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The large number of markers in genome-wide prediction demands the use of methods 
with regularization and model comparison based on some hold-out test prediction 
error measure. In quantitative genetics, it is common practice to calculate the Pearson 
correlation coefficient (r2) as a standardized measure of the predictive accuracy of a 
model. Based on arguments from the bias–variance trade-off theory in statistical 
learning, we show that shrinkage of the regression coefficients (i.e., QTL effects) reduces 
the prediction mean squared error (MSE) by introducing model bias compared with the 
ordinary least squares method. We also show that the LASSO and the adaptive LASSO 
(ALASSO) can reduce the model bias and prediction MSE by adding model variance. 
In an application of ridge regression, the LASSO and ALASSO to a simulated example 
based on results for 9,723 SNPs and 3,226 individuals, the best model selected was 
with the LASSO when r2 was used as a measure. However, when model selection was 
based on test MSE and coefficient of determination R2 the ALASSO proved to be the 
best method. Hence, use of r2 may lead to selection of the wrong model and therefore 
also nonoptimal ranking of phenotype predictions and genomic breeding values. Instead, 
we propose use of the test MSE for model selection and R2 as a standardized measure 
of the accuracy.
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INTRODUCTION

At the heart of classical quantitative genetics is linear model theory (Lynch and Walsh, 1998). 
Statistical inference in linear models mostly falls within the ordinary least squares (OLS) and 
maximum likelihood (ML) frameworks (Casella and Berger, 2002). The recent transition from 
pedigree-based classical quantitative genetics to prediction based on genome-wide markers involves 
some steps where the characteristics of the data complicate statistical inference and may have 
profound effects on model selection.

One of the most important factors is the number of markers p in relation to the number of 
individuals n. If p < < n, we can set up the linear model y = X β + e where each individual genotype 
score (0,1, or 2) is collected in a matrix X (standardized over columns to have mean equal to zero 
and variance equal to one) and the corresponding phenotypes in a vector y (centered to have a mean 
of zero), and then use standard OLS to obtain unbiased solutions to the regression coefficients of the 
genetic markers, i.e., βOLS = (XT X)‑1 y. Note that this is also the solution to the ML function ˆ argβ =  
max p(y | X, β). It is straightforward to incorporate dominance and epistasis into X using indicator 
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variables. The predicted phenotypes are calculated as ˆ ˆy X= β 
and the residuals as e = y - ŷ. Based on the residuals, it is possible 
to calculate the residual sum of squares RSS = eT e, the OLS error 
variance σe n p2 = −RSS /( ), and the mean squared error:

 MSE y RSS= − =
=

∑( / ) ( ˆ ) / .1 2

1

n y ni i
i

n

 (1)

We can also obtain the variances (diagonal terms) and 
covariances (off-diagonal terms) of the regression coefficients as 
COV[ˆ] ( )β = −σe

TX X2 1 (Ravishanker and Dey, 2002). However, for 
estimation of the genomic variance σ g

2  and the genomic heritability 
hg g g e

2 2 2 2= +σ σ σ/ ( )  it is necessary to use some random effects 
model where the covariance structure is based on the outer product 
X XT instead of the inner product XT X (Morota and Gianola, 2014; 
de los Campos et al., 2015). When p < < n, OLS will give unbiased 
estimates of the genomic parameters with low variance. However, 
if n is not much larger than p, there can be considerable variability 
in the OLS fit, resulting in overfitting with very small, or even zero 
error variance, and consequently incorrect predictions of future 
observations. Hence, it is advisable to cast OLS into a supervized 
statistical learning framework where the data are split into training 
and test sets, and MSE is evaluated on the test set (Hastie et al., 2009).

REGULARIZATION

Although the number of genotyped individuals is generally 
increasing, the experimental setting in genomic prediction is 
often that p > n or even p > > n. This is an example of a high-
dimensional statistical problem which leads to certain challenges 
(Johnstone and Titterington, 2009; Fan et al., 2014). Standard OLS 
is not applicable in this situation, because XT X is singular (i.e., 
does not have an inverse) and the parameters in the regression 
model cannot be uniquely estimated. One approach to overcome 
the singularity problem is to use regularization (also known as 
penalization). An early example of this is ridge regression (RR) 
(Hoerl and Kennard, 1970), in which the regression coefficient is 
estimated using ˆ ( )βRR

T
p

TX X I X y= + −λ 1 , where Ip is an identity 
matrix and λ is a positive penalty parameter that needs to be tuned 
using training and test data. Note that genomic best unbiased 
linear prediction (GBLUP) is a form of random effects RR, where 
λ = σ σe g

2 2/  and the genomic relationship matrix G is calculated 
based on XXT (Goddard, 2009; Morota and Gianola, 2014). 
There is also a Bayesian rationale for RR where the regression 
coefficients follows a normal prior, β λN I( ,( / ) )0 2σe . The 
RR estimator has some interesting properties. Firstly, both the 
expectation E[ ˆ ]βRR  and the variance VAR[ ]β̂RR  tend towards zero 
when λ goes to infinity. Secondly, compared with OLS estimates, 
E[ ˆ ]βRR  is biased, and the variance of the OLS estimator VAR[ ]β̂OLS  
is always larger than VAR[ ˆ ]βRR  when λ > 0 (van Wieringen, 2018).

Another interesting feature of RR appears when considering 
the MSE. In general, for any estimator of a parameter θ, 
the mean squared test error can be decomposed following 
MSE VAR[ ]+ BIAS[ ][ˆ] ˆ ˆθ θ θ= 2 (Hastie et al., 2009). The bias–
variance decomposition is a way of analyzing the expected test 
error of a learning algorithm with respect to a particular problem. 

In order to minimize the test error, a model that simultaneously 
achieves low variance and low bias needs to be selected. The 
variance refers to the amount by which θ would change if it were 
estimated using other training datasets. Ideally, the estimate of 
θ should vary as little as possible. Bias represents the error that 
is the result of approximating a complex problem with a simpler 
model. Generally, more flexible methods result in less bias, but 
also lead to higher variance. Hence, there is a bias–variance trade-
off that needs to be optimized using the test data. For data with an 
orthonormal design matrix, i.e., XT X = Ip = (XT X)‑1 and n = p, it 
can be mathematically shown that there is a value of λ > 0 where 
MSE MSE[ ][ ˆ ] ˆβ βRR OLS<  (Theobald, 1974; Farebrother, 1976).

RR can be written as an optimization problem 
min{| | | | }y − +Xβ λ β2

2
2
2, where || ||⋅ 2 denotes the Euclidean 

ℓ2-norm. The first term is the loss function and the second term 
the penalty. By changing the penalty into an ℓ1-norm, we end up 
with min{| | | | }y X− +β λ β2

2
1  which is also known as the LASSO 

(Tibshirani, 1996). In contrast to RR, the LASSO sets regression 
coefficients to zero and therefore performs variable selection. In 
general, the LASSO will perform better than RR when a relatively 
small number of predictors (markers) have relatively large effects on 
the response (phenotype). Compared with OLS, the LASSO and also 
RR can yield a reduction in variance at the expense of some increase 
in bias, and consequently generate lower MSE and better prediction 
accuracy (Hastie et al., 2009). Unfortunately, minimization of the 
LASSO problem does not provide an estimate of the error variance, 
because it depends on a complex relationship between the signal-
to-noise ratio (i.e., the heritability) and the sparsity pattern (i.e., 
number of QTLs in relation to number of markers). In general, it is 
notoriously difficult to obtain proper error variance estimates with 
regularization methods in the p > n situation, because of the biased 
estimates and the difficulty in calculating correct degrees of freedom 
(Reid et al., 2016). The LASSO has been extended in many directions 
(Vidaurre et al., 2013; Hastie et al., 2015). Among the most interesting 
variants is the adaptive LASSO (ALASSO), where a pre-calculated 
vector w is used to weight the coefficients differently in the penalty, 
i.e., min{| || || || }y X− +β λ β2

2
1w  (Zou, 2006). The weights can be 

calculated as the absolute values of marginal covariances between the 
markers and the phenotype. The bias introduced by the shrinkage of 
β̂ in RR and LASSO is reduced in ALASSO at the expense of an 
increase in variance (Giraud, 2015). The LASSO and ALASSO have 
shown competitive prediction performance compared with a range 
of other methods in comparative genomic prediction studies (Li and 
Sillanpää, 2012; Momen et al., 2018).

MODEL sELECTION

In order to determine the best model, it is important to find a 
good measure of the lowest test error, because the training error 
will decrease when more variables or parameters are added to the 
model. There are a number of approaches (e.g., Mallows’ CP, AIC 
and BIC) that attempt to correct the training RSS for model size. 
However, their use as model selection criteria in regularized models 
with p > n data is questionable, since they rely on asymptotic theory, 
for example that it is possible to obtain correct degrees of freedom 
and unbiased error variance estimates. In an application of RR to 
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genomic marker data, Whittaker et al. (2000) suggest optimizing 
λ by minimizing MSE RSS[ ˆ ] [ ( ) ]β λRR e e

T Tn tr X X X X I= − = + −σ σ2 2 1 , 
which is a variant of Mallows’ CP.

An alternative approach is to use cross-validation (CV). There 
are several variants of CV, but the general idea is to average 
MSE over some sets of hold-out test data (Hastie et al., 2009). In 
quantitative genetics, it is common to use the Pearson correlation 
coefficient, r, as a model selection criterion, both with and 
without CV (González-Recio et al., 2014). Daetwyler et al. (2008) 
suggest to use the expected predictive correlation accuracy:

 r y y y y2 2= ( [ , ˆ]) / ( [ ] [ ˆ])COV VAR VAR  (2)

for model evaluation in genome-enabled prediction. The 
use of r2 for model comparison has been questioned, see for 
example Gianola and Schön (2016). Based on the regularization 
theory above, it is evident that there are potential problems with 
r2 because VAR[y] will be unaffected, whereas VAR[ŷ] will be 
heavily influenced by the type of model and level of regularization.

It is also possible to assess the goodness of fit of the models 
using the coefficient of determination R2. Kvålseth (1985) identifies 
eight different variants of this statistic and compares them for 
different types of models. For linear OLS regression models with an 
intercept term, the problem seems to be of a minor nature, since the 
majority of the R2 statistics are equivalent. However, for other types 
of models, such as linear models without intercepts or nonlinear 
models, the various R2 statistics generally yield different values. 
Although not examined by Kvålseth (1985), the same problem 
applies to regularized models. Kvålseth (1985) concludes that the 
best coefficient to use is:

 
R

y y

y y

i i
i

n

i
i

n
2

2

1

2

1

1= −
−

−
=

=

∑
∑

( ˆ )

( )

 (3)

ILLUsTRATION OF THE PROBLEM WITH r2

In a recent publication (Waldmann et al., 2019), we presented 
a novel automatic adaptive LASSO (AUTALASSO) based on 
the alternating direction method of multipliers (ADMM) 
optimization algorithm. We also compared the ALASSO, 
LASSO, and RR on a simulated dataset using the glmnet software 
(Friedman et al., 2010). The original simulated data stem from 
the QTLMAS2010 workshop (Szydłowski and Paczynska, 2011). 
The total number of individuals is 3,226, structured in a pedigree 

with five generations. The continuous quantitative trait was 
created from 37 QTLs, including nine controlled major genes 
and 28 random minor genes. The controlled QTLs included 
two pairs of epistatic genes with no individual effects, three 
maternally imprinted genes, and two additive major genes. The 
random genes were chosen among the simulated SNPs and their 
effects were sampled from a truncated normal distribution. In 
addition to these original data, one dominance locus, one over-
dominance and one under-dominance loci were created and 
added to the phenotype (Waldmann et al., 2019). The narrow 
sense heritability was equal to 0.45. MAF cleaning was performed 
at the 0.01 level, resulting in a final sample of 9,723 SNPs. Data 
from individual 1 to 2,326 were used as training data and data 
from individual 2,327 to 3,226 as test (or validation) data. The 
regularization path in glmnet was run over 100 different λ-values 
to estimate the smallest test MSE and largest test r2 and R2.

In our previous paper (Waldmann et al., 2019), we estimated 
only MSE and r2 and therefore add R2 here. Application of the 
ALASSO, LASSO, and RR resulted in a test MSE of 64.52, 65.73, 
and 83.07, respectively. Hence, based on the MSE, it is clear that 
the ALASSO is the best model. The ALASSO is also favored 
in terms of R2, which yields the results 0.449, 0.439, and 0.291, 
respectively. However, based on r2, the LASSO is the best model, 
with an estimate of 0.460, compared with ALASSO and RR 
estimates of 0.455 and 0.300, respectively. Decomposing r2 into 
its parts reveals that the test VAR[y] is the same (117.2) for all 
three methods. However, VAR[ŷ] differs between the models, 
increasing from 29.54 for RR to 36.41 for the LASSO and 48.17 
for the ALASSO. The COV[y,ŷ] also follows this pattern, but 
the proportions to VAR[ŷ] differ. These results are summarized 
in Table 1. Introduction of the weight factor in the ALASSO 
increases model complexity, which results in decreased model bias 
at the expense of increased variance. Most importantly, however, 
the test MSE is reduced. This is an example of the bias-variance 
trade-off that is fundamental in statistical learning, where r2 can 
provide estimates that may result in erroneous model decisions.

Ranking of individuals in terms of breeding values and 
predicted phenotypes is important in breeding. The order of the 
10 best individuals differs not only between the RR, LASSO and 
ALASSO, but also within each model when min MSE and max 
r2 are used for determination of the best model (Table 2). How 
regularization and the variable selection properties of the LASSO 
and ALASSO affects the statistical properties of rank correlation 
measures (e.g. Spearman’s and Kendall’s rank correlation 
coefficients) is unclear because of the bias-variance trade-off and 
needs to be further investigated. For example, a rank correlation 
measure can be high even if the model is highly biased and 

TABLE 1 | Mean squared error (MSE), predictive correlation accuracy (r2), coefficient of determination (R2), covariance between test phenotypes and predicted test 
phenotypes (COV[y, ŷ]), and variance of predicted test phenotypes (VAR[ŷ]) for ridge regression (RR), LASSO and adaptive LASSO (ALASSO), evaluated on the 
simulated QTLMAS2010 data.

Method MsE r2 R2 COv[ y,ŷ] vAR[ŷ]

RR 83.07 0.300 0.291 32.22 29.54
LASSO 65.73 0.460 0.439 44.30 36.41
ALASSO 64.52 0.455 0.449 50.68 48.17
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therefore the rank statistic may work in the opposite direction of 
the MSE loss function which will lead to optimization conflicts. 
Hence, it would be necessary to use a model with a rank-based 
loss function.
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TABLE 2 | Ranking of the 10 best individuals from the simulated QTLMAS2010 data based on ŷ for RR, LASSO and ALASSO using min MSE and max predictive 
correlation accuarcy (r2) as model selection measures.

Rank

Method/selection statistic 1 2 3 4 5 6 7 8 9 10
RR/min[MSE] 2,586 2,772 2,977 3,050 3,195 3,056 2,756 2,738 2,821 3,184
RR/max[r2] 2,586 2,772 3,195 2,977 3,050 3,184 2,589 2,821 2,756 2,738
LASSO/min[MSE] 2,967 2,820 2,586 2,809 3,050 2,977 3,195 2,582 2,688 2,765
LASSO/max[r2] 2,967 2,820 2,809 2,688 2,582 2,586 3,195 3,050 2,977 2,972
ALASSO/min[MSE] 2,820 2,582 2,586 2,809 3,050 2,832 3,195 3,006 2,589 2,817
ALASSO/max[r2] 2,820 2,582 2,809 2,586 3,050 3,195 2,832 3,006 2,817 2,972
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