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With the development of high-throughput techniques, various biological molecules are 
discovered, which includes the circular RNAs (circRNAs). Circular RNA is a novel 
endogenous noncoding RNA that plays significant roles in regulating gene expression, 
moderating the microRNAs transcription as sponges, diagnosing diseases, and so on. 
Based on the circRNA particular molecular structures that are closed-loop structures with 
neither 5′-3′ polarities nor polyadenylated tails, circRNAs are more stable and conservative 
than the normal linear coding or noncoding RNAs, which makes circRNAs a biomarker 
of various diseases. Although some conventional experiments are used to identify the 
associations between circRNAs and diseases, almost the techniques and experiments 
are time-consuming and expensive. In this study, we propose a collaboration filtering 
recommendation system–based computational method, which handles the “cold start” 
problem to predict the potential circRNA–disease associations, which is named ICFCDA. 
All the known circRNA–disease associations data are downloaded from circR2Disease 
database (http://bioinfo.snnu.edu.cn/CircR2Disease/). Based on these data, multiple 
data are extracted from different databases to calculate the circRNA similarity networks 
and the disease similarity networks. The collaboration filtering recommendation system 
algorithm is first employed to predict circRNA–disease associations. Then, the leave-one-
out cross validation mechanism is adopted to measure the performance of our proposed 
computational method. ICFCDA achieves the areas under the curve of 0.946, which is 
better than other existing methods. In order to further illustrate the performance of ICFCDA, 
case studies of some common diseases are made, and the results are confirmed by other 
databases. The experimental results show that ICFCDA is competent in predicting the 
circRNA–disease associations.

Keywords: circRNA–disease association, collaboration filtering, multiple biological data, recommendation 
system, neighbor information
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INTRODUCTION

Circular RNA (circRNA) is a relatively novel biological molecule 
compared with the usual linear RNAs. Circular RNAs were first 
discovered in the RNA viruses before 1970 (Sanger et al., 1976). It 
is said that circRNAs lack covalently closed-loop structures with 
neither 5′-3′ polarities nor polyadenylated tails (Chen and Yang, 
2015), which causes that it is not easy to find circRNAs compared 
with linear RNAs. Because of circRNAs closed-loop structure, 
however, more and more circRNAs (Hsu and Coca-Prados, 1979; 
Arnberg et al., 1980; Pasman et al., 1996) are revealed based on 
the development of the RNA base sequence high-throughput 
techniques. In terms of recent researches, there are various kinds 
of circRNAs in the creatures, which include as follows: exonic 
circRNAs, which are mainly produced by back-spliced exons 
(Wilusz and Sharp, 2013), introns circRNAs extracted from 
introns (Lasda and Parker, 2014), exon–intron circRNAs that are 
analogous to ecircRNAs (Li et al., 2015), and integrated circRNAs 
discovered by a biological identifier, CIRI (Gao et al., 2015). 
Many recent evidences (Danan et al., 2011) show that circRNAs 
play significant roles in different biological processes and have 
multiple biological functions (Jeck and Sharpless, 2014; Qu et al., 
2015). First, circRNA can be regarded as miRNA sponges (Hansen 
et al., 2013; Kulcheski et al., 2016), which could be adopted to be 
an identifier for diseases. Second, some evidences illustrate that 
circRNAs also can regulate some transcriptional processes (Chao 
et al., 1998). Simultaneously, circRNAs also have associations 
with RNA-binding proteins (RBPs) (Panda et al., 2017) bases on 
their stable circular structures. Circular RNA has different ways 
to bind with the RBPs compared with the linear RNA (Memczak 
et al., 2013), which indicates that circRNAs have potential to be 
disease biomarkers. Moreover, circRNAs have some translational 
functions (Chen and Sarnow, 1995) like common RNAs.

With the further study of circRNAs’ functions, increasing 
numbers of evidences point out that circRNAs have associations 
with complicated diseases (Xu et al., 2017) or have effects on 
the translation of some proteins (Bartsch et al., 2018). There 
are many previous searches revealing the associations between 
circRNAs and some cancers. Circular RNA circ-PVT1 has been 
discovered to upregulate the gene expression in the gastric 
cancer (GC) tissues and promotes the GC cells reproduction 
(Chen et al., 2017a). In contrast circRNA hsa_circ_0000190, it 
regulates the gene expression in GC tissues by downregulation 
(Chen et al., 2017b). CircRNA circTCF25 can upregulate the 
gene expression or cell proliferation of 13 target locus of miRNA 
miR-103a-3p/miR-107, which can be regarded as a biomarker 
of bladder cancer (BC) (Zhong et al., 2016). Circular RNA hsa_
circRNA_105055 and hsa_circRNA_086376 are the potential 
biomarkers of colorectal cancer by working as sponges for miR-7 
(Zeng et al., 2017). Moreover, circRNA hsa_circ_0054633 also 
has association with diabetes, especially for prediabetes and type 
2 diabetes mellitus (Zhao et al., 2017).

Because of the development of RNA base sequence techniques, 
more and more circRNA-related information is excavated. Thus, 
many different kinds of circRNA-related databases are established 
for further researches of various diseases, biological molecules 
and pathways, etc. To create more convenience to the researchers, 

circBase database (Glazar et al., 2014) was developed to provide 
the evidence supporting their expression, and all the data can be 
accessed, downloaded, and browsed within the genomic context. 
Circular RNADb (Chen et al., 2016a) is a comprehensive circRNA 
database that collects human protein-coding annotations of 
circRNAs and includes some important information about 
exonic circRNAs such as genomic information, exon splicing, 
genome sequence, internal ribosome entry site, open reading 
frame, and cricRNA-related references. Furthermore, ExoRBase 
(Li et al., 2017) is an online accessible database that extracts 
data from RNA-seq data analyses of human blood exosomes. 
circNet (Lin et al., 2015) is also a circRNA-related database from 
which tissue-specific circRNA expression profiles and circRNA-
miRNA-gene regulatory networks can be downloaded. Moreover, 
circ2Traits (Ghosal et al., 2013) is an overall circRNA–disease 
associations database, which obtains the associations as follows: 
one is identifying the interactions of circRNAs with disease-
related miRNAs; the other is matching the diseases associated 
SNPs on circRNA loci. To obtain more reliable circRNA–disease 
associations, circR2Disaese (Fan et al., 2018) database (http://
bioinfo.snnu.edu.cn/CircR2Disease/) was developed. The whole 
circRNA–disease associations are collected manually from 
relevant references and reviews, which provides more convenience 
and basics to infer novel circRNA–disease associations.

Although, there are many circRNA–disease associations 
discovered by biological experiments, whose experimental 
processes are extremely expensive and time-consuming. On 
the one hand, there are a limited number of computational 
methods existing to predict potential circRNA–disease 
associations. On the other hand, we lack comprehensive 
circRNA-related diseases databases, which are our main 
motivation to propose a new computational method based on 
circR2Disease database. In this study, we develop an improved 
collaboration filtering recommendation system (Pan et al., 
2008) method to predict circRNA–disease associations, 
which is named ICFCDA. First, circRNAs target gene–related 
gene ontology (GO) terms, circRNAs base corresponding 
sequences data, and circRNA–disease associations are adopted 
to calculate the circRNA functional annotation semantic 
similarity, sequence similarity, and Gaussian interaction 
profile (GIP) kernel similarity. Second, disease-related genes 
and circRNA–disease associations are used to calculate the 
disease functional similarity and disease GIP kernel similarity. 
Furthermore, we also replace the disease names into disease 
ontology (DO) IDs to calculate the disease semantic similarity 
based on the DOSE (Yu et al., 2015) tool. Third, multiple disease 
similarities and circRNA similarities are combined with the 
final disease similarity matrix and circRNA similarity matrix, 
respectively. Finally, collaboration filtering method is adopted 
to calculate the score of each circRNA–disease pair. For the 
sake of evaluating the performance of method we proposed, 
leave-one-out cross validation (LOOCV) is used to calculate 
the area under receiver operating characteristic (ROC) curve 
(AUC) value. Moreover, several common diseases also are 
tested by the LOOCV mechanism. In addition, case studies 
of two common diseases are implemented to further illustrate 
the performance of ICFCDA.

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
http://bioinfo.snnu.edu.cn/CircR2Disease/
http://bioinfo.snnu.edu.cn/CircR2Disease/


Predicting circRNA-Disease AssociationsLei et al.

3 September 2019 | Volume 10 | Article 897Frontiers in Genetics | www.frontiersin.org

MATERIALS AND METHODS

Human circRNA–Disease Associations
To extract circRNA–disease associations, the initial circRNA–disease 
associations datasets are downloaded from circR2Disease database 
(Fan et al., 2018) (http://bioinfo.snnu.edu.cn/CircR2Disease/). In 
the original dataset, there are 725 circRNA–disease associations 
that have been verified by biological experiments. These 725 
circRNA–disease associations contain 661 circRNA individuals and 
100 disease individuals. In term of the initial dataset, 212 circRNA–
disease associations are picked out as the known associations in this 
study, which are composed of 42 disease entities and 200 circRNA 
entities. The adjacency circRNA–disease association matrix is 
deciphered by matrix A. If there is an association between the 
disease i and circRNA j, A(i, j) is equal to 1 or A(i, j) is equal to 0.

circRNA Similarity
circRNA Functional Annotation Semantic Similarity
On the basis of the original circRNA–disease associations, 
200 circRNA entities are screened out. Then human GO terms 
data are downloaded from human protein reference database 
(HPRD) database (Keshava Prasad et al., 2009). The initial 
circRNA–disease associations provide the circRNAs-related 
genes. Thus, the circRNA-related genes are utilized to match 
GO data extracted from HPRD database. In this study, an 
information content algorithm (Lin, 1998) is adopted to calculate 
the circRNA functional annotation semantic similarity. CFS is 
used to describe the circRNA functional annotation semantic 
similarity network. Moreover, the following equation is used to 
calculate the circRNA functional annotation semantic similarity:

 CFS i j
P C C

P C P C
i j

i j
( , )

log ( )
log ( ) log ( )

=
× ∪

+
2  (1)

where CFS(i, j) denotes the functional annotation semantic 
similarity between circRNA Ci and Cj; P(Ci) and P(Cj) represent 
the probability between the number of Ci and Cj target gene–
related GO terms and the number of the entire GO terms. 
P C Ci j( )∪  is the ratio of between the union of the number of 
circRNA Ci and Cj target gene–related GO terms and the number 
of the entire GO terms.

circRNA Sequence Similarity
For the sake of calculating the circRNA sequence similarity, 
the circRNA corresponding RNA base sequence data are 
downloaded from circBase database (Glazar et al., 2014) (http://
www.circbase.org/). In our computational model, there are 200 
circRNAs needing matching their related RNA base sequences. 
A base pairing algorithm named the Needleman-Wunsch 
pairwise alignment algorithm is used to calculate the circRNA 
sequence similarity, which is integrated into a python toolkit 
called Biopython (Cock et al., 2009). Therefore, there are some 
parameters needing setting up for obtaining a better result. 
The gap-open penalty is set as 2, and the gap-open extending 
penalty is set as −0.5 to −0.1. CSS is adopted to represent the 
circRNA sequence similarity matrix, and CSS(i, j) represents 
the similarity value between the circRNA Ci and Cj. Then, the 

Needleman-Wunsch score of each circRNA pair is normalized 
as follows:

CSS i j NW i j
NW i i NW j j

( , ) ( , )
( , ) ( , )

=
 

(2)

where NW(i, j) is the score of the Needleman-Wunsch algorithm 
between circRNA i and j.

circRNA GIP Kernel Similarity
Known circRNA–disease associations are adopted to calculate 
circRNA GIP kernel (Van Laarhoven et al., 2011) similarity 
marked as CGS. According to an assumption (Van Laarhoven 
et al., 2011) that the more similar the two circRNAs are, the more 
likely the disease associated with one of them is to be associated 
with another. Therefore, VCi is used to represent the interaction 
profile of circRNA C(i) with each disease, which means the ith 
row in the circRNA–disease association network. The GIP kernel 
similarity between circRNA C(i) and C(j) is calculated as follows:

 CGS i j V Vc C Ci j
( , ) exp( )= − −γ

2
 (3)

where CGS(i, j) is the GIP kernel similarity of circRNA i and j. γc 
is an adjusting parameter, which controls the bandwidth of each 
kernel, which can be initialized as follows:

 γ γc c
c

C
i

N

N
V

i

c

=












=
∑^ 1

1

 (4)

Where γ c
^  is the initial value, which is set as 1 based on the 

previous study (Van Laarhoven et al., 2011). Nc is total number 
of circRNAs.

circRNA Similarity Integration
Finally, we obtain the circRNA functional annotation semantic 
similarity, sequence similarity, and GIP kernel similarity. In order 
to make full use of these three circRNA similarities, the following 
equation is adopted to integrate the circRNA similarities:

 CS i j
CGS i j CGS i j

CFS i j
( , )

( , ), ( , )
( , ) ( )

=
≠

+ −
if 0

1α α CCSS i j( , ), otherwise






 (5)

where CS denotes the integrated circRNA similarity network; α 
is a harmonic mean factor to integrate the circRNA functional 
annotation semantic similarity CFS, and the circRNA sequences 
similarity CSS.

Disease Similarity
Disease Functional Similarity
Furthermore, disease-related genes are downloaded from 
DisGeNET (Pinero et al., 2017) database, which gathers more 
than 3,815,056 gene–disease associations between 16,666 gene 
individuals and 13,172 disease individuals. In order to obtain 
more reliable disease similarity, we also extract disease-related 
genes from Online Mendelian Inheritance in Man (OMIM) 
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(Hamosh et al., 2005) database. Based on the initial circRNA–
disease associations, 42 independent disease entities are picked 
out as the experimental data. Then, those above disease entities 
are used to match the disease phenotype corresponding genes in 
the OMIM dataset manually. In this study, JACCARD algorithm, 
a statistic method, is used to calculate the disease functional 
similarity as follows:

 DS i j
DG i DG j
DG i DG j

1( , )
( ) ( )
( ) ( )

=
∩
∪

 (6)

where DG(i) and DG(j) denote the subsets of the disease i and j 
related genes.

Disease GIP Kernel Similarity
GIP kernel similarity algorithm is also adopted to calculate 
the disease GIP kernel similarity between D(i) and D(j), which 
is similar to calculate circRNA GIP kernel similarities. The 
computing process is as follows:

 DGS i j V Vd D Di j
( , ) exp( )= − −γ

2
 (7)

where DGS is the disease GIP kernel similarity network, and the 
DGS(i, j) is GIP kernel similarity score between disease i and j. 
γd is also a bandwidth adjustment parameter, which is defined 
as follows:

 γ γd d
d

D
i

N

N
V

i

d

=












=
∑^ 1

1

 (8)

where γ d
^  is the initial value, which is set as 1 based on the 

previous study (Van Laarhoven et al., 2011). Nd is total number 
of diseases.

Disease Semantic Similarity
In order to calculate the semantic similarity between these  42 
diseases, the disease-relevant DO IDs are extracted from the DO 
(Kibbe et al., 2015) database. Then all the 42 diseases’ names are 
replaced into the corresponding DO IDs, which are adopted to 
input into a R package named DOSE (Yu et al., 2015) to calculate 
the disease semantic similarity. After the semantic similarity score 
of each disease pair is obtained, DS2 can be used to represent the 
diseases semantic similarity matrix.

Disease Similarity Integration
Thus, the integrated disease similarity thereby can be accessed 
by combining the disease functional similarity, GIP kernel 
similarity, and semantic similarity. In this study, when we fuse 
different disease similarities, different weights are allocated to the 
disease functional similarity matrix, GIP kernel similarity matrix, 
and semantic similarity matrix based on the following formula:

 DS i j
DGS i j DGS i j

DS i j
( , )

( , ), ( , )
( , ) (

=
≠

+ −
if 0

1 1β ββ) ( , ),DS i j2 otherwise






 (9)

where DS denotes the integrated disease similarity network.

ICFCDA
With the increasing numbers of data in all aspects, it is important 
to predict or recommend some associations between the two 
different things. It is in this case that the recommendation 
system algorithm has attracted the attention of many experts. 
Collaborative filtering algorithm (Schafer et al., 2007; Zhou et al., 
2015) is one of the recommendation system algorithms, which is 
applied to recommend movies (Zhou et al., 2008) or news (Das 
et al., 2007) for users. In this study, we first adopt the collaborative 
filtering recommendation system algorithms to predict the 
circRNA–disease associations, which is named as ICFCDA, and 
its flowchart is illustrated in Figure 1.

For scoring each circRNA–disease association, there are five 
steps in our computational method as follows:

Step 1: Obtaining the top k similar neighbors of each 
circRNA based on circRNA similarity network CS.

Step 2: Obtaining the top k similar neighbors of each 
disease based on disease similarity network DS.

Step 3: Calculating the scores of circRNA–disease association 
by the collaborative filtering recommending based on 
circRNAs.

Step 4: Calculating the scores of circRNA–disease association 
by the collaborative filtering recommending based on 
diseases.

Step 5: Integrating the final recommendation scores based 
on Steps 3 and 4.

First, the similarity scores between circRNA j and other 
circRNAs in the circRNAs dataset are listed in descending order. 
Then, the most similar top k neighbors of each circRNA are picked 
out based on the final integrated circRNA similarity network CS. 
We conduct the same above processes for each circRNA. Therefore, 
we obtain the most similar top k neighbors of each circRNA. 
Furthermore, the value of k is set as the 4% of the number of the 
whole circRNAs, which can be described as nc*0.04.

Second, in terms of the most similar top k neighbors of 
cirRNA j and the associations between the disease i and the 
neighbors of the circRNA j, the most similar top k neighbors of 
the circRNA-based recommendation score between the disease i 
and the circRNA j can be calculated as follows:

 CRS i j
k

A i n CS n j
n

k

( , ) ( , ) ( , )= ×










=
∑1

1

 (10)

where CRS(i, j) is the recommendation score between the disease 
i and the circRNA j based on the top k most similar neighbors of 
circRNA j. A(i, n) is the association information of the nth most 
similar neighbor of circRNA j and the disease i. CS(n, j) is the 
similarity score of the nth most similar neighbor circRNA and 
circRNA j.

Third, the similarity scores between disease i and other diseases 
in the disease dataset are listed in descending order. Then, the 
most similar top k neighbors of each disease are screened out 
based on the final integrated disease similarity network DS. We 
also carry out the same processes for each disease. Therefore, 
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the most similar top k neighbors of each disease are selected. 
Moreover, the value of k is set as the 4% of the number of the 
whole diseases, which can be described as nd * 0.04.

Fourth, based on the most similar top k neighbors of disease 
i and the associations between the neighbors of the disease i and 
the circRNA j, the most similar top k neighbors of the disease-
based recommendation score between the disease i and the 
circRNA j can be calculated as follows:

 DRS i j
k

DS i m A m j
m

k

( , ) ( , ) ( , )= ×










=
∑1

1

 (11)

where DRS(i, j) is the recommendation score between the 
disease i and the circRNA j based on the top k most similar 
neighbors of disease i. A(m, j) is the association information of 
the mth most similar neighbor of disease i and the circRNA j. 
DS(i, m) is the similarity score of the mth most similar neighbor 
disease and disease i.

Finally, the circRNA-based recommendation scores and the 
disease-based recommendation scores are combined with the 
final recommendation scores as follows:

 IRS i j DRS i j CRS i j( , ) ( , ) ( ) ( , )= + −γ γ1  (12)

where IRS(i, j) is the integrated recommendation scores  between 
the  disease i and the circRNA j. The parameter γ∈[0, 1.0] 
is a balance factor that can control the significance of the 

circRNA-based recommendation scores and the disease-based 
recommendation scores.

In order to solve the “cold start” problem in the collaborative 
filtering recommendation system, the importance of neighbors 
is taken into consideration. The more diseases/circRNAs are 
shared by two cicRNAs/diseases, the more significant it is. The 
importance of two diseases/circRNAs can be defined as follows:

 IMP C i C j f C i f C j f c kns cod
C

( ( ), ( )) ( ( ))* ( ( ))* ( ( ))= exp
(( ( ))c k
∑  (13)

where IMP(C(i), C(j)) is the significance coefficient between 
circRNA i and j. IMP is divided into three parts, which include the 
circRNA C(i) related diseases fexp(C(i)), which can be calculated 
as the following equation:

 f C j
D C iexp( ( ))

( ( ))
= 1  (14)

where D(C(i)) is circRNA i–related diseases, which means 
that circRNA i would provide more useful suggestion, if it is 
associated with fewer diseases. fns(C(j)) is the similarity if disease 
j based on the disease i, which is defined as follows:

 f C j
D C j I C i C jns( ( ))

( ( )) ( ( ), ( ))
=

− +
1

1
 (15)

where I(C(i), C(j)) is intersection of the circRNA i and j–related 
disease dataset. fcod(C(k)) is the disease that is merely associated 

FIGURE 1 | The flowchart of the computational method ICFCDA.
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with circRNA i and j. Therefore, for those circRNAs that have 
only one relevant disease, the following equation is adopted to 
calculate the recommendation score:

 Score IMP C t C i CS C t C icold start
i

N

=
=

( ( ), ( ))* ( ( ), ( ))
1

cc

∑  (16)

Performance Metric
In order to evaluate the performance of our proposed 
computational method, the AUC value that is the area of the 
ROC curve and the f-measure, which is a comprehensive metric 
using the precision and the recall, are the two main evaluation 
metrics in this study. The ROC curve consists of the true-positive 
rate (TPR) and the false-positive rate (FPR), which are calculated 
by the following equations:

 TPR TP
TP FN

=
+

 (17)

 FPR FP
FP TN

=
+

 (18)

where TP is the number of the positive samples that is the 
known circRNA–disease associations, which are predicted as 
the true circRNA–disease associations, and FN is the number 
of the negative samples predicted as the false circRNA–disease 
associations. FP is the number of the incorrectly predicted 
positive samples, and the TN is the number of the truly predicted 
negative samples. In addition, the precision is the true-positive 
samples in the dataset, which are predicted as positive samples 
dataset. The recall is the ratio between the samples that are 
predicted as positive samples and the whole positive samples. 
Thus, f-measure is illustrated as follows:

 precision TP
TP FP

=
+

 (19)

 recall TP
TP FN

=
+

 (20)

 f measure precision recall
precision recall

− = × ×
+

2  (21)

RESULTS

Leave-One-Out Cross Validation
In this study, a cross validation mechanism, LOOCV, is adopted 
to test the performance of our proposed computational method, 
ICFCDA. For each given disease in the circRNA–disease 
association network, there could be one or several relevant 
circRNAs with each specific disease. First, for each given disease 
i, some circRNAs are confirmed that they are associated with the 
disease i, which are the known circRNA–disease associations. 
Each association between the disease i and one particular circRNA 
could be regarded as test data, and all the left circRNA–disease 

associations are seen as training dataset. During each LOOCV 
procedure, one circRNA–disease association potential score is 
generated. When all the scores of the test dataset are obtained, 
the remaining unknown circRNA–disease associations are treated 
as the test dataset. Finally, the predictive score of each circRNA–
disease pair is obtained. Each circRNA–disease association score 
is a threshold after the final potential scores of the circRNA–
disease associations are sorted in descending order. With the 
changing threshold, we can calculate the TPRs and the FPRs, 
which are adopted to draw the ROC curve and calculate the AUC 
value. In order to evaluate the performance of ICFCDA, the AUC 
value is compared with other seven state-of-the-art methods 
such as heterogeneous graph inference (HGI) method (Chen 
et al., 2016b), KATZ (Ganegoda et al., 2014), random walk restart 
(RWR) (Chen et al., 2012), and graph regularized nonnegative 
matrix factorization (NMF) (Liu et al., 2018), respectively. The 
result is shown in Figure 2, which illustrates that the performance 
of ICFCDA is better than others. According to Figure 2, we can 
find that ICFCDA achieves greater AUC value of 0.946 compared 
with HGI (0.821), KATZ (0.841), RWR (0.774), NMF (0.776), 
K-nearest neighbor regression (0.559), support vector regression 
with rbf kernel (0.497), and support vector regression with 
poly kernel (0.451), respectively. Moreover, the experiment of 
collaborative filtering without solving the “cold start” problem is 
supplemented to evaluate the performance of ICFCDA, which is 
presented in Figure 3. We also make the prediction of other nine 
common diseases including BC, breast cancer, colorectal cancer, 
and so on, which are represented in Figure 4. In order to illustrate 
the stability of our proposed computational method, the average 
AUC values based on the 42 diseases of other methods are shown in 
Table 1. Based on Figure 2 and Table 1, ICFCDA can obtain better 
and more stable performance than other computational methods. 
Furthermore, for the sake of obtaining more comprehensive and 
reliable results, f-measure is also treated as one of our evaluating 
metric, which is described in Figure 5. In addition, we also show 
the first k correct circRNA–disease relationships in the predicting 
results, which is described in Figure 6.

Parameters Analysis
In this study, there are three main parameters that are the most 
similar top k neighbors of each circRNA/disease, the circRNA 
similarity integration adjustment factor α and the disease 
similarity integration adjustment factor β, respectively. Parameter 
k controls the selecting neighbors’ number of each circRNA/
disease, which provides the recommendation information from 
neighbors. The parameter α determines the importance between 
the circRNA functional annotation semantic similarity and the 
circRNA sequence similarity, and its value is changed from 0.1 
to 0.9. The third parameter β is a tradeoff between the disease 
functional similarity and the disease semantic similarity, whose 
value ranges from 0.1 to 0.9. At first, to avoid causing the bias 
between the circRNA and the disease recommendation scores, the 
recommendation integration factor γ is set as Nc/(Nd+Nc), where 
Nc is the number the circRNA entries, and the Nd is the number 
of the disease entries. At first, for testing the suitable value of the 
parameter k, the parameter α and the parameter β and γ are set 
up as 0.5, 0.5, and Nc/(Nd+Nc), which means that different disease 
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FIGURE 2 | The AUC value of ICFCDA compared with other 
computational methods.

FIGURE 3 | The AUC value of ICFCDA compared with CFCDA without 
solving the “cold start” problem.

FIGURE 4 | The AUC values of nine kinds of specific diseases.

TABLE 1 | The average AUC values of 42 diseases.

KATZCDA RWRCDA NMFCDA KNNR SVRrbf SVRpoly ICFCDA

Average
AUC

0.719 0.478 0.616 0.536 0.441 0.415 0.885
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similarity scores are treated equally. According to the above 
experiments, the parameter α, β, and γ are fixed. When k is set 
as 4%, ICFCDA can obtain the best AUC value (0.946), which is 
shown in Table 2. After that, we can find that the parameter α 
and β are not sensitive in our computational method according 
to Figure 7. Therefore, both the parameter α and β are set as 0.5.

Case Study
In order to further evaluate the performance of our proposed 
computational method ICFCDA, we also conduct case studies of 
two common diseases in the world, which are BC (Kaufman et al., 
2009) and breast cancer (Veronesi et al., 2005). Bladder cancer is 

one of the most common genitourinary malignant diseases, which 
has caused hundreds of thousands of people’s death since it was 
discovered clinically. What’s worse, the risk of BC increases with 
the increasing age. Another case study is about the breast cancer, 
which is an important public healthy disease worldwide and is 
also hard to prevent. Breast cancer has a very high mortality rate. 
Therefore, some computational methods should be put forward 
to identify the potential biomarkers of these above two diseases. 
In this study, the prediction results of ICFCDA are validated by 
the other three circRNA–disease association–related databases, 
which are the circ2Disease (Yao et al., 2018), circRNADisease 
(Zhao et al., 2018), and LncRNADisease v2.0 (Bao et al., 2019), 

FIGURE 6 | The number of correct circRNA–disease association in top k predicting results.

FIGURE 5 | Comparison of the precision, recall, accuracy, and f-measure with different methods.

TABLE 2 | AUC with different values for parameter k.

k 1 2 3 4 5 6 7 8 9 10

AUC 0.930 0.932 0.940 0.946 0.923 0.921 0.921 0.906 0.906 0.902
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which are shown in Tables 3 and 4. Both Tables 3 and 4 are the 
predicting results of the top 10 BC- and breast cancer–relevant 
circRNAs. Circ2Disease, circRNADiseaes, and LncRNADisease 
are represented by *, #, and +, respectively.

CONCLUSION

With the discovery of an increasing numbers of disease-related 
circRNAs, more and more attention is paid by biologists. 
People might have lots of interests to explore the complicated 
associations between the various kinds of diseases and circRNAs. 
Simultaneously, because of the development of the RNA high-
throughput techniques, it makes more convenience to find the 
potential associations of circRNAs and diseases. While the RNA 

high-throughput techniques can make this procedure easier 
than before, it is not only time consuming but also expensive, 
which becomes the main motivation to develop a computational 
method to predict the circRNA–disease associations. In this 
study, we propose a collaborative filtering recommendation 
system solving the “cold start” problem-based method to predict 
the circRNA–disease associations, which is named ICFCDA. 
For evaluating the performance of ICFCDA, LOOCV and 
f-measure show that ICFCDA can obtain better results than 
other novel computational methods. Moreover, case studies of 
BC and breast cancer also are adopted to test the performance 
of the ICFCDA. In terms of the different evaluations, we believe 
that our proposed computational method is a useful method to 
predict the associations of the circRNAs and the diseases.

ICFCDA can obtain better performance because of some 
following nonnegligible reasons. First, our proposed computational 
method is based on the recommendation system algorithm, 
collaborative filtering, which is suitable to be used to predict the 
circRNA–disease associations. Because circRNAs can be treated 
as the items, and the diseases can be regarded as the users, the 
different items (circRNAs) can be recommended to different users 
(diseases). Second, in order to solve the “cold start” problem, the 
circRNA similarity and the disease similarity are involved to figure 
out this problem. For obtaining more reliable recommendation 
information, various kinds of biological data are adopted to 
measure the circRNA and disease similarity. We download the 
circRNA-related gene annotation terms to calculate the circRNA 
functional annotation semantic similarity and the RNA base 
sequences to calculate the circRNA sequence similarity. Disease-
related genes and phenotypes (DO ID) are used to calculate the 
disease functional and semantic similarity, respectively. Third, in 
order to screen out more informative information from the noise, 

FIGURE 7 | The AUC of the parameter α and β based on the fixed parameter 
γ and k.

TABLE 3 | The top 10 bladder cancer related candidates’ circRNAs.

Rank CirRNA name/id Evidences Rank CircRNA name/id Evidences

1 hsa_circ_0000172 + 6 hsa_circ_0002024 +
2 hsa_circ_0002495 + 7 circMylk/

circRNAMYLK/
hsa_circ_0002768

*, #

3 circRNABCRC4/
hsa_circ_001598/
hsa_circ_0001577

PMID: 29270748 8 circTCF25/
hsa_circ_0041103

#

4 hsa_circ_0003221/
circPTK2

#, + 9 circFAM169A/
hsa_circ_0007158

#

5 hsa_circ_0091017 #, + 10 circTRIM24/
hsa_circ_0082582

#

TABLE 4 | The top 10 breast cancer–related candidates’ circRNAs.

Rank CirRNA name/id Evidences Rank CircRNA name/id Evidences

1 hsa_circ_0011946 + 6 circAmotl1/
hsa_circ_0004214

*, #

2 hsa_circ_0093859 + 7 hsa_circ_0006528 *, #, +
3 hsa_circ_0001982 #, + 8 hsa_circ_0002874 #, +
4 hsa_circ_0001785 #, + 9 hsa_circ_0085495 #, +
5 hsa_circ_0108942 #, + 10 hsa_circ_0086241 #, +
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we merely use the top 4% most similar neighbors of each circRNA 
and disease to obtain more reliable recommendation score.

For the future work, more biological data will be added to 
calculate the disease and the circRNA similarity for reducing the 
useless noisy information. Adding multiple data can enrich the 
information of the different biological network, such as circRNA-
lncRNA, circRNA-miRNA, and so on.
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