation across tissues was observed at certain 
chromosomal locations. A surprising result was that gene body 
methylation appeared to be a stronger repressor of transcription 
than promotor methylation (Vining et al., 2012). Slavov et al. 
(2012) made use of the methylation data generated by Vining 
et al. (2012) in investigating the correlates of recombination in the 
P. trichocarpa genome and found that DNA within recombination 
hotspots were significantly less methylated than non-hotspots.

A follow-up study by Vining et al. (2013) used MeDIP-Seq 
to examine methylation levels in another three tissues, focusing 
on regeneration and de-differentiation tissue types, namely, 
internode stem from propagated explants, callus, and internodes 
from regenerated plants. The MeDIP-Seq reads for the 10 
different P. trichocarpa tissues from these two studies have been 
mapped to the version 3.2 genome assembly and are available on 
Phytozome (Goodstein et al., 2012).

A stress response methylome study was performed in P. 
trichocarpa in which DNA methylation was measured in drought 
stress and control plants using bisulfite sequencing (Liang et al., 
2014). The number of methylated cytosines increased significantly 
under drought stress and the genes differentially methylated in 
drought stress vs control plants were enriched for regulatory 
GO terms. This study also performed the first investigation of 
alternative splicing in P. trichocarpa and identified multiple 
forms of alternative splicing. An interesting finding was also that 
all fusion genes identified were methylated (Liang et al., 2014).
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Lafon-Placette et al. (2013) investigated the component of 
the P. trichocarpa methylome in open chromatin by isolating 
chromatin sensitive to DNase I and performing MeDIP-Seq on 
the resulting DNA. Extensive gene body methylation was found, 
more so than was originally reported for P. trichocarpa.

The two studies by Vining et al. (2012, 2013) provide the best 
available methylation dataset to use as an association network layer 
in P. trichocarpa as it covers the broadest range of sample types.

AtAC-Seq
The assay of transposase-accessible chromatin (ATAC-Seq) 
uses a transposase to insert sequencing adaptors into accessible 
regions of chromatin (the areas in between nucleosomes) 
(Buenrostro et al., 2013, Buenrostro et al., 2015). The resulting 
fragments are then PCR-amplified and sequenced. This results in 
nucleotide resolution of open chromatin. There were challenges 
in applying this method to plant cells due to contaminating DNA 
from chloroplasts and mitochondria because chloroplast and 
mitochondria genomes are very accessible to the transposase 
and thus lower the efficiency of the technique. Lu et al. (2016) 
developed a technique, fluorescence-activated nuclei sorting 
(FANS)-ATAC-Seq, which involves sorting of nuclei using 
flow cytometry prior to ATAC-Seq analysis. Bajic et al. (2018) 
describe protocols for the isolation of plant nuclei from different 
cell types for further analysis using ATAC-Seq. A recent study 
by Maher et al. (2018) applied ATAC-Seq to A. thaliana, M. 
truncatula, Solanum lycopersicum (tomato), and Oryza sativa 
(rice). An interesting finding was that in all four species, most 
open chromatin sites were in non-transcribed regions.

ATAC-Seq is a relatively new technology, and, to date, no study 
has been published on the application of ATAC-Seq in P. trichocarpa.

DAP-Seq
DNA affinity purification sequencing (DAP-seq) is a technique 
used to determine transcription factor binding sites (O’Malley 
et al., 2016). This technique involves coupling a particular 
transcription factor of interest to affinity beads. Fragmented 
genomic DNA is eluted over the beads, retaining only DNA 
fragments that bind to the transcription factor. Subsequently, the 
retained fragments are sequenced. The first study describing this 
technique demonstrated its use in identifying the Arabidopsis 
“cistrome”—the binding location/motifs of 1,812 transcription 
factors (O’Malley et al., 2016). The DAP-seq protocol was 
published by Bartlett et al. (2017).

To date, no DAP-seq study has been performed in P. 
trichocarpa. This would be an incredibly valuable data layer 
to investigate the transcription factor regulatory network of  
P. trichocarpa.

DATA INTEGRATION

Multi-Omic Studies and Data Integration
The current era has an extensive suite of technologies capable 
of measuring and characterizing several aspects of a cellular 
system, such as NGS technologies for genomics, transcriptomics, 
and epigenomics as well as metabolomics and other phenotypes. 

An untargeted approach is often favored over a targeted 
approach as this attempts to capture information about the 
entire system and understand the organism as a whole. In the 
review by Weckwerth (2011), it is highlighted that the next step 
in understanding complex systems will involve the integration 
of these different data layers. An important and challenging task 
that data integration can help solve is the identification of new 
candidate genes involved in complex phenotypes (Hassani-Pak 
and Rawlings, 2017; Valledor et al., 2018), which can then be 
validated using genetic/molecular biology tools. It is particularly 
difficult to generate hypotheses that suggest the mechanism of 
a gene’s effect on a particular phenotype. Prioritizing candidate 
genes and hypothesizing the mechanism of the effect requires 
multiple data types, such as gene–phenotype associations, 
expression/co-expression information, knowledge from 
literature, annotation information, protein–protein/protein–
DNA interactions, and epigenetic modifications, to name a few 
(Hassani-Pak and Rawlings, 2017). This presents a challenge 
because of the heterogeneous nature of these data types, and the 
fact that they are often distributed across different databases and 
represented as different structures (Hassani-Pak and Rawlings, 
2017). There is thus an increasing value in databases that integrate 
various layers of data from various sources (Hu et al., 2018), for 
example, Knetminer (Hassani-Pak et al., 2016; Hassani-Pak, 
2017) and String (Mering et al., 2003; Szklarczyk et al., 2010; 
Fukushima and Kusano, 2014; Szklarczyk et al., 2017).

Data integration requires that the various data layers be 
coerced into a uniform data structure. The data collected from 
various techniques can each be represented as a matrix/table of 
samples and variables, as illustrated in the review by Weckwerth 
(2011). Once represented as a matrix, there are various data 
structures/analysis approaches that can be used to integrate and 
analyze the data. This can range from multivariate analysis such 
as Orthogonal Projections to Latent Structures (OPLS) (Bylesjö 
et al., 2007) to networks (Krishnan et al., 2016; Hassani-Pak and 
Rawlings, 2017) and signal processing, such as that seen in the 
study by Spencer et al. (2006).

There are two main data integration strategies that have been 
applied in poplar, namely, network-based data integration and 
signal-based integration. While there are many useful databases that 
present poplar gene networks or different sources of ‘omics data [see, 
for example, “GFDP: the gene family database in poplar” (Wang 
et  al., 2018a) and also the useful review by Lee et al. (2015)], we 
will focus below on strategies that have computationally integrated 
several different ‘omics data layers. This section describes the theory 
behind integration strategies and data structures/approaches applied 
in poplar, such as networks and signal processing. Examples of the 
various ‘omics layers in these data structures are then presented. 
Thereafter, examples in which these data structures/methods are 
used in the analysis of multiple biological data types are discussed, 
focusing on examples in Populus species.

Networks
Network Theory
Networks are useful mathematical structures that represent a 
system in terms of its components, and pairwise interactions 
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between the components (Barabasi and Oltvai, 2004). The field 
of Network Theory has its origins in Graph Theory. Intuitively, 
a graph (or network) is a set of objects (nodes) connected by 
lines (edges) as shown in Figure 1A. In biological network 
applications, nodes represent a biological object of interest and 
edges represent associations/interactions/similarities between 
these biological objects.

A graph can be represented numerically as a matrix, namely, 
an Adjacency Matrix (Golumbic, 2004). The Adjacency Matrix 
associated with the small example graph in Figure 1A is shown 
in Figure 1B. Each edge eij in a graph can be assigned a real 
number weight wij that represents the strength of the relationship 
between the two nodes it connects. A weighted graph can be 
mathematically represented as a Weighted Adjacency Matrix. 
This matrix is constructed in a similar manner to the normal 
Adjacency Matrix.

A bipartite graph involves nodes that can be partitioned 
into two non-overlapping sets. Intuitively, this means that a 
bipartite graph (or a bipartite network) consists of two classes 
of nodes in which nodes of one class can only be connected 
to nodes of the other class. An example of a bipartite network 
is shown in Figure 1C, and its matrix representation is shown 

in Figure 1D. Mathematical definitions of networks and 
adjacency matrices can be found in Supplementary Text 2.

Networks are useful tools for modeling and analyzing 
complex biological systems by representing biological molecules/
components as nodes (e.g. genes, proteins or metabolites) and 
representing the relationships/interactions/similarities between 
them as edges (Barabasi and Oltvai, 2004). For example, 
networks can model co-expression relationships between 
genes, sequence similarity between genes, physical interactions 
between proteins, or correlations between metabolites. Bipartite 
networks are particularly useful when representing relationships 
between different types of biological objects/concepts. For 
example, Goh et al. (2007) use bipartite networks to represent 
the human “diseaseome,” connecting human diseases to their 
associated genes. Also, Weighill et al. (2019a) used bipartite 
network representations of GWAS results in order to characterize 
potentially pleiotropic associations in P. trichocarpa. As discussed 
in Weighill et al. (2019a), bipartite networks are useful structures 
for the representation and visualization of high-dimensional 
data. One set of nodes in a bipartite network can represent the 
variables (axes) of a space, while the other set of nodes represents 
the points within that space (samples). This representation 

FIGURE 1 | Example networks. A small, standard undirected network represented (A) visually as a collection of nodes and edges and (B) as an adjacency matrix. A 
bipartite network represented (C) visually and (D) as an adjacency matrix.
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allows for high-dimensional datasets to be visualized in two 
dimensions as a network. Networks allow for biological datasets 
to be visualized in an intuitive manner and network visualization 
packages such as Cytoscape (Shannon et al., 2003) provide an 
interactive environment for network visualization. However, 
networks are not simply useful as a visualization tool. Networks 
provide a data structure that can be computed upon, allowing 
further analysis to be performed on a dataset represented as a 
network. Examples of such analysis methods include network-
based clustering algorithms such as Markov Clustering (MCL) 
(Enright et al., 2002) and Weighted Gene Co-expression 
Network Analysis (WGCNA) (Zhang and Horvath, 2005) that 
cluster the nodes of a network into groups based on the topology 
of the underlying network. Datasets represented as networks 
are also very easily merged with each other. This feature makes 
networks a useful tool for combining information from different 
data sources to create an integrated and holistic environment for  
data interpretation.

GWAS Networks
Network approaches have been applied to GWAS analyses in 
order to interpret or further analyze the resulting lists of SNPs 
and p values. These often involve mapping the resulting SNPs 
associated with phenotypes to their respective genes, and then 
projecting these genes into protein–protein interaction networks 
(Akula et al., 2011) or co-expression networks (Farber, 2013) in 
order to identify other putative causal genes, or to form sets or 
subnetworks of genes putatively affecting the same phenotype 
(Leiserson et al., 2013).

The results of a GWAS can be viewed as a bipartite network 
where the set of nodes can be partitioned into a set of SNPs and 
a set of measured phenotypes, and the edges connect SNP nodes 
to phenotype nodes they are significantly associated with. SNPs 
can be connected to multiple phenotypes, and phenotypes can 
be connected to multiple SNPs. A toy example of such a network 
can be seen in Figure 1C. Teal, diamond-shaped nodes represent 
measured phenotypes A–D and orange, circular nodes represent 
SNPs 1–6. Each edge represents GWAS associations between 
SNPs and phenotypes. This representation of GWAS results has 

been used to estimate pleiotropy within a Human-Phenotype 
Network, calculated as the average degree of the gene nodes 
within a gene–phenotype bipartite network (Darabos et  al., 
2014). Another example can be seen in a study by Fagny et al. 
(2017) in which the results of an expression quantitative trait 
loci (eQTL) were represented as a bipartite network, connecting 
SNPs to genes if the expression level of the gene was significantly 
associated with the SNP (Fagny et al., 2017). Recently, Weighill 
et al. (2019a) presented a method for characterizing multi-
phenotype association signatures from GWAS results in order to 
investigate potentially pleiotropic interactions between genes and 
phenotypes. This method involves a decomposition relationship 
between three GWAS-derived bipartite networks, which allow 
for detailed pleiotropic signatures to be characterized, and, 
furthermore, allows for genes to be clustered based on the 
detailed topology of SNP–phenotype associations within the 
gene. This method was demonstrated on metabolomic GWAS 
results in P. trichocarpa and suggests applications of this method 
in identifying promising target genes of interest to modification 
or selective breeding (Weighill et al., 2019a).

Co-Expression, Co-Methylation, and  
Correlation Networks
Several of the ‘omics data layers discussed in the section Sources 
of ‘Omics Data Layers can be used to construct gene networks, 
such as gene co-expression networks and gene co-methylation 
networks. These networks require some quantity, such as gene 
expression, to be measured for every gene across multiple samples 
representing different conditions, tissues, or perturbations. 
A common way to construct gene association networks is to 
calculate the similarity between the profiles of all pairs of genes 
(Figure 2) and then apply a threshold [for examples, see Li 
et  al. (2015) and Weighill and Jacobson (2017)]. The choice of 
similarity metric can have a large impact on the resulting network 
topology, as shown in a study by Weighill and Jacobson (2017).

Co-expression networks have been used for various 
applications, including gene function investigations, gene module 
and regulatory hub gene investigations, as well as comparative 
co-expression network analysis across different species 

 

FIGURE 2 | Vector similarity. Gene association network comparison involves construction of a data matrix of measurements (e.g., gene expression) for all genes in a 
genome across various samples. Calculation of the similarity between all pairs of gene vectors results in a similarity score.
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(Aoki et al., 2007; Li et al., 2015; Serin et al., 2016; Emamjomeh 
et al., 2017; Schaefer et al., 2017). Movahedi et al. (2012) described 
an approach for incorporating gene homology information in 
order to compare gene co-expression modules across plant species 
to identify clusters that are conserved across species. The overall 
functional impact of modules of sets of co-expressed genes can 
be investigated using enrichment of functional ontologies such as 
GO (Gene Ontology Consortium, 2004) and MapMan (Thimm 
et al., 2004) [see, for example, Emamjomeh et al. (2017)].

Horvath and Dong (2008) presented a useful set of 
network topology measures to characterize the structure of a 
co-expression network (or any network). These measures ranged 
from global network measures such as centralization, density, and 
heterogeneity to node-based metrics such as connectivity and 
the clustering coefficient. Yip and Horvath (2007) also developed 
a new network measure/transformation called Topological 
Overlap, which calculates the “connectedness” of two nodes 
based on direct connections as well as indirect connections via 
their neighbors. This provides an extra transformation that can be 
performed on a similarity network, which considers not only the 
similarity between expression profiles of two genes in question 
but also the expression profiles of their network neighbors, and 
thus can help address the problem arbitrary thresholds missing 
important edge connections. This Topological Overlap measure 
is an integral part of a popular gene co-expression pipeline 
called WGCNA developed by Langfelder and Horvath (2008). 
An extension of the Topological Overlap measure, called Cross-
Network Topological Overlap, was developed by Weighill and 
Jacobson (2017), which can be used to compare the similarity 
in the neighborhoods of a given node in two distinct networks.

Several studies in Populus species have involved co-expression 
networks, some focusing on co-expression networks as the main 
aspect of the investigation, and others using co-expression 
networks as a supplementary investigation surrounding 
the functions of a specific set of genes. Netotea et al. (2014) 
investigated differences in the genome-wide co-expression 
networks of P. trichocarpa, O. sativa, and A. thaliana constructed 
from publicly available expression data. It was found that while 
individual gene–gene co-expression relationships were different 
between the three species, overall neighborhoods of genes were 
significantly conserved across species. Another interesting 
finding was that orthologs with the most sequence similarity did 
not have the most similar expression pattern [“expressolog,” as 
defined in Patel et al. (2012)].

An interesting co-expression study by Grönlund et al. 
(2009) constructed co-expression networks from 1024 publicly 
available microarray datasets for P. tremuloides by jack-knife 
re-sampling half of the number of samples 100 times, calculating 
the Pearson correlation between all pairs of genes in each jack-
knife re-sample, converting the Pearson correlations to distance 
metrics, and subsequently constructing 100 minimum spanning 
trees (MSTs) and merging the resulting networks. This approach 
of re-sampling allowed for the identification of rarer interactions 
between genes that would not have been identified through 
only looking at the dataset as a whole. Another whole genome 
co-expression study in Populus was performed by Ogata et al. 
(2009) in which 95 publicly available P. trichocarpa microarray 

expression datasets were used to construct a co-expression 
network and extracted co-expression modules, which were 
released in a publicly available database.

Several studies of specific genes in Populus incorporated 
co-expression elements into their analysis. Tian et al. (2017) 
investigated the role of P. trichocarpa Na+/H+ antiporters in stress 
responses, as well as potential functional divergences within the 
family of these NHX genes. Using a co-expression network from 
publicly available data on Phytozome, they showed divergence in 
the expression pattern of members of this family. Several studies 
in Populus performed WGCNA of genes responding to certain 
stresses/conditions, including control vs drought conditions 
(Xue et al., 2016) in P. tremula × alba, controls vs jasmonic acid, 
and salicylic acid treatments in a P. deltoides × P. euramericana 
hybrid (Luo et al., 2019), and also a developmental gradient of 
stem tissue (Chao et al., 2019). In a characterization of DWARF14 
genes in P. trichocarpa, co-expression networks showed divergent 
expression between the two DWARF14 (Zheng et al., 2016). In 
another recent study by Tuskan et al. (2018), genes having a 
GWAS association with callus formation were identified, and the 
co-expression patterns of these genes were investigated using a 
co-expression network constructed from the P. trichocarpa gene 
expression atlas, and identified interesting clusters of positive 
and negative co-expression relationships between these genes, 
showing a clear regulatory pattern. It is evident that co-expression 
networks are a well-developed and widely used data layer in 
various organisms including Populus.

Co-methylation networks are a newer approach looking at the 
similarity between the methylation patterns of genes, and a more 
limited number of studies using co-methylation networks were 
found. However, they are a valid and useful data layer that carries 
information not present in co-expression datasets.

In a study by van Eijk et al. (2012), methylation and gene 
expression data were collected for several human individuals 
to investigate the relationship between these two data layers. 
WGCNA was used to construct co-expression and co-methylation 
networks, and subsequently to identify co-expression and 
co-methylation modules. In general, co-expression and 
co-methylation modules had very few overlapping genes, 
although both co-expression and co-methylation modules 
showed significant functional enrichment for various GO terms. 
Linear regression was also used to identify relationships between 
methylation and expression across individuals in which both 
positive and negative relationships were identified (van Eijk et al., 
2012). Various other co-methylation network analyses have been 
performed in human cancer investigations (Akulenko and Helms, 
2013; Bartlett et al., 2014; Ha et al., 2015).

SNP Correlation
SNP correlation networks involve calculating the correlation/
co-occurrence between SNPs across a population, and can be 
converted to gene–gene networks by mapping SNPs to the genes 
in which they reside. The Custom Correlation Coefficient (CCC) 
is an allele-specific correlation metric proven to be useful in 
identifying sets of SNPs (“blocs”) that can be tested against complex 
phenotypes to uncover combinatorial genetic associations that 
affect the phenotype (Climer et al., 2014a; Climer et al., 2014b). 
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The edges in the SNP correlation network can also be interpreted 
as potential co-evolutionary relationships, particularly when the 
variants in question reside on different chromosomes. The CCC 
is defined for bi-allelic SNPs. For a given pair of sites i and j, 
the CCC is calculated four times, once for each pair of alleles x 
and y between the two sites. The CCC between alleles x and y at 
positions i and j, respectively, is defined as: 
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where Ri jx y  represents the relative co-occurrence of x and y 
at positions i and j, fix  represents the frequency of allele x at 
position i, and f jy  represents the frequency of allele y at position 
j (Climer et al., 2014a; Climer et al., 2014b).

CCC has been used to investigate the genetic underpinnings 
of heart disease (Climer et al., 2014b), psoriasis (Climer 
et  al., 2014a), and genes implicated in various other diseases 
(Climer et al., 2015). This metric was also applied in a study 
by Bryan et al. (2018) in P. trichocarpa. The positioning of the 
two DWARF14 paralogs in the P. trichocarpa SNP correlation 
network was investigated, indicating that they appeared to 
have different co-evolution partners, potentially indicating 
functional divergence (Bryan et al., 2018). The CCC metric 
has been ported to run on graphics processing units (GPUs) 
providing a significant increase in speed (Joubert et al., 2018; 
Joubert et al., 2019).

Kogelman and Kadarmideen (2014) constructed SNP 
correlation modules by calculating the Pearson correlation 
between pairs of variants across individuals followed by 
topological overlap clustering using WGCNA. This method 
was termed “WISH” (Weighted Interaction SNP Hub) and was 
considered an extension of WGCNA to genotype data. Later, 
in 2017, the developers of WGCNA published an extension of 
the method to construct SNP correlation networks from GWAS 
associations, termed “WSCNA” (Weighted SNP Correlation 
Network Analysis), which involves clustering SNPs based on 
beta coefficients from a GWAS analysis (Levine et al., 2017), 
and describe the use of these networks in calculating polygenic 
risk scores.

Network-Based Data Integration
A useful review by Gligorijević and Pržulj (2015) classifies 
network-based data integration into two categories, namely, 
homogeneous and heterogeneous integration. Homogeneous 
integration involves integrating networks with the same type of 
nodes, but different edge types, for example, a gene co-expression 
network and a gene interaction network. Heterogeneous data 
integration involves integrating networks with both different 
node types and edge types. These strategies for data integration 
are then subdivided into groups based on the stage at which 
data integration occurs. Early integration involves integration of 
the datasets, and a single model is built on a combined dataset. 
This appears similar to the definition of Concatenation-based 
integration as described by Ritchie et al. (2015). Late integration 
involves building separate models from each individual dataset 

and subsequently combines the information in the separate 
models. This is similar to Model-based integration as described 
by Ritchie et al. (2015). A third integration strategy described by 
Ritchie et al. (2015), transformation-based integration, involves 
transforming multiple datasets into an intermediate, common 
structure, such as a network, which are then merged before the 
constructing further models.

Two of the most exhaustive network-based data integration 
tools are String (Search Tool for the Retrieval of Interacting 
Genes) and KnetMiner, both of which are online, freely 
accessible resources. STRING is an online, publicly available 
database of protein interactions, incorporating various data 
types and data sources, including co-expression, co-occurrence, 
physical interactions, sequence homology, and associations 
from textmining (Mering et al., 2003; Szklarczyk et al., 2010; 
Szklarczyk et al., 2017). The user can search for genes and 
resulting network neighborhoods can also be clustered using 
K-means clustering and MCL (Enright et al., 2002). Protein 3D 
structure as well as functional enrichment information is also 
displayed. The STRING database can also be queried through 
the Cytoscape network visualization app (Shannon et al., 2003; 
Szklarczyk et al., 2017). Certain sets of publicly available data for 
P. trichocarpa are available in STRING. KnetMiner is a publicly 
available tool/database consisting of heterogeneous “knowledge” 
networks for 11 species, including P. trichocarpa, and includes 
layers of information of different types and sources represented as 
networks, such as GWAS data, sequence homology relationships, 
annotation information, metabolic pathways, protein 
interactions, and occurrence in scientific literature (Hassani-Pak 
et al., 2016; Hassani-Pak, 2017). KnetMiner allows the user to 
search not only for genes, but also for concepts, phenotypes, or 
pathways. A score (KNETscore) is then calculated to rank genes 
based on their relevance of the neighborhood to the search terms. 
KnetMiner provides useful network visualizations as well as a 
chromosomal view indicating the location on the chromosomes 
in which the genes occur and an “evidence view” indicating the 
number of nodes/concepts of different types in the neighborhood 
of the genes in question.

The Mergeomics R package and webserver allows one to 
integrate GWAS summary statistics with other biological 
pathways and gene networks, and perform enrichment analyses 
as well as Weighted Key Driver Analysis (Arneson et al., 2016). 
This involves identifying hub genes in a selected/uploaded gene 
network, and subsequently overlaying phenotype-associated 
genes from uploaded GWAS analyses, and reports key drivers for 
each of these genes (Arneson et al., 2016). Key drivers and their 
neighborhoods can then be visualized using Cytoscape Web.

Mizrachi et al. (2017) developed an interesting network-based 
data integration approach to combine pathway information 
from KEGG, eQTL associations, and gene expression data in 
Eucalyptus. The network-based integration approach involves 
constructing a gene interaction network based on information in 
KEGG as well as eQTL associations with biomass and wood traits. 
The adjacency matrix of this network is then multiplied with a 
gene expression matrix, which results in a “network-diffused 
gene expression” matrix. This adjusts gene expression values 
based on those of neighboring genes in the gene interaction 
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network. These new gene expression profiles are then correlated 
with each trait to identify genes of relevance to wood properties 
and biomass (Mizrachi et al., 2017).

Walley et al. (2016) performed a study that compared the 
topologies of various gene association networks in Maize. A 
gene co-expression network, a protein-co-expression network, 
and a phosphoprotein co-expression network were constructed 
and clustered into modules using WGCNA, and the edge 
conservation between the networks was calculated using the 
Jaccard index, and found that 6.1% of the edges were shared 
between the protein co-expression and gene co-expression 
networks. Functional enrichment using MapMan (Thimm et al., 
2004) terms was performed on modules of co-expressed genes/
proteins from the two networks, and similar enriched functions 
were found in both networks.

NetICS (Network-based Integration of Multi-omics 
Data) is a data integration strategy based on graph diffusion 
(Dimitrakopoulos et al., 2018). This method was developed 
by Dimitrakopoulos et al. (2018) in order to prioritize cancer 
genes. A directed gene interaction network was constructed 
from publicly available data that included multiple types of 
relationships, including phosphorylation, co-expression, 
activation, and inhibition. Aberrant genes (i.e., those found to be 
differentially impacted in a case/control experiment) are marked 
and network diffusion is used to predict “mediator genes” that 
link upstream “genetically aberrant” genes to downstream gene 
expression changes (Dimitrakopoulos et al., 2018). This approach 
successfully identified many known cancer genes.

Gutiérrez et al. (2007) investigated gene expression in A. 
thaliana under carbon and nitrogen treatments. A separate 
gene interaction network was constructed using publicly 
available protein–protein and protein–DNA interactions, 
as well as miRNA–RNA interactions and the Arabidopsis 
metabolic pathway. A subnetwork consisting of C/N 
responsive genes and their neighbors in the multi-network was 
constructed. Clustering of this subnetwork revealed interesting 
 regulatory subnetworks.

Bunyavanich et al. (2014) used a multi-omic network-
based approach to investigate allergic rhinitis. GWAS 
was performed on 5633 genotyped individuals, and gene 
expression was measured in 200 of these individuals. Gene 
co-expression network and modules were constructed using 
WGCNA. Co-expression modules that contained genes 
that harbored or were near to GWAS-associated genes were 
considered candidate modules associated with allergic 
rhinitis. Associations between SNPs and gene expression 
were determined (called “eSNPs”), which are SNPs within 1 
MB of a gene, which is also associated with the expression 
of the gene. Modules enriched in eSNPs were also identified, 
and it was found that the candidate allergic rhinitis modules 
were enriched in eSNPs associated with allergic rhinitis, 
and mitochondrial pathways were identified as important 
components of allergic rhinitis using functional enrichment 
(Bunyavanich et al., 2014).

Calabrese et al. (2017) integrated GWAS and co-expression 
data in an investigation into genes affecting bone mineral 
density. Genes identified as associated with bone mineral 

density in a GWAS analysis were mapped onto a co-expression 
network, which was subsequently clustered into modules. 
Co-expression modules that were enriched for GWAS hits were 
then identified.

Liu et al. (2016a) constructed a “co-functional” gene network 
for P. trichocarpa, making use of multiple data sources, including 
genomics data, poplar gene expression data from microarray 
experiments, as well as various sources of annotation including 
PFAM, GO, KEGG pathways, MapMan annotations, and 
MetaCyc. The co-functional network is accessible through 
the PoplarGene webserver, which also contains tools for gene 
prioritization (Liu et al., 2016a).

Weighill et al. (2018) presented a “Lines of Evidence” (LOE) 
approach for integrating data and identifying new candidate 
genes involved in a function of interest. The LOE approach 
takes as input a set of anchor genes/phenotypes thought to be 
involved in a given function of interest based on annotation 
and literature/expert knowledge. Thereafter, a LOE score 
is calculated for every gene in the genome, quantifying its 
connectivity to the input anchor genes across various ‘omics 
network layers. These scores then allow genes to be ranked 
based on how much evidence exists connecting them to a given 
function across several data layers. This method, demonstrated 
and applied in P. trichocarpa, integrated several layers of 
association networks, including a gene co-expression network, 
gene co-methylation network, gene co-evolution network, 
as well as two GWAS networks and identified new promising 
candidate genes potentially involved in lignin biosynthesis and 
regulation (Weighill et al., 2018). The association networks 
constructed in this study were also used to provide context 
to candidate genes identified in a multi-trait GWAS analysis 
in P. trichocarpa, using combinations of 14 morphological/
physiological traits to identify candidate genes involved in 
these traits (Chhetri et al., 2019).

There have thus been several efforts to integrate various data 
layers, sometimes for the goal of prioritizing candidate genes, 
and others for providing biological context for the interpretation 
of GWAS results.

Signal Processing
Data Representation
In the previous section, we discussed the representation 
of biological data at network structures, which focuses on 
relationships between pairs of objects. Here, we discuss the 
representation of biological data as “signals” and subsequent 
analysis techniques.

A biological signal represents the response of a variable over 
some range of input values, which usually have some longitudinal 
feature, such as a response over increasing time, or a response 
over increasing distance. Classic examples of biological signals 
are feature density signals across chromosomes, such as SNP 
density, gene density, recombination density, and GC content, to 
name a few (Spencer et al., 2006; Paape et al., 2012; McCormick 
et al., 2018).

These signals have variation at different scales (i.e., are 
composed of multiple signals of different frequencies), and 
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signal processing techniques can be used to extract frequency 
information. McCormick et al. (2018) who used the Fourier 
Transform to identify a prominent periodicity in SNP density, 
finding that SNP density peaked with a period of 3 base pairs 
downstream of coding sequence start sites, which was explained 
by the positions in the third “wobble” base being under lower 
selective pressure.

The Fourier transform represents a signal as a linear 
combination of sine and cosine waves. These are infinite waves 
and thus the Fourier transform provides no information as to 
which frequencies are observed at different locations in the signal. 
The wavelet transform is a newer signal processing technique 
that addresses this limitation (Leavey et al., 2003).

Continuous Wavelet Transform
The Continuous Wavelet Transform (CWT) is a signal processing 
technique that expresses a signal as a linear combination of 
special functions called wavelets. These functions are scaled 
translations of a mother wavelet function, i.e., different widths 
and different x-axis locations of a particular function. A wavelet 
w is required to have oscillations and is required to “die out,” i.e., 
the function lim ( )x w x→∞ = 0. An example of a wavelet function 
called the Ricker Wavelet can be seen in Figure 3A.

What results from a wavelet transform is a wavelet coefficient 
W(s, τ) (Equation 2), for every scale s and translation (shift along 
the x-axis) τ (Leavey et al., 2003). 

 
W s

s
f t t

s
dts( , ) ( )τ ψ τ= −



∫1 *  (2)

This essentially can be interpreted as “sliding” the wavelet of 
a certain width over the signal, and at each position calculating 
the integral of the product of the wavelet and the signal over the 
entire x-axis, producing a vector of coefficients. This process 
is then repeated for multiple widths of the mother wavelet. An 
example of the CWT applied to the SNP density of P. trichocarpa 
chromosome 1 can be seen in Figure 3B. Other visual examples 
of various mother wavelets and CWT coefficient outputs can be 
seen in references (Leavey et al., 2003; Mi et al., 2005; Spencer 
et al., 2006; Dong et al., 2008).

Discrete Wavelet Transform
The Discrete Wavelet Transform (DWT) is a sampled version of 
the CWT and involves sampling of the x dimension of the signal 
and scale dimension of the wavelet (Leavey et al., 2003). This is 

FIGURE 3 | Continuous and discrete wavelet transforms. (A) Continuous Ricker Wavelet, (B), CWT coefficient matrix heatmap, (C) discrete s8 wavelet, (D) DWT 
coefficients. Wavelet transform images generated using the Wavelet Methods for Time Series Analysis (WMTSA) R package (Percival and Walden, 2000).
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a dyadic sampling, which results in low-frequency, large scales 
being sampled sparsely and high-frequency, small scales being 
sampled densely (Alsberg et al., 1997). The DWT uses discrete 
wavelet functions (for example, see Figure 3C) and produces a 
series of sets of coefficients with one set of coefficients for each 
scale computed (Figure 3D). DWT coefficients for Palmer 
Drought Severity Index data across time can be seen in the 
tutorial by Dong et al. (2008).

Wavelet-Based Analysis and Integration of Biological 
Data
A useful overview of the wavelet transform and previous 
biological applications prior to 2003, including sequence analysis, 
protein structure investigation, and expression data analysis to 
identify periodicities, can be found in the review by Liò (2003). 
More recent applications of the wavelet transform in biological 
data analysis are discussed below.

Thurman et al. (2007) performed an investigation to detect 
“functional domains” of a scale larger than that of within a 
gene, in the human genome. The wavelet transform was used 
to smooth density signals of various ENCODE data over 
various scales. This included transcriptional data, histone 
acetylation, histone methylation, and DNA replication time. A 
hidden Markov model was then used to segment the genome 
into one of two states, namely, state 0 (“repressed”) and state 1 
(“active”), particularly signal (Thurman et al., 2007). This was 
performed separately for each data type and also in a combined 
fashion. Domains with the state 1 (“active”) classification were 
enriched in characteristics of “active” chromatin, for example, 
transcriptional stop/start sites, mRNAs, and CpG islands, 
among others. However, domains with the state 0 (“repressed”) 
classification were significantly enriched in signal transduction 
genes as determined using GO enrichment. TEs in general 
were evenly distributed across active and repressed domains; 
however, certain classes of repeats, such as L1 LINE repeats and 
LTR elements, were enriched in state 0 domains (“repressed” 
domains) (Thurman et al., 2007).

Shim and Stephens (2015) determined variants that are 
associated with open chromatin using DNase-seq data from 
70 genotyped individuals. Chromatin accessibility vectors 
are transformed using the DWT prior to associating them to 
phenotypes. The advantage of this method is that it takes into 
account the read profile, without having to resort to “artificial” 
boundaries such as known exon boundaries or sliding windows 
of a set size.

Machado et al. (2011) performed wavelet analysis of sequence 
data by transforming DNA sequence into a vector of numbers, 
with each base pair mapped to a point on one of the axes of 
the complex plane. The wavelet transform is applied to these 
sequence vectors and various wavelets are tested. However, no 
functional interpretations of results were discussed.

Biological signals can have different relationships with each 
other depending on the scale at which one is looking. While 
two features may be correlated at certain scales, they may be 
anti-correlated at others. Keitt and Urban (2005) introduced 
wavelet-coefficient regression, in which wavelet transforms 
are applied to dependent and independent variables before 

performing regression analysis, allowing for scale-specific 
inference. Spencer et al. (2006) used this kind of approach, 
applying the DWT and linear model analysis to investigate 
scale-specific relationships between various genomic features 
including genomic signals of recombination, divergence, 
diversity, GC content, and gene content in 1-kb regions across 
human chromosome 20. The DWT was performed on each 
of these signals, and the correlation between the wavelet 
coefficients of features at each scale was calculated to identify 
scale-specific correlations (Spencer et al., 2006). Paape et al. 
(2012) applied the same approach as Spencer et al. (2006), 
using the wavelet transform followed by linear model analysis 
to identify genomic features that correlate with recombination 
in M. truncatula. The wavelet correlation results revealed a 
negative correlation between recombination and the distance 
to the centromere, which had not been found in several other 
organisms (Paape et al., 2012). Very recently, Fernández 
et al. (2018) applied the wavelet transform in an application 
for visualizing DNA methylation data at various scales/
resolutions.

Representation of multiple P. trichocarpa data layers as signals 
was performed by Vining et al. (2012), in which methylation 
density signals of various P. trichocarpa tissues were overlapped. 
In addition, methylation density signals were overlaid with gene 
density signals and k-mer density signals, and approximate 
centromere locations on a subset of the P. trichocarpa 
chromosomes were visually reported (Vining et al., 2012).

Weighill et al. (2019b) performed the first application of the 
wavelet transform to multi-omics data layering in Poplar. Weighill 
et al. (2019b) made use of the methylation data from Vining 
et al. (2012) and Vining et al. (2013), as well as variant data and 
genome annotations to construct gene density, variant density, 
and methylation density profiles for P. trichocarpa (Weighill 
et al., 2019b). The wavelet transform was used to characterize the 
variation in these signals at multiple scales, extract the relevant 
centromere/pericentromere scales of variation, and predict the 
locations of the centromere on all 19 P. trichocarpa chromosomes, 
making use of information from variant density and methylation 
density signals.

CONCLUDING REMARKS AND FUTURE 
PROSPECTS

In this review, we have discussed large-scale ‘omics data 
types, multi-omics studies, as well as network-based analysis/
integration techniques and wavelet-based multi-scale analysis 
and comparisons, all with a particular focus on investigations 
performed in Populus. Table 3 summarizes examples of multi-
omic/data integration studies in Populus. While many such 
studies have been performed over the last decade, few studies 
involve the integration of multiple data types in a combined 
analysis, as opposed to a sequential analysis.

A vast collection of different data types has been generated 
for P. trichocarpa. As described in this review, the genome 
has been sequenced and annotated (Tuskan et al., 2006), and 
the assembly is currently in its fourth version of revision. 
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Approximately ~1,300 P. trichocarpa genotypes have been 
propagated in four different common gardens (Tuskan et al., 
2011; Slavov et al., 2012; Evans et al., 2014) and have been 
resequenced. This has provided a large set of ~28,000,000 
single-nucleotide polymorphisms (SNPs) that have recently 
been publicly released (DOI 10.13139/OLCF/1411410). 
Many molecular phenotypes measured through untargeted 

metabolomics, RNA-Seq, ionomics, and pyMBMS, as well 
as physical properties (Porth et al., 2013) measured in this 
population have provided an unparalleled resource for GWASs 
[for example, see McKown et al. (2014)]. DNA methylation data 
in the form of MeDIP (Methyl-DNA immunoprecipitation)-
seq have been performed on 10 different P. trichocarpa tissues 
(Vining et al., 2012).

The availability of public data as well as access to high-
performance computing resources provides an opportunity for 
the large-scale, concurrent analysis of these multiple datasets 
in order to profile and characterize the P. trichocarpa genome; 
identify complex gene–phenotype relationships, such as 
pleiotropy and epistasis, from genome-wide association data; 
as well as perform large-scale target gene identification from 
integrated multi-omics datasets. Multi-scale analysis could 
allow for the interrogation of scale-specific relationships 
between various genomic features and could potentially 
provide insights into the evolutionary history of the P. 
trichocarpa genome. Integrated analysis of various ‘omics 
data layers will expand the system-wide knowledge of Populus 
species, which is necessary for the continued development of 
Populus as a model tree species and as a domesticated, efficient 
biofuel feedstock.
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TABLE 3 | Examples of multi-omic/data integration studies in Populus species.

Species Data Types/Layers Reference 

P. trichocarpa Transcriptomics, metabolomics, 
biomass/sugar release

Zhang et al. (2019)

P. trichocarpa Genomic, transcriptomic, 
proteomic, fluxomic, wood 
chemical property phenotypes

Wang et al. (2018b)

P. tremula × P. 
tremuloides

Transcriptome, proteome, 
GC-MS metabolome, LC-MS 
metabolome, pyrolysis-GC MS 
metabolome

Obudulu et al. (2018)

P. trichocarpa Transcriptomics, co-expression, 
genotype, callus phenotype 
(GWAS) 

Tuskan et al. (2018)

P. trichocarpa Metabolomics, genotype, 
transcriptomics, GWAS, eQTL, 
co-expression 

Zhang et al. (2018)

P. deltoides Metabolomics, microbiome Veach et al. (2018)
P. trichocarpa Co-expression, protein–protein 

interaction, population genotype 
Tian et al. (2017)

P. trichocarpa Methylation, transcript 
expression, miRNAs 

Schönberger et al. 
(2016)

P. tremuloides 
and Laccaria 

Transcriptomics, protein–protein 
interactions, 

Larsen et al. (2016)

P. balsamifera Transcriptomics, metabolomics Hamanishi et al. (2015)
P. trichocarpa 
and P. 
deltoides 

Metabolomics, transcriptomics Tschaplinski et al. 
(2014)

P. trichocarpa Genotype, phenotype (GWAS) McKown et al. (2014)
P. trichocarpa Methylome (bisulfite sequencing), 

transcriptomics 
Liang et al. (2014)

P. trichocarpa Genotype, phenotype (GWAS) Evans et al. (2014)
P. trichocarpa Methylome (MeDIP-seq), 

transcriptomics 
Vining et al. (2013)

P. trichocarpa Open chromatin, methylome Lafon-Placette et al. 
(2013)

P. trichocarpa Methylome (MeDIP-seq), 
transcriptomics, transposable 
elements

Vining et al. (2012)

P. trichocarpa Genotype, repeat elements, 
methylation, recombination 

Slavov et al. (2012)

Populus 
euphratica 
and Populus × 
canescens 

Transcriptomics, metabolomics Janz et al. (2010)

P. tremula × P. 
tremuloides 

Transcriptomics, metabolomics, 
proteomics

Bylesjo et al. (2008)

P. tremula × P. 
tremuloides 

Transcriptomics, metabolomics Bylesjö et al. (2007)

P. deltoides × 
P. nigra and P. 
deltoides × P. 
trichocarpa 

Genotypes, metabolites (mQTLs) Morreel et al. (2006)
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