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Advances and Challenges in 
Metatranscriptomic Analysis
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Sequencing-based analyses of microbiomes have traditionally focused on addressing the 
question of community membership and profiling taxonomic abundance through amplicon 
sequencing of 16 rRNA genes. More recently, shotgun metagenomics, which involves the 
random sequencing of all genomic content of a microbiome, has dominated this arena 
due to advancements in sequencing technology throughput and capability to profile genes 
as well as microbiome membership. While these methods have revealed a great number 
of insights into a wide variety of microbiomes, both of these approaches only describe 
the presence of organisms or genes, and not whether they are active members of the 
microbiome. To obtain deeper insights into how a microbial community responds over 
time to their changing environmental conditions, microbiome scientists are beginning to 
employ large-scale metatranscriptomics approaches. Here, we present a comprehensive 
review on computational metatranscriptomics approaches to study microbial community 
transcriptomes. We review the major advancements in this burgeoning field, compare 
strengths and weaknesses to other microbiome analysis methods, list available tools and 
workflows, and describe use cases and limitations of this method. We envision that this 
field will continue to grow exponentially, as will the scope of projects (e.g. longitudinal 
studies of community transcriptional responses to perturbations over time) and the 
resulting data. This review will provide a list of options for computational analysis of these 
data and will highlight areas in need of development.
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INTRODUCTION

The past few decades have seen significant advancements in sequencing technologies that have 
transformed how we conduct biological experiments, particularly when it comes to the study of 
complex microbiomes. However, most of the high throughput sequencing has focused on DNA 
sequencing of entire communities using either targeted approaches like PCR-amplicon sequencing 
of 16S rRNA genes (or other marker genes) or shotgun sequencing of all available DNA from the 
sample (metagenomics).

These methods have contributed to many discoveries in the past decade, helping to better 
characterize microbiomes from environments ranging from the human gut (Qin et al., 2010) to soil 
(Rondon et al., 2000) to oceans (Venter et al., 2004). Although 16S studies only directly characterize 
the taxonomic profile of a microbiome, it is a cost-effective option to exhaustively capture 
biodiversity (measuring the maximal dynamic range of relative abundance) of many samples using 
minimal sequencing. However, more and more studies are now using shotgun metagenomics as the 
advancements in sequencing technologies allow the comprehensive capture of most microbiome 
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members while at the same time elucidating potential genes and 
functional pathways. One of the main limitations of shotgun 
metagenomics is that it does not distinguish the active from 
inactive members of a microbiome, and thus cannot help 
discriminate those that are contributing to observed ecosystem 
behavior from those that are merely present, presumably awaiting 
more favorable conditions.

Using RNA sequencing (RNASeq) to record expressed 
transcripts within a microbiome at a given point in time under 
a set of environmental conditions provides a closer look at 
active members. Recent advancements in mass spectrometry 
methods applied towards proteomics is also able to provide 
insight into actively expressed proteins, but is best paired 
with known reference genomes or a reference metagenome 
from which expected peptide masses can be matched. With 
RNASeq, relatively lowly expressed genes including the entire 
metatranscriptome that include non-coding RNAs can be 
detected, annotated, and mapped to metabolic pathways.

Biologists have long measured RNAs using targeted approaches 
like qPCR to quantify expression of known genes of interest. Before 
the advent of high throughput sequencing, microarray technologies 
were also widely used to measure the expression levels of known 
transcripts from organisms or even communities (Parro et al., 
2007). With the application of next-generation sequencing (NGS) 
technologies to RNA, it is now possible to not only measure known 
transcript targets but also discover previously unknown transcripts 
and transcript variants directly from the sequence data.

In the short time since it was first introduced in the 
early 2000s, the number of metatranscriptomics projects, or 
the sequencing of RNAs from microbial communities has 
increased significantly (Figure 1). In terms of applications, 
the technique has been used to characterize active microbes 
in a community (Bashiardes et al., 2016), discover novel 
microbial interactions (Bikel et al., 2015), detect regulatory 

antisense RNA (Bao et al., 2015), and track expression of 
genes and determine the relationship between viruses and 
their host (Moniruzzaman et al., 2017). This revolutionary 
method is not a complete panacea however, and comes with 
its own set of drawbacks. As with most transcriptomic methods, 
experimental design is critical, sample collection is destructive and 
sufficient material for sequencing (or coupled experiments) 
is required. In addition, metatranscriptomics is not always 
able to capture the entire metatranscriptome due in part to the 
complexity (high diversity and relative ratios of members) 
of some microbial communities, the large dynamic range of 
transcript expression, the short half-life of RNA, and a number 
of technology-specific limitations.

In this review, we report the state of metatranscriptomics 
by discussing several microbiome studies from different 
ecosystems. We will discuss both novel findings made possible 
by this methodology as well as some of the shortcomings. We 
also list several of the available tools and workflows that have 
been adopted for or have been specifically designed to analyze 
metatranscriptomic datasets.

APPLICATION OF METATRANSCRIPTOMICS 
ACROSS ECOSYSTEMS

Metatranscriptomics has been applied to a number of different 
types of samples, from the study of human (and other animal) 
microbiomes, to those found in or on plants, within soils, and in 
aquatic environments. In this section we provide some examples of 
the impact metatranscriptomics has had in different fields of study.

Aquatic Environments
One of the first metatranscriptomic studies was conducted on 
freshwater bacterioplankton communities (Poretsky et al., 2005), 
which described a total of 400 environmental transcripts from 
two sites. At the time, the scale of the study was dictated by the 
available sequencing technologies that limited the sensitivity 
of the method to only a few hundred genes. With the advent 
in the high throughput sequencing technologies, other studies 
on marine systems produced hundreds of thousands of reads 
per sample (Frias-Lopez et al., 2008; Gilbert et al., 2008) and 
made it possible to use metatranscriptomics to characterize the 
dynamics of cyanobacterial blooms in the Baltic sea (Berg et al., 
2018), the detection of small RNAs in the open ocean (Shi et al., 
2009), and resolve viral-host relationships of marine eukaryotes 
(Moniruzzaman et al., 2017).

Terrestrial Environments
Soils are some of the most diverse ecosystems in the world. 
They typically harbor incredible numbers and a broad diversity 
of eukaryotes, archaea, bacteria, and viruses. These complex 
microbiomes are frequently characterized using metagenomic 
sequencing, but only a few of studies have performed 
metatranscriptomics to decipher active microbes from more 
sedentary soil residents. For example, in a recent study to identify 

FIGURE 1 | Growth of metatranscriptomics projects in public repositories, 
together with associated metadata, over time. Bars plots represent number 
of metatranscriptomic datasets (i.e. ”runs”) deposited in the NCBI Sequence 
Read Archive (SRA) on a per annual basis. The pie chart and the stacked 
bars are colored based on the source/environment (isolation_source) the 
sample has been isolated from. The lowest bar in grey represents the number 
of samples in SRA without this pertinent metadata.
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functionally active organisms in soil microbial communities, 
metatranscriptomes revealed that Verrucomicrobia, which are 
regularly found in high abundance in soils, were not as highly 
active as their abundance would otherwise suggest (White et al., 
2016). Upon further analyses, authors showed that the high 
abundance of Verrucomicrobia at DNA level was partly due to 
presence of metabolically inactive organisms. Since it is possible 
to sequester eukaryotic mRNA during sample preparation (e.g. 
using polyA tail hybridization), metatranscriptomics allows 
the targeting of just eukaryotic mRNA. Using this approach, a 
survey of forest soils helped characterize the taxonomic diversity 
and also discovered genes that code for novel eukaryotic 
Carbohydrate-Active enzymes (Damon et al., 2012). Likewise, 
the large diversity of active protists in mineral and organic soils 
were identified using the approach (Geisen et al., 2015). Going 
forward, metatranscriptomics will be pivotal in characterizing 
diversity of active soil organisms and functions.

Human Microbiomes
In the past decade, our understanding of the human microbiome 
has rapidly expanded thanks to sequencing technologies that made 
possible the description of human gut microbial diversity across 
large human cohorts (Arumugam et al., 2011; Human Microbiome 
Project, 2012). Although past studies have primarily focused on 
describing the taxonomic composition of microbial communities 
and their functional potential, many studies are now also using 
metatranscriptomics to better understand the interactions among 
microbes and their host (Pérez-Losada et  al., 2015), to identify 
active pathways of importance (Franzosa et al., 2014), and how 
expressed functions may impact disease progression (Nowicki 
et al., 2018) and severity (Schirmer et  al., 2018). A longitudinal 
study of Inflammatory Bowel Disease (IBD) showed that two 
organisms Alistipes putredinis and Bacteroides vulgatus were the 
sole contributors to the expression of methylerythritol phosphate 
pathway at different time points. Interestingly, expression by 
specific organisms correlated with disease severity as A. putredinis 
showed negative and B. vulgatus showed a positive correlation 
(Schirmer et al., 2018). With further advancements in sequencing 
technologies, laboratory protocols and chemistry, and tailored 
bioinformatic analysis methods, metatranscriptomics promises to  
become an integral tool to investigate microbiomes in humans.

Additional Animal-Microbe Interactions
Metatranscriptomic approaches have also been adapted to better 
understand the microbiomes of other animals, such as cattles 
(Mann et al., 2018; Sollinger et al., 2018; Li et al., 2019), squirrels 
(Hatton et al., 2017), and birds (Marcelino et al., 2019). Many studies 
in cattle microbiomes are focused on understanding the rumen 
microbiota to mitigate the release of potent greenhouse gas methane 
from livestock and increase feed efficiency. Through the use of 
metatranscriptomics, studies have linked microbes in the rumen to 
pertinent activities such as methane emission and the degradation of 
complex plant polysaccharides. For example, Sollinger et al. (2018) 
found Prevotella of Bacteroidetes and multiple members of Firmicutes 
were actively involved in the degradation of complex saccharides.

Plant-Microbe Interactions
Metatranscriptomics has been applied to many plant-microbe 
interactions studies as it is able to characterize members of 
a microbiome that are responsible for specific functions and 
elucidate genes that drive the relationship of the microbiome 
with its host. Metatranscriptomic sequencing of all community 
members from roots of the willow plant Salix purpurea cv. Fish“ 
Creek” grown in soil contaminated with petroleum hydrocarbons 
revealed that the bacterial symbiont Enterobacteriaceae was 
responsible for the degradation of hydrocarbons from among 
a wide range of active microbes (Gonzalez et al., 2018). The 
approach is also well suited to detect changes in the microbial 
community that would have been missed by traditional PCR 
methods as shown in a study where an increase in diversity 
of non-fungal eukaryotes was detected in sad1 mutant of oat 
plants when compared to its wild type (Turner et al., 2013). The 
methodology also helped to identify genes that are responsible 
for the mutualistic relationship of the Seagrass plant with its 
microbiome members (Crump et al., 2018) and to describe 
the active microbial communities and pathways in mature 
ripe fruits (Saminathan et al., 2018). Another example of an 
attempt to understand mechanisms behind the suppressive and 
non-suppressive Rhizoctonia solani fungal infection in wheat 
plants revealed a set of genes associated with suppression and 
non-suppression phenotypes, providing molecular targets for 
improved agricultural productivity (Hayden et al., 2018).

BIOINFORMATIC ANALYSIS OF 
METATRANSCRIPTOMIC SEQUENCING 
DATA

Because of microbiome complexity, high throughput sequencing 
in the form of short read data usually generated from Illumina 
sequencing technology has been most often applied for 
metatranscriptome studies, particularly when multiple samples 
and deep coverage are required, such as in differential gene 
expression studies. Since most information about samples are 
unknown a priori, such as its microbial composition, relative 
abundance of community membership, genome sizes, and relative 
expression within and among genomes, it is not trivial to find 
right experimental parameters such as depth of sequencing for 
metatranscriptomics. While long read sequencing can produce 
full or near full-length mRNAs which can help discriminate 
among different isoforms (Pollard et al., 2018), and provide longer 
stretches of sequence for similarity searches, the various long read 
technologies currently only play a supporting role and are not 
actively being used alone for metatranscriptome studies. Here, 
we focus on available tools and workflows for metatranscriptome 
data processing and analysis, which focus on short read data.

Preprocessing
Similar to other NGS datasets, one of the first steps in processing 
RNASeq data is to do Quality Control (QC) and remove or trim 
spurious/erroneous reads to minimize errors. One of the many 
dozens of available QC tools, such as FastQC (Andrews, 2010), 
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FaQCs (Lo and Chain, 2014), fastp (Chen et al., 2018), and 
Trimmomatic (Bolger et al., 2014), can be used for short reads 
derived from Illumina sequencers.

One of the important steps that should be taken into 
consideration is physical removal or depletion of the highly 
abundant ribosomal RNA (rRNA) transcripts from the samples, 
as they often constitute upward of 90% of all data if not removed 
and do not contribute towards most downstream analyses, such as 
finding differentially expressed genes or pathway characterization. 
These rRNAs are often removed using molecular approaches 
prior to sequencing but their dominance in samples results in 
some amount of rRNA still being sequenced. Post sequencing, 
rRNAs can be identified for removal from downstream analyses 
using tools like SortMeRNA (Kopylova et al., 2012) and barrnap 
(Seemann, 2014).

There are also cases where one would want to remove a 
target organism from analysis, such as human reads from 
human microbiome samples. These reads can be removed using 
traditional read mapping methods that tags and removes reads 
that map to human genome (Li et al., 2017), or using faster 
alignment free methods such as Best Match Tagger (BMTagger) 
(Rotmistrovsky and Agarwala, 2011) that search for human-
specific k-mers in reads.

De Novo Assembly
Preprocessed, high-quality reads can now be assembled into 
putative transcripts using de novo assemblers. Given that most 
microbiomes are not adequately characterized with reference 
genomes, de novo assemblers provide a reference scaffold 
representing longer, expressed genome segments that can 
provide a reference set of genes. This provides users the ability 
to find homologs in a more straightforward fashion, establish 
taxonomic origin, and serve as a reference for mapping against 
for expression analysis. Metagenomic assemblers such as 
MEGAHIT (Li et al., 2015), IDBA-UD (Peng et al., 2012) and 
metaSPAdes (Nurk et al., 2017) have been designed to tackle 
complex metagenomes that may share some sequence similarity 
in highly conserved regions but may vary greatly in terms of 
relative abundance within the microbiome, and may also harbor 
population (strain-level) variation. However, the effectiveness 
of these assemblers in reconstructing transcripts that have their 
own peculiarities such as introns/exons, different isoforms, and 
shorter non-coding RNAs (ncRNA), have been seldomly tested, 
so, it is with caution that one should use metagenomic assemblers 
on metatranscriptome datasets.

Assemblers such as Trans-ABySS (Robertson et al., 2010), 
Trinity (Grabherr et al., 2011), BinPacker (Liu et al., 
2016), Oases (Schulz et al., 2012), SOAPdenovo-Trans (Xie 
et  al., 2014), IDBA-Tran (Peng et al., 2013), and rnaSPAdes 
(Bushmanova et al., 2019) attempt to account for the issues 
in transcriptome sequencing, but were originally designed 
to assemble transcripts from a single organism. Despite their 
design towards transcriptomic and not metatranscriptomic 
datasets, comparisons among some assemblers showed that 
in general, the tested assemblers Oases, Trinity, Metavelvet, 
all improved the number of annotated genes from the 

resulting contigs, with the Trinity assembler outperforming 
the others (Celaj et al., 2014).

IDBA-MT (Leung et al., 2013), IDBA-MTP (Leung et al., 
2014), and Transcript Assembly Graph (TAG) (Ye and Tang, 
2016) are de novo assemblers that are designed specifically for 
metatranscriptomes and take into account the unique features of 
both transcripts and the complex nature of microbial communities. 
IDBA-MT is built upon IDBA-UD and uses multiple k values 
in a de Bruijn graph while accounting for features associated 
with mRNAs like uneven sequencing depth and common repeat 
patterns across different mRNAs, thereby lowering the rate of mis 
assemblies. Likewise, IDBA-MTP was derived from IDBA-MT 
to be able to assemble lowly expressed mRNAs. It uses the 
information of known protein sequences to guide the assembly 
by starting with smaller k-values to construct mRNA sequences 
which are then included based on their similarity with a known set 
of proteins. TAG is a comparatively recent assembler that also uses 
a de Bruijn graph, but to assemble the corresponding metagenome, 
which is then used as a reference to map the transcriptome reads 
and reconstruct mRNA sequences by traversing the metagenome 
assembly graph with mapped transcriptome reads. Since it assumes 
genes are contiguous (without splicing), this particular tool is 
ineffective to use in microbiomes that also contain eukaryotes. 
Furthermore, there is an implicit assumption that the metagenome 
represents sufficient breadth of the community that all expressed 
genes can be mapped to the metagenome.

The current state of de novo assembly for metatranscriptomic 
datasets is still in its very early stages. Only a handful of tools have 
been specifically developed for metatranscriptomics, but their 
efficacy on diverse datasets has not been tested and their hardware, 
or memory requirements across an array of community complexities 
and data volume, have also not been rigorously established.

Transcript Taxonomy
Similar to the taxonomic profiling that is frequently performed 
with shotgun metagenomic data, one can use the same suite of 
tools to perform read- or contig-based taxonomic assignments 
in order to understand what organisms are actively expressing 
RNA. A separate and distinct method is to focus solely on rRNAs 
to assess active members of a community, though as mentioned 
above, these are frequently removed (both in the wet-lab 
protocols as well as in preprocessing of the raw data).

Read-based taxonomy classification tools such as Kraken (Wood 
and Salzberg, 2014), GOTTCHA (Freitas et al., 2015), MetaPhlan2 
(Truong et al., 2015), etc. can be used for metatranscriptomes 
(Neves et al., 2017). Because these tools work on short reads and 
are based on nucleotide matches, their effective use is limited to 
microbiomes whose members have close neighbors in existing 
sequence databases. Reads that have been assembled into longer 
contigs and possibly full-length transcripts can be used by a 
number of tools, such as centrifuge (Kim et al., 2016a) and Kraken 
2 (Wood and Salzberg, 2014), to potentially identify a greater 
proportion of the sequenced community members.

Taxonomic assignments using reads or predicted coding 
regions have a large number of limitations, including the 
algorithms necessary to process large volumes of data or 
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accommodate short sequences, and the paucity of references in 
the reference databases. Compounding such issues, is the fact 
that most bioinformatics tools only utilize a subset of available 
genomes or focus on certain organisms. For example, many tools 
do not have eukaryotes as part of their databases. There have been 
some recent efforts with new tools and improvements in existing 
tools, to include eukaryotic genomes within their databases, such 
as MetaPhlan2 (Truong et al., 2015) and kaiju (Menzel et  al., 
2016), but their efficacy in classifying eukaryotes is unknown. 
Furthermore, it is often difficult to discern low abundance 
hits from false positive hits, which is an innate problem with 
microbiome studies. Our general lack of knowledge on overall 
microbial diversity and in any biological system under study can 
also limit the utility of taxonomy classification tools.

Functional Annotation
One of the main goals of metatranscriptomics is to assess 
the functional activity of a microbiome. Since the expressed 
transcripts represent a proxy to the actual phenotype, 
characterizing the function of transcripts is a fundamental task 
for metatranscriptomics. Functional annotation can be conducted 
using either reads or assembled contigs. Read based functional 
profilers such as MetaCLADE (Ugarte et al., 2018), HMM-
GRASPx (Zhong et al., 2016), and UProC (Meinicke, 2015) use 
tool-specific databases and require predicted open reading frames 
as input, from other tools like FragGeneScan (Rho et al., 2010). 
MetaCLADE is one of the latest tools and uses a database that 
consists of 2 million probabilistic models derived from 15,000 
Pfam domains, thus hundreds of models representing any single 
domain, to encompass the diversity of each domain across the tree 
of life. A search against this database results in large numbers of hits 
per read which are then filtered based on redundancy, probability 
and bit-scores (Ugarte et al., 2018).

Alternatively, annotation of genes can be performed from 
assembled contigs. Annotation of assembled transcripts proceeds 
similar to the annotation of genomes and metagenomes. Gene 
finding using programs like Prodigal (Hyatt et al., 2010) and 
FragGeneScan (Rho et al., 2010) is followed by functional 
assignment based on similarity searches using tools such as 
DIAMOND (Buchfink et al., 2015) to search against functional 
databases like KEGG (Kanehisa and Goto, 2000), NCBI RefSeq 
(O’leary et al., 2016), UniProt (Uniprot, 2019) etc. Other tools, 
pipelines and platforms encompass an array of bioinformatics 
utilities (including gene finding and annotation), such as Prokka 
(Seemann, 2014), EDGE Bioinformatics (Li et al., 2017), and 
MG-RAST (Wilke et al., 2016), which combine a number of 
similarity searches against various databases, or can even couple 
assembly, gene calling, and annotation via similarity searches. 
Once annotations are performed, enzymatic functions may 
also be mapped to known metabolic pathways, using tools like 
MinPath (Ye and Doak, 2009) or iPath (Yamada et al., 2011).

Differential Expression Analyses
Beyond the simple description of who are the active members and 
what genes are being expressed at a single time point, are studies 
of differential gene expression, where metatranscriptomics can 

be used to compare differing conditions and environmental 
parameters and their effect on community function or to 
observe community dynamics over time. There are many tools 
originally developed for use with single genomes that can be 
leveraged for metatranscriptomic differential gene expression 
studies. These tools require as input abundance data per gene 
(or transcript) and per sample (representing expression under a 
specific condition or a specific time point). Abundance can be 
attained in a number of ways, but typically involves some form 
of read alignment/mapping to a reference genome, a reference 
assembly or a reference gene set. EdgeR (Robinson et al., 2010), 
DeSeq2 (Love et al., 2014), and limma (Ritchie et  al., 2015) 
are R packages that are frequently used, together with the 
abundance information, to identify genes that are statistically 
significantly differentially expressed among a number of samples 
(i.e., conditions/timepoints). Likewise, tools such as Generally 
Applicable Gene-Set/Pathway Analysis (GAGE) can be used to 
identify pathways enriched in one condition over another (Luo 
et al., 2009). Since, replicating metatranscriptomics samples 
are not trivial compared to transcriptomic studies with isolate 
organisms, non-parametric methods as the implementation in 
NOISeq (Tarazona et al., 2015) should also be considered.

There are peculiarities in metatranscriptomic analyses that 
makes differential expression analyses rather challenging, mainly 
as a result of sequencing a large diversity of transcripts (from 
a wide array of organisms). Problems such as shared genes 
among closely related organisms and variation in the taxonomic 
composition of transcripts can result in incorrect assessment 
of gene expression profiles. A normalization method has been 
recently proposed that can minimize the influence of taxonomic 
diversity in the sample by normalizing count data based on 
taxonomic composition across different samples, but this 
method is also biased by representation in taxonomic databases 
(Klingenberg and Meinicke, 2017).

AVAILABLE WORKFLOWS FOR 
METATRANSCRIPTOMIC ANALYSIS

As alluded to above, the analysis of a metatranscriptome 
dataset is laden with choices of bioinformatic steps with 
many options for tools for any given step. Which steps and 
tools should be selected are often dictated by the goals of 
the experiment, the details of which can grow in complexity 
based on the specifics of the study. However, there do exist 
bioinformatic workflows that aim to streamline some of this 
complexity by connecting multiple individual tools into a 
workflow that can take raw sequencing reads, and process 
them providing data files that represent the outputs results 
characterizing taxonomic identities, functional genes, and/or 
differentially expressed transcripts. Here we summarize eight 
of the available workflows, namely MetaTrans (Martinez et al., 
2016), COMAN (Ni et al., 2016), FMAP (Kim et al., 2016b), 
SAMSA2 (Westreich et al., 2018), HUMAnN2 (Franzosa et al., 
2018), SqueezeMeta (Tamames and Puente-Sánchez, 2018), 
IMP (Narayanasamy et al., 2016), and MOSCA (Sequeira et al., 
2019). We compare the types of analyses these workflows are 
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capable of performing, which dictates what types of biological 
questions may be addressed using them. Details of these eight 
workflows, their capabilities (e.g. QC, assembly, differential 
gene expression analysis), and the specific bioinformatics tools 
that they use, can be found as a summary in Table 1 and in 
detail in Supplementary Table 1.

Almost all eight workflows include a form of preprocessing 
or quality control of raw data, with the exception of HUMAnN2. 
All the other workflows, aside from FMAP, include as part of this 
process the removal of reads matching rRNA prior to other analyses. 
However, FMAP and IMP allows for the targeted removal of host 
sequences. After the preprocessing step, all workflows essentially 
take one of two different approaches, either directly using the reads 
to perform further analyses, or first performing an assembly and 
annotation, and then using the annotated genes from that assembly 
for further analyses (Supplementary Table 1). MetaTrans, COMAN, 
FMAP, SAMSA2, HUMAnN2 all use a read-based approach, while 
SqueezeMeta, IMP, and MOSCA assemble reads into transcripts 
before further analyses are performed.

Among all read based workflows, MetaTrans is the only one 
that first detects putative genes prior to further analyses. All other 
workflows directly use the filtered reads for similarity searches 
against taxonomic and functional databases. MetaTrans is also 
unique in that it utilizes the rRNA sequences that were sequestered 
in previous step for taxonomic profile analysis. FMAP does 
not perform taxonomy profiling; and all other workflows use 
the processed reads to query against a reference database. For 
these workflows, there are however major differences in how 
each workflow determines the taxonomy profile. COMAN and 
SAMSA2 perform their read-based searches in a protein space 
using DIAMOND, albeit using different reference databases, 
while HUMANn2 uses MetaPhlan2, which performs searches 
in nucleotide space. While amino acid based searches allow the 

detection of organisms distantly related to those in the reference 
database, they are prone to false discovery. In contrast, nucleotide 
searches are more specific but are unable to identify sequences 
insufficiently conserved.

For functional characterization using reads, all five 
read-based workflows use different algorithms to search 
for functional similarity using different databases. Only 
MetaTrans performs these searches in nucleotide space, while 
all other workflows use read-based predicted peptides as 
queries. All of the available workflows, aside from SAMSA2, 
also map predicted proteins onto known pathway maps. 
Analyses of functional profiles of metatranscriptomes using 
one of these workflows should be carefully interpreted based 
on how functions are assigned. For example, functional 
assignments using searches in nucleotide space, especially for 
proteins coding genes are likely to be less effective if no near 
neighbors exist in the reference databases.

In comparison to read-based analyses, assembly-based 
workflows harbor an extra analytical step, where all the reads 
are first assembled into larger contigs, which can help reduce 
the size of the data that needs to be processed for further 
analyses and increases the contiguous length of the expressed 
transcripts allowing for more accurate searches. All three of 
the assembly-based workflows provide multiple assembly tools 
to choose from, however, IMP has an input requirement, a 
metagenome dataset that corresponds to the same (or similar) 
sample as the metatranscriptome. The metagenomic data is 
used together with the metatranscriptome data for co-assembly. 
The value of combining metagenome and metatranscriptome 
dataset is that the assembly becomes more representative of 
the actual community. IMP uses a corresponding metagenome 
dataset to create better references through iterative assembly 
of metagenomes and metatranscriptomes. Both SqueezeMeta 

TABLE 1 | A list of metatranscriptomics pipelines and their capabilities.

Read based Assembly based

MetaTrans COMAN FMAP SAMSA2 HUMAnN2 SqueezeMeta IMP MOSCA

Preprocessing QC ✓ ✓ ✓ ✓ × ✓ ✓ ✓
Removes host 
reads

× × ✓ × × × ✓ ×

Removes rRNA ✓ ✓ × ✓ × ✓ ✓ ✓
de novo Assembly × × × × × ✓ ✓ ✓
Binning × × × × × ✓ ✓ ×
Taxonomic 
Profiling

Reads ✓ ✓ × ✓ ✓ × × ×
Contigs × × × × × ✓ ✓ ✓

Functional 
Annotation

Reads ✓ ✓ ✓ ✓ ✓ × × ×
Contigs × × × × × ✓ ✓ ✓

Pathway Analysis ✓ ✓ ✓ × ✓ ✓ ✓ ×
Requires Metagenomes × × × × × × ✓ ×
Summary Report × × × × × × ✓ ×
Web Interface × ✓ × × × × × ×
Multiple Sample Comparisons ✓ ✓ ✓ ✓ ✓ ✓ × ✓
Differential Expression ✓ ✓ ✓ ✓ × × × ✓
Docker × × × × ✓ × ✓ ✓
Conda × × × × ✓ × ✓ ×
Long Read Support × × × × × ✓ × ×
Public Code Repository ✓ × ✓ ✓ ✓ ✓ ✓ ✓
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and IMP can, in addition, perform post-assembly contig-
binning to help group together contigs (i.e. transcripts) into 
bins representing the same taxon (i.e. genes expressed from the 
same genome/species). In all three assembly-based workflows, 
the final contigs are processed to find genes, to perform 
taxonomy classification with those genes, and to assign them 
a function.

While all workflows use the identified genes as a query 
against a reference protein database for taxonomic classification 
purposes, each workflow uses a different strategy. The reference 
databases used are different (e.g. Uniprot vs NR), and each 
workflow assigns taxonomy using different algorithms and 
scoring thresholds (i.e. last common ancestor vs best hit). The 
SqueezeMeta workflow also uses the rRNA reads that were 
extracted during the preprocessing step to provide an additional 
community profile. One major drawback that is common among 
several workflows is the implementation of an unorthodox 
approach of assigning taxonomy by searching against databases 
that are designed for functional characterization.

For functional annotation, the IMP workflow simply uses 
the output of the Prokka pipeline that was used for gene 
identification and annotation. The MOSCA workflow uses the 
output of the taxonomic search against Uniprot and assigns 
functional annotation based on best hit, while SqueezeMeta 
performs additional Hidden Markov Model searches against 
several protein family databases. The SqueezeMeta and 
IMP workflows also provide pathway analysis based on the 
annotated functions.

Because one of the primary goals of metatranscriptome 
analyses is to obtain a relative quantification of gene expression, 
all read-based and assembly-based workflows provide some form 
of per gene coverage and/or abundance metric (e.g. raw count per 
gene, or number of reads per kb per million reads sequenced). 
These abundance values can be used with additional tools to 
compare relative gene expression between growth conditions or 
during time-course experiments, the purpose of which is often to 
help understand what genes and pathways may be important for 
a particular phenotype under study. For these types of studies, 
replicate experiments are often required to obtain statistically 
significant results, thus the relative gene abundance comparisons 
is often a comparison among many different samples that include 
several biological replicates. MetaTrans, FMAP, COMAN, and 
MOSCA innately provide such a comparative capability within 
their workflows, can process several datasets and generate a list of 
genes that are found to be statistically significantly differentially 
expressed between different conditions (or time points). SAMSA2 
also allows differential gene expression analysis but requires 
individual sample processing followed by the use of an additional 
command line utility provided as part of the package.

All workflows, with the exception of COMAN, provide a 
code repository and is invoked using Command Line Interface. 
COMAN provides a web server interface. The availability of 
multiple workflows enables users to choose the one that is the 
most appropriate for analyzing their metatranscriptome. While 
users should ideally select workflows based on capability/
functionality and quality of the algorithms/tools used, additional 
considerations may include the computational resource 

requirements, which vary among workflows, and the frequency 
of maintenance or active development of the source code, 
which can undergo frequent modifications as new advances, 
tools, or methods continue to be developed. Both Table 1 and 
Supplementary Table 1 are compilations of these available 
workflows and can be used as a potential guide to choose a 
workflow based on factors that are important to address any 
researcher’s question(s). For example, if differential expression 
analysis is the goal of a study, the list of workflows to choose from 
is limited to five.

METATRANSCRIPTOMICS—A FUTURE 
FULL OF PROMISES AND CHALLENGES

As alluded to above, it is clear that the next generation 
sequencing revolution that has taken place in the study of 
genomes and metagenomes has been successfully adapted 
to the study of gene expression with ”RNAseq,” and further, 
to the study of complex biological system dynamics with 
metatranscriptomics. This new field has seen a rapid increase 
in the number of metatranscriptomic projects, most of which 
represent differential gene expression studies whose goals 
include obtaining insight into the active members, genes, and 
pathways within a microbiome. That goal, however, is plagued 
by the lack of adequate reference genomes, which can result 
in a suboptimal fraction of reads from any dataset from being 
functionally or taxonomically characterized. It is for this 
reason that efforts remain to assemble metatranscriptomic 
data (together with metagenomic data from the same, or 
similar sample, if available).

While metatranscriptomic data deposited into public 
repositories enable future big data analytics and global meta-
analyses for discovery of important genes, pathways, and 
organisms, a prerequisite is the concomitant availability of sample 
and experimental metadata that help define the context of these 
complex datasets. While over time, a larger fraction of available 
metatranscriptomes has been deposited with some metadata 
(Figure 1), to realize the full potential of metatranscriptomic 
meta-analyses, or for any form of metatranscriptome reanalysis, 
the deposition of adequate sample metadata should become an 
important focus of future efforts, together with standardization 
of vocabulary for metadata descriptors. Several grass-roots 
efforts among the larger scientific community such as Minimum 
Information about any Sequence or MIxS (Yilmaz et al., 
2011) will be needed if we hope to set a series of standards for 
inclusion of sufficiently detailed metadata when depositing 
metatranscriptomic (or any omics) datasets that would allow 
such all-inclusive analyses.

Because of the broad dynamic range of both microbiome 
membership relative abundance and of gene expression within 
any given organism, metatranscriptomics requires a very large 
number of data points (i.e. reads). Therefore, high throughput 
short read technologies dominate this area, however the rise of 
long read technologies holds great promise when throughput 
(per dollar) improves. Longer reads will be able to help with 
all aspects of analysis (assembly, taxonomy determination, 
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functional analysis), and will additionally provide better 
resolution of transcript isoforms, polycistronic operons, and 
different genes with high similarity.

While today’s studies are primarily performed with a single 
short read technology (i.e. Illumina), there exist a large number 
of analytical tools to aid in all aspects of data analysis. In this 
review, we highlight some of the major methods of analyzing 
metatranscriptomics data, some of the specific bioinformatics 
tools used to accomplish these analyses, and some more complex 
metatranscriptomic workflows that combine a number of these tools 
to address several biological questions with minimal input or effort 
from the users. Each of the workflows uses either a read-based or 
an assembly-based approach towards taxonomic and/or functional 
analysis of organisms and genes expressed within a community, 
and their relative abundances. Some of the workflows can even 
proceed all the way to performing differential gene expression 
analysis among various input samples. While the workflows share 
a number of similarities, the tools used differ, and it is not clear 
which workflow, or bioinformatics tool, may be best under any 
given scenario. Thus, one additional area that beckons for more 
research is the benchmarking of the performance and accuracy 
of bioinformatics tools and pipelines with metatranscriptomic 
data. The complexity of real microbiomes and our incomplete 
knowledge of the organisms (or genome sequences) present 
within them have been great challenges in trying to perform such 
benchmarking experiments. While we have yet to create tools that 
are truly able to mimic real sequencing datasets, methods that 
generate simulated sequencing data from known genomes may be 
used to create a range of simulated metatranscriptome datasets that 
can in turn be used to test the behavior of bioinformatics tools and 
parameter settings. Past efforts have focused on ad hoc metrics to 
evaluate performance using real samples and sequencing data. To 
make matters more complex, further advancements in sequencing 
technologies will continue to push the development of new tools 
and workflows. An accepted framework for benchmarking new 
tools would help the field progress, and possibly coalesce towards 

accurate and appropriate workflows. Despite some of the issues 
with metatranscriptomics as a method, the continued development 
of new tools and algorithms for analyzing metatranscriptomic 
data coupled with our increasing understanding of the challenges 
presented by such datasets, it is clear that the next generation of 
metatranscriptomics tools hold great promise in facilitating our 
understanding of the biologically active fraction of microbiomes, 
and the relevant pathways involved.
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