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It has been shown that reciprocal cross allodiploid lineage with sub-genomes derived 
from the cross of Megalobrama amblycephala (BSB) × Culter alburnus (TC) generates the 
variations in phenotypes and genotypes, but it is still a challenge to deeply mine biological 
information in the transcriptomic profile of this lineage owing to its genomic complexity 
and lack of efficient data mining methods. In this paper, we establish an optimization 
model by non-negative matrix factorization approach for deeply mining the transcriptomic 
profile of the sub-genomes in hybrid fish lineage. A new so-called spectral conjugate 
gradient algorithm is developed to solve a sequence of large-scale subproblems such 
that the original complicated model can be efficiently solved. It is shown that the proposed 
method can provide a satisfactory result of taxonomy for the hybrid fish lineage such 
that their genetic characteristics are revealed, even for the samples with larger detection 
errors. Particularly, highly expressed shared genes are found for each class of the fish. 
The hybrid progeny of TC and BSB displays significant hybrid characteristics. The third 
generation of TC-BSB hybrid progeny (BTF3

 and TBF3
) shows larger trait separation.

Keywords: transcriptomic profile, distant hybridization, optimization model, algorithm, classification, hybrids of 
fish, nonnegative matrix factorization

INTRODUCTION

Taxonomy aims to define and name groups of biological organisms on the basis of their shared 
similarity in morphological structure and physiological functions (Tautz et al., 2002). It plays an 
important role in understanding the relationship and evolution between different groups (Tautz et al., 
2003). From classical morphology to new achievements in modern molecular biology, taxonomy 
also involves the comprehensive application of biological multidisciplinary, which can be used as 
a basis for classification, such as chromosome-based cell taxonomy (or chromosomal taxonomy), 
serum taxonomy based on serum reaction, chemical composition-based chemical taxonomy, and 
DNA taxonomy, with the sequence analysis of a uniform target gene (Stoeckle, 2003).

In the past two decades, with an increasing number of genome-wide sequencing and fine mapping, 
extensive data on transcriptomics, proteomics and metabolomics are available in the literature (Liu 
et al., 2016; Ren et al., 2016; Ren et al., 2017a; Ren et al., 2017b; Floriou-Servou et al., 2018; Li et al., 
2018; Wang L. et al., 2018; Wang M. et al., 2018; Wang N. et al., 2018; Ye et al., 2018; Chen et al., 2019; 
Liu et al., 2019; Ning et al., 2019). To mine more and more biological information from these data, 
many computational models have been established to classify different species or examine their genetic 
relationships (Yang et al., 2015; Tan et al., 2019). For example, in (Wang L. et al., 2018; Wang M. et al., 
2018; Wang N. et al., 2018; Yu et al., 2015; Wang et al., 2017; Hu et al., 2012), some statistical methods 
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and statistical softwares have been used for biological classification 
by analyzing the data of protein sequences. However, to our best 
knowledge, there exists no research result on classification of 
distant multi-generation hybrid fishes in virtue of transcriptome 
data and optimization techniques.

Distant hybridization is a hybrid between two different species 
(Lou and Li, 2006). For this interspecific hybridization, it may be a 
hybrid of different species of the same genus, or between different 
genus, between different subfamilies, between different families, 
and even between different individuals Zhang et al., 2014). Since 
distant hybridization can transfer a set of genomes from one species 
to another, it can effectively change the genotype and phenotype 
of hybrid progeny (Liu et al., 2001). In terms of genotype, distant 
hybridization can lead to changes in the genomic level and sub-
genome levels of the offspring, and the formation of these different 
hybrid progeny often depends on the genetic relationship of 
the parent. In terms of phenotype, the distant hybridization can 
integrate the genetic characteristics of the parents, which may make 
hybrid progeny show heterosis in aspects of shape, growth rate, 
survival rate and disease resistance (Hu et al., 2012). It has been 
shown that the distant hybridization occurs widely in fishes and has 
become an effective tool to integrate existing natural species and 
quickly cultivate more excellent traits in fisheries development. For 
more details, readers are referred to recently published article (Qin 
et al., 2014; Hu et al., 2019) and the references therein.

Different from protein (DNA) sequences, the transcriptome of 
a cell or a tissue is the collection of RNAs transcribed in it, and is 
often dynamic and a good representative of the cellular state (Carnes 
et al., 2018). Ease of genome-wide profiling using sequencing 
technologies further makes the transcriptome analysis an important 
research tool of bioinformatics, where the information content of 
an organism is recorded in the DNA of its genome and expressed 
through transcription (Kaletsky et al., 2018). Therefore, full-
length transcriptome analysis of distant multi-generation hybrid 
fishes seems to be a more useful tools to provide a more profound 
explanation for the biological performance of distant multi-
generation hybrid fishes. However, on the one hand, cultivating new 
generation of hybrid fishes often needs more than one and a half 
years, hence collection of the relevant experimental data is difficult, 
such that only the small-size sample inference can be made (Rogoza, 
2019). On the other hand, owing to a lack of effective classic statistical 
methods to analyze the small-size and full-length transcriptome 
sample data, genomic research on similarity of this species and 
its descendants based on optimization models is unavailable in 
the literature. Actually, since the full-length transcriptome data is 
associated with expressed levels of ten thousands genes, classification 
of small-size sample data becomes impossible by using existing 
statistical methods. In this paper, combining the RNA sequencing 
group data of distant hybrid progeny and parental types, we intend 
to develop a new method for the genetic regulation of the whole 
transcriptome to statistically analyze the distant hybrid progeny and 
its excellent germplasm selection.

Basically, our new research method originates from optimization 
techniques, called a nonnegative matrix factorization method 
(NMF). By this method, we attempt to approximately factorize the 
small-size and full-length transcriptome sample data of the distant 

multi-generation hybrid fishes such that their classification and the 
gene-expression characteristic of each class can be revealed. As a 
result, it is associated with solution of large-scale optimization 
problems with nonnegativity constraints. Therefore, we also 
aim to develop an efficient algorithm for solving this large-scale 
optimization problem.

Clearly, one of the challenges in this research lies in making 
statistical inference from the small-size samples. We have collected 
24 samples (liver tissues) of the distant multi-generation hybrid 
fishes, which constitutes three different groups corresponding to 
the three sampling periods. Each group consist of 20093 genes 
expression levels of eight different fish. Actually, the classical 
statistical methods, such as k-mean clustering method and the 
principal component analysis (PCA), are inappropriate to analyze 
this type of data (8 samples with 20093 features). As stated in 
(El-Shagi, 2017; Ristic-Djurovic et al., 2018; Rogoza, 2019), if the 
size of samples is small, it is difficult to believe that the classical 
statistical methods cangive good prediction accuracy owing to 
bias of small-size samples. For the small-size samples, the existing 
main inference methods include: the probabilistic index models 
(Amorim et al., 2018), the bootstrapping U-statistics method 
(Jiang and Kalbfleisch, 2012), the Jackknife empirical likelihood 
inference (Zhao et al., 2015), the SVM-based methods (Cong et al., 
2016), the grey-theory-based methods (Meng et al., 2017), and 
the neural network (Zhu et al., 2019). However, for the small-size 
samples with more than ten thousand features, such as the full-
length transcriptome sample data of the distant multi-generation 
hybrid fishes, it is desirable to study new statistical inference 
methods to mine their statistical information.

The NMF has been regarded as a useful tool of unsupervised 
machine learning to classify the small-size samples with large-
scale features (Pauca et al., 2006; Wan et al., 2018). It can 
integrate the functions of k-mean clustering method and PCA. 
However, the performance of NMF depends significantly on 
the development of efficient algorithms to solve the generated 
large-scale optimization problem such that the deviation of 
nonnegative matrix (sample data) factorization is minimized. 
Especially, if we need to classify 8 full-length transcriptome 
data of distant multi-generation hybrid fishes, it is necessary 
to factorize a matrix in R20093×8. Suppose that there are r classes 
of fishes, then the number of design variables is 20093 × r + 8. 
For solving such a large-scale optimization model, it is still a 
challenge to develop an efficient algorithm. In this research, 
we intend to modify the spectral conjugate algorithm in (Deng 
et  al., 2013) to solve the generated large-scale optimization 
problems. Our goal is to reveal the relationship between multi-
generation hybrid fishes on the basis of their gene expression 
profile described by their transcriptome data.

MATERIALS AND METHODS

Samples and Transcriptome Sequencing
The Megalobrama amblycephala or Bluntnose black bream (BSB, 
2n = 48 ) and Culture Alburnus or Topmouth culter (TC, 2n = 48) 
at sexual maturity in natural waters of the Yangtse River in China 
were collected for creating the allodiploids BT ( BSB (♀) × TC (♂) ) 
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and TB ( TC (♀) × BSB (♂) ) F1 individuals through intergeneric 
reciprocal crosses of BSB and TC, respectively. Then, the allodiploid 
F2 − F3 (2n = 48) hybrid offspring were obtained by self-mating 
of F1 – F2 populations, respectively. The chimeric offspring was 
identified based on 45S rDNA sequencing characteristics (Xiao 
et al., 2016), had been used in our study.

Transcriptome Sequencing and Gene 
Expression Profiles
To sequence the transcriptomes of reciprocal cross hybrids and 
their inbred parents, total RNA was isolated and purified from 
the liver by a TRIzol extraction method (Rio et al., 2010). RNA 
concentration was measured using Nanodrop technology. Total 
RNA samples were treated with DNase I (Invitrogen) to remove any 
contaminating genomic DNA. The purified RNA was quantified 
using a 2100 Bioanalyzer system (Agilent, Santa Clara, CA, USA). 
After the isolation of 1 μg mRNA using the beads with oligo 
(dT) Poly (A), fragmentation buffer was added for interrupting 
mRNA to short fragments. The resulting short fragments were 
reverse transcribed and amplified to produce cDNA. An Illumina 
RNA-seq library was prepared according to a standard high-
throughput method ephigh-throughput method (Dillies et al., 
2013). The cDNA library concentration and quality were assessed 
by the Agilent Bioanalyzer 2100 system, after which the library 
was sequenced with paired-end setting using the Illumina HiSeq 
2000/4000 platform. Then, the raw reads containing adapters, 
ploy-N and low quality were removed using in-house perl scripts. 
The high quality reads were used in our analysis. The transcriptome 
data was obtained from the NCBI database.

All Illumina reads of M. Amblycephala and C. alburnus were 
aligned to the M. Amblycephala and C. alburnus genome using 
Star (v 2.4.0) with the default parameters (Bennett et al., 2001), 
respectively. The other RNA-seq reads of reciprocal cross hybrids 
were aligned to the two reference genomes of M. Amblycephala and 
C. alburnus, respectively. The numbers of mapping counts in each 
gene were calculated with in-house perl scripts. Consequently, the 
two mapping results of aligning to two reference genomes were 
obtained in hybrid offspring, and the total expression value was 
normalized based on ratio of the number of mapped reads at each 
gene to the total number of mapped reads for the entire genome.

Data Download
The collected data of 24 samples (liver tissues) of the distant multi-
generation hybrid fishes in this research have been uploaded 
to https://github.com/TJY0622/TJY and can be downloaded 
freely such that the numerical experiments in this paper can 
be repeated by anyone. The last upload time is 07-20-2019(File 
name as 2019_7_8 Copy.xlsx).

An Optimization Model for Classifying 
the Hybrids Fishes
We first propose an optimization model for classifying the hybrids 
fishes on the basis of NMF. Mathematically, NMF is stated as 
follows. For a given matrix A ∈ Rn × m, we need to decompose A 
into two nonnegative matrices W and H, i.e.

 A WH≈  (2.1)

where W ∈ Rn × r and H ∈ Rr × m. In particular, if the matrix A in 
(2.1) is the full-length transcriptome data of the distant multi-
generation hybrid fishes, and A = WH, then r can represent the 
number of classes for this classification of fishes in the case that 
each column of H has only a unique element 1, while the other 
elements are zeros. Clearly, in this ideal case, the k-th column of W 
stands for the gene expression level of the k-th class of fishes, and 
its elements show the expression levels of different genes for each 
class. Therefore, W in Model (2.3) is called a base matrix in view of 
its practical meanings, while H is called a coordinate matrix.

For real sample data, it is often difficult to obtain the above ideal 
result of factorization. Therefore, we relax A = WH by A ≈ WH. In 
this case, each column of the matrix A is approximately equal to the 
linear combination of all column vectors of the matrix W, and the 
combination coefficients are given by the corresponding column 
vector of the matrix H, i.e. A W hj k

r
k k j:, :, ,≈ ×=∑ 1 , where A:,j denotes 

the j-th column of the matrix A, W:,k stands for the k-th column of 
the matrix W, and hk,j represents the element of the k-th row and the 
j-th column in the matrix H. In other words, A A A Rm

n m= ∈ ×[ ],:, :,1  , 
W W W Rr

n r= ∈ ×[ , ]:, :,1  , and H h Rk j
r m= ∈ ×[ ], .

Thus, if we define a membership matrix R ∈ Rr × m:

 

R
n

W h

W h
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∑ =
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(2.2)

Clearly, the j-th column of R represents the membership 
degrees of the j-th sample being affiliated all the different classes. 
Therefore, for all the samples, distinct differences of all the 
elements in each column of R imply an approximate classification 
result. By definition, the matrix R shows the result of classification 
in term of membership degrees, while each column of the 
matrix H exactly stands for the coordinate of each sample in the 
r-dimensional space linearly expanded by the r columns of W. In 
the case that all the r elements in each row of W have the same 
orders of magnitude, the classification results by H or R are same.

Unfortunately, it is very difficult to solve Problem (2.1) when 
n is very large, let alone the requirement of finding the unknown 
optimal number of classes r. To solve Problem (2.1), we first 
transform (2.1) into the following optimization model:

 

min

s.t.
W H

FF W H A WH

W H
,

( , )

, ,

= −

≥

1
2

0

2

 

(2.3)

where ǁ·ǁF is the Frobenius norm. It has been shown that (2.3) is 
non-convex and NP-hard (Vavasis, 2009). Then, similar to the 
technique of alternating non-negative least squares (ANLS) in 
(Chu et al., 2004), we solve (2.3) by finding the optimal solutions 
of the following two convex sub-problems:

 
W F W Hk

W
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( )= ( )1
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(2.4)
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It is noted that the above model of NMF was first proposed 
in (Paatero and Tapper, 1994). Summarily, there are two types 
of algorithms to solve Model (2.3) (Lin, 2007): the multiplicative 
update (MU) method (Cai et al., 2010; Shang et al., 2012; Huang 
et al., 2018; Deng et al., 2019) and the technique of alternating 
non-negative least squares (ANLS) (Chu et al., 2004). For the 
ANLS, a main focus is on development of efficient algorithms to 
solve the subproblems (2.4) and (2.5). For example, the projected 
gradient (PG) method (Lin, 2007), the projected Newton method 
(Gong and Zhang, 2012), and the projected quasi-Newton 
method (Zdunek and Cichocki, 2006) have been reported to 
be efficient for solving the large-scale optimization model (2.3), 
although no one method has overwhelming advantage compared 
with the others.

Recently, Deng et al. (2013) proposed an efficient algorithm to 
solve general large-scale unconstrained optimizations, and they 
demonstrated that the numerical performance of this algorithm 
outperforms the similar ones available in the literature. In this 
paper, we intend to extend it into solution of the subproblems 
(2.4) and (2.5), which are two large-scale optimization problems 
with nonnegativity constraints.

Development of Algorithm
We are now in a position to present an efficient algorithm to solve 
the subproblems (2.4) and (2.5). Since both of them are large scale 
(the size of the problem is over 80000), we will extend the spectral 
conjugate gradient algorithm in (Deng et al., 2013) to solve the 
subproblems (2.4) and (2.5). Actually, in our previous research, this 
algorithm has been implemented to solve more than 700 large-scale 
benchmark test problems, and has been shown that its numerical 
performance outperforms the similar ones available in the literature.

In need of modifying the developed algorithm in (Deng et al., 
2013) such that it can be used to solve Model (2.3), we first define 
the gradients of F in (2.4) and (2.5) with respect to the matrices 
W and H, respectively.

By direct calculation, it is easy to see that for any i and j,

 
F F

W
AH WHH i n j rW HW
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 (2.7)
Then, we denote the following two matrices the gradients of 

F(W, H) with respect to the matrices W and H, respectively: 

 ∇ = − + ∇ = − +W
T T

H
T TF W H AH WHH F W H W A W WH( , ) , ( , ) .

 (2.8)
For two given matrices S and T with the same size, we define 

their inner product by
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Then, for k = 0, a search direction of F at a given initial point 
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And for k ≥ 1, we define four matrices:
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where H(k), W(k) and W(k − 1) are two given matrices. Similar to 
(Deng et al., 2013), we compute the spectral parameter and 
conjugate parameter by 
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where Dk−1 is the search direction at W(k−1), determined by
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 (2.13)

The following algorithm is developed to solve the subproblem 
(2.4) with the given H(k).

ALGORITHM 1 | (Modified Spectral Conjugate Gradient Algorithm)

Step 0 (Initialization). Given constants 0 < δ1, η, ρ < 1, 0 < δ2, ϵ. Choose an 
initial matrix W(0) ∈ Rn × r. Set k: = 0.
Step 1 (Search direction). If GW

k( ) ≤ , then the algorithm stops. Otherwise, 
compute Dk by (2.9) and (2.13).
Step 2 (Step length). Determine a step length α ρk l l

la a l= = =max{ | , , , , ,}0 1 2  
such that αk satisfies the following inequality:

 F W D H F W H G Dk
k k

k k k
k W

k
k( , ) ( , ) ,( ) ( ) ( ) ( ) ( )+ ≤ + −α δ α δ α1 2 kk kD2 2

,  (2.14)

where

D Dk
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r
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2

1 1

2=
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Step 3 (Update). Set W W Dk k
k k

( ) ( ):+ = +1 α  and k : = k + 1. Return to Step 1.
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Similarly, to solve the subproblem (2.5), we only need replace 
W and H by H and W in Algorithm 1, respectively. Particularly, 
we need to compute

s H H
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With the above preparation, we now develop an overall algorithm 
to solve Model (2.3) in the end of this section.

ALGORITHM 2 | Step 0 (Initialization). Randomly generate two initial non-
negative matrices W (0) ∈ Rn × r and H(0) ∈ Rr × m. Take constants δ1

W, δ1
H, ηW, ηH, ρW, ρH 

in the interval (0,1). Choose 0 2 2< δ δW H, ,∈. Then, set k: = 0.

Step 1 (Judgement). If KKT W H KKT W Hk k( , ) ( , )( ) ( ) ( ) ( )≤  0 0 , where KKT denotes 
the KKT conditions of Problem (2.1), and KKT(W, H) denotes the value of KKT 
at the matrix W and H. Then, this algorithm stops.

Step 2 (Solution of Subproblem (2.4)). Solve the subproblem (2.4) with 
H H k= ( ) by Algorithm 1, its optimal solution is referred to as W(k + 1).

Step 3 (Projection of w). Replace W(k + 1) by 
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(2.16)

Step 4 (Solution of Subproblem (2.5)). Solve the subproblem (2.5) with 
W W k= +( )1  by Algorithm 1. The optimal solution is referred to as H(k + 1).

Step 5 (Projection of H). Replace H(k + 1) by

 

H
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(2.17)

Step 6 (Update). Set k := k + 1. Go to Step 1.
  Remark 1 Compared with the similar algorithms available in the literature 

(Li and Wan, 2019), Algorithms 1 and 2 present a different computational 
procedure to solve Problem (2.1). Since the existing nonnegative matrix 
factorization methods depends on development of efficient solution algorithms, 
one of our contributions in this paper lies in developing Algorithms 1 and 2 to 
solve a sequence of subproblems like (2.4) and (2.5). Especially, in the  section 
of result, we will implement them to solve the classification problem of distant 
multi-generation hybrid fishes based on their transcriptome profiles.

  Remark 2 In order to improve efficiency of Algorithm 2, before factorization 
of A, we conduct normalization of the sample data of fishes as follows.

 b A i ni
k m

i k= = …
≤ ≤
max , , , .,
1

1  (2.18)

 a A i ni
k m

i k= = …
≤ ≤
min , , , .,

1
1  (2.19)

 AA
A a
b a

i ni
i i

i i
,:

,: , , , .=
−

−
= …1  (2.20)

  where A ∈ Rn × m, Ai,j denotes the element of the i-th row and the j-th column 
in the matrix A, AAi,: denotes all the elements of the i-th row of the matrix A.

  Remark 3 In Algorithm 2, since it is possible that the sequences W
k( ){ } and 

H
k( ){ } are trapped near a curved valley, we take KKT W H KKT W Hk k( , ) ( , )( ) ( ) ( ) ( )≤  0 0  

as the termination condition, rather than KKT W Hk k( , )( ) ( ) < .

RESULTS

In this section, in virtue of Model (2.3) and Algorithm 2, 
we present the results on classification of the distant multi-
generation hybrid fishes based on their transcriptome data.

Result Of Classification
With the given transcriptome data of the distant multi-generation 
hybrid fishes, we easily get Model (2.3). Then, we implement 
Algorithm 2 to solve this model by choosing the same values of 
algorithmic parameters as in (Deng et al., 2013):

 

ε = = = = =
= =

−10 0 4 0 001
0 001

7
1 1

2 2

, . , . ,
. ,

δ δ η η
δ δ ρ

W H W H

W H W == =ρ H 0 65. .  

In addition, for any choice of, ρW, ρH ∊ [0.05, 0.75] we can obtain 
the almost same results in our numerical experiments, which 
indicates our algorithms are robust for classifying the fishes.

All codes of the computer procedures are written in MATLAB 
and run in a MATLAB R2016b, and are carried out on a PC(CPU 
2.40 GHz,8G memory) with the Windows 10 operation system 
environment. All the codes have been uploaded to https://github.
com/TJY0622/TJY.

For the sake of better understanding the inherent characteristics 
of the data, we take the 2nd-group samples with superscripts L2 as a 
training set, which were from the liver tissue of eight different fish. 
Since it is unclear how many classes can be identified for the fish 
samples before our research, we make a trial setting on the number 
of classes r = 2, …, 7 such that the best number of classes is found.

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
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In Table 1, we report all the numerical results corresponding 
to the different class numbers.

Table 1 shows that when r = 6, all the samples are clearly 
classified owing to existence of greater deviation of elements in the 
same column of H. In contrast, when r is equal to the other values, 
there are at least one sample that can not be clearly classified. 

As r = 6, Table 1 indicates that the eight fishes can be 
categorized into 6 classes: BSBL2, TCL2, TBF

L
2
2 and BTF

L
3
2 belong 

to different four classes, respectively. BTF
L
1
2 and BTF

L
2
2 consist in 

another class. TBF
L

1
2 and TBF

L
3
2 are the same class.

For the sake of better understanding the above classification 
result, we use r = 6 as the number of classes to calculate the 
membership matrix R defined by (2.2). The numerical results are 
listed in Table 1, while Figure 1 more intuitively describe the 
biological similarity for the fish of each class.

Table 2 and Figure 1 further indicate that by membership 
matrices, the same classification result is obtained as that by 
coordinate matrices: {BSB }L2 ; {TC }L2 ; {TB }F

L
2
2 ; {BT }F

L
3
2 ; BT ,BTF

L
F
L

1
2

2
2{ }; 

TBF
L

F
L

1
2

3
2,TB{ }. Particularly, either by H or by R, BSBL2 and TCL2 

always belong to two different classes, while their hybrids are 
divided into different classes from the parents’ ones. In Figure 1, 
Classes from 1 to 6 are described by the colors of yellow, blue, 

green, purple, gray and red, respectively. It follows from Figure 1 
that larger proportion of the green color in BTF

L
1
2 and BTF

L
2
2  (that 

of the yellow color in TBF
L

1
2 and TBF

L
3
2) demonstrate that there 

exists greater degree of biological similarity between BTF
L
1
2 and 

BTF
L
2
2 (between TBF

L
1
2  and TBF

L
3
2).

To further test robustness of the above trained results, given 
r = 6, we choose the 1st-group and the 3rd-group samples (with 
superscripts L1 and L3, respectively) as two test sets to see whether 
the results are the same or not.

In Table 3 and Figure 2, we report the numerical results. The 
used colors in Figure 2 only be used to show the similarity of 
fishes within the same figure. In other words, the same color has 
no any relation in different figures.

From Table 3 and Figure 2, it is clear that 6 out of 8 samples in the 
1st-group or the 3rd-group are correctly classified, compared with 
the trained result from the samples of the 2nd-group. The accuracy 
rate reaches 75%. In Table A3, we show that the elements in each row 
of the matrix W have different orders of magnitude for the 1st-group 
samples, which can explain inconsistence of the classification results 
by H and R for the 4 samples: BSB BT BTL

F
L

F
L1

1
1

2
1, ,  and BTF

L
3
1.

To further validate the proposed model and algorithms in this 
paper, we use them to classify more test samples generated by 
mixing the training set and the test sets.

TABLE 1 | Coordinate matrices for the 2nd-group samples.

Number of distant multi-generation hybrid fishes

Class BSBL2 BTF
L
1

2 BTF
L
2

2 BTF
L
3

2 TBF
L

1

2 TBF
L

2

2 TBF
L

3

2 TCL2

r = 2
1st 1525 2293 1646 2843 1302 1552 2060 0
2nd 0 0 4.290 0 7.198 6.461 10.57 40.79
r = 3
1st 9304 3067 5655 0 2821 5609 1195 0
2nd 0 2181 743.4 3759 967.7 664.0 2353 0
3rd 0 0 1.435 0 2.146 1.957 2.932 11.28
r = 4
1st 2342 0 355.2 107.4 343.5 919.9 89.23 0
2nd 6.080 494.8 0 2787 430.6 165.2 1474 0
3rd 0 0 0.2183 0 0.7572 0.7388 1.110 4.158
4th 0 4607 3888 20.74 1465 1704 1128 0
r = 5
2st 0.0104 0.2348 0 1.070 0 0 0.1612 0.0024
2nd 210.5 0 36.08 0.3265 21.54 75.89 0 0
3rd 0 1412 1070 0 167.9 351.8 0 0
4th 0 0 181.0 0 500.3 290.1 841.0 0
5th 0 0 0.0571 0 0.0265 0.1295 0 1.425
r = 6
1st 0 0 487.5 0 1267 0 1970 0
2nd 0.0196 0.4725 0 2.033 0 0 0.3370 0.0130
3rd 0 3249 2849 0 439.6 0 0 0
4th 0 4.336 0.3095 0 0 29.53 3.221 0
5th 0 0 0.0960 0 0.0493 0 0 1.876
6th 3.622 0 0.6887 0.0606 0.4646 0.0237 0 0
r = 7
1st 0.0001 1.599 0.1299 0 0 0 0.0850 0.0030
2nd 0 0 0.0374 0 0.0076 1.769 0.0575 0.0002
3rd 0 0 0 0 0.0044 0 0 0.1940
4th 0 0 0 0 78.41 0 189.0 0
5th 4.695 0 0 0 0.2324 0 0 0
6th 0 0 272.2 0 103.1 0 0 0
7th 0 0 0 1.767 0 0 0.0475 0
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We first mix the training set and the 3rd-group test set. The 
obtained results are listed in Table 4. Table 4 demonstrates 
that compared with the trained result, 13 out of 16 samples are 
correctly classified by both of the membership and coordinate 
matrices, which includes all the samples in the 2nd-group and 
the 5 samples in the 3rd-group: BSB BT BTL

F
L

F
L

F
L3

2
3

3
3

2
3, , ,TB  and TBF

L
3
3. The 

accuracy rate is as high as 81.25%. Additionally, for the 5 species 
of fish (BSB, BT

2F , BTF3
, TB

2F  and TBF3
), the replicated samples 

of each fish are correctly classified into the same class in our 
test experiments, which also validates the proposed model and 
algorithms in this paper.

Next, we compute the classification result of all 24 samples 
(8  samples in the training set, 16 samples in the two test 
sets). The results are given in Table 5. From Table 5, we 
know that 17 out of 24 samples are correctly classified by the 
membership matrix or the coordinate matrix, which excludes 
BSB BT BT BT TB TBL

F
L

F
L

F
L

F
L

F
L1

1
1

2
1

1
3

1
1

1
3, , , , ,  and TCL3. The accuracy rate 

achieves 70.83%, compared with the trained results. In this test, 
for the 4 species of fish (BSB, BT TBF F3 2

,  and TBF3
), the replicated 

samples of each fish are correctly classified into the same class.
In summary, by all of the above test experiments, the average 

accuracy rate is 75.52% even if there exists larger detection error 
of the input initial sample data (see our subsequent correlation 
analysis). These tests further verifies that the proposed model 

and algorithm in this paper can be used to efficiently classify 
the distant multi-generation hybrid fishes based on their 
transcriptomic profile.

Correlation Analysis
To find out the reasons why the replicated samples are incorrectly 
classified such that the accuracy rate may be reduced, we calculate 
the correlation matrix of the sample data to reveal possible 
detection errors of the input initial data. In Figure 3, the correlation 
coefficient matrix of the 24 samples is concisely plotted.

From Figure 3, it is easy to see that the sample of BSBL1 is only 
weakly correlated with the two replicated samples BSBL2 and 
BSBL3. Their correlation degree is even less than that between the 
samples of different fish BSBL1 and TBF2

. It can explain why BSBL1 
can not be clearly classified into the same class of BSBL2 and BSBL3  
(revisiting the results in Table 5). Conversely, Figure 3 shows that 
in the 1st-group, the sample BSBL1 has greater correlation with the 
other 3 samples: TB TBF

L
F
L

2
1

3
1,  and TCL1, which answers why the class 

of BSBL1 can not be clearly identified in Table 3.
From Figure 3, we can also find out similar reasons for the 

unsatisfactory classification of BT BT BTF
L

F
L

F
L

1
1

1
2

1
3, ,  in Tables 4 and 5. 

Actually, (1) owing to lower correlation among BT BTF
L

F
L

1
1

1
2,  and BTF

L
1
3, 

they can not be classified into the same class even if they are the three 
replicated samples. (2) In the 3rd group, the class of BTF

L
1
3 can not be 

TABLE 2 | Membership matrix R of the 2nd-group samples.

Class BCBL2 BTF
L
1

2 BTF
L
2

2 BTF
L
3

2 TBF
L

1

2 TBF
L

2

2 TBF
L

3

2 TCL2

1st 0 0 0.2826 0 0.6049 0 0.6132 0
2nd 0.3713 0.3880 0 0.8713 0 0 0.2588 0.1597
3rd 0 0.4268 0.4047 0 0.1333 0 0 0
4th 0 0.1853 0.0080 0 0 0.8493 0.1280 0
5th 0 0 0.1329 0 0.1029 0 0 0.8403
6th 0.6287 0 0.1718 0.1287 0.1589 0.1507 0 0

FIGURE 1 | Membership degrees of the 2nd-group samples.
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clearly identified in Table 3 since its sample is more correlated with 
the other 5 samples: BSB BT TB TBL

F
L

F
L

F
L3

2
3

1
3

2
3, , ,  and TCL3.

Similarly, because the sample of BTF
L
2
1  is only little correlated 

with the two replicated samples BTF
L
2
2  and BT BTF

L
F
L

2
3

2
1,  can not be 

classified into the same class of BTF
L
2
2 and BTF

L
2
3 in Table 5.

For the same reason of weaker correlation, in Tables 4 and 
5, the three replicated samples of TB TCF1

( ) are also classified 
into the different classes. It is believed that if the detection 
errors of samples can be controlled to be small enough, the 
proposed model and algorithms in this paper can provide a more 

TABLE 3 | Results for the 1st-/3rd-group samples.

Class BSB 1L BT
1

1
F
L BT

2

1
F
L BT

3

1
F
L TB

1

1
F
L TB

2

1
F
L TB

3

1
F
L

TTCCL1

Coordinate matrices of the 1st-group samples

1st 521.9 0 24.01 2.318 0 1477 0 80.61
2nd 0 0 0.5099 0.1318 15.17 0.7512 0 0.9975
3rd 0.0016 0.5032 0 4.467 0 0.0197 0 0
4th 0 0.0751 0.0889 0 0 1.014 16.08 1.392
5th 0.0096 0.9609 2.580 0 0 0 0 0
6th 879.3 1865 0 0 0 0 0 3287

Membership matrices of the 1st-group samples

1st 0.5442 0 0.0513 0.0468 0 0.6652 0 0.1244
2nd 0 0 0.0758 0.1370 1 0.1049 0 0.1573
3rd 0.0159 0.1592 0 0.8163 0 0.0946 0 0
4th 0 0.0122 0.0236 0 0 0.1353 1 0.2007
5th 0.1009 0.5906 0.8493 0 0 0 0 0
6th 0.3390 0.2380 0 0 0 0 0 0.5176

Class BSB 3L BT
1

3
F
L BT

2

3
F
L BT

3

3
F
L TB

1

3
F
L TB

2

3
F
L TB

3

3
F
L

TC 3L

Coordinate matrices of the 3rd-group samples

1st 0 1.304 0 0 0 12.29 1.047 0
2nd 0 937.0 0 0 2013 0 0 180.7
3rd 0 0.7632 6.497 0 0 0 0.1616 0.6317
4th 0 0.0314 0 2.426 0 0 0.4113 0
5th 0 224.9 0 0 0 0 2609 2531
6th 1218 378.6 0 0 0 0 46.55 0

Membership matrices of the 3rd-group samples

1st 0 0.1121 0 0 0 1 0.0778 0
2nd 0 0.2622 0 0 1 0 0 0.1117
3rd 0 0.1874 1 0 0 0 0.0384 0.1531
4th 0 0.0453 0 1 0 0 0.2062 0
5th 0 0.1418 0 0 0 0 0.6330 0.7352
6th 1 0.2511 0 0 0 0 0.0446 0

FIGURE 2 | The membership degrees of 1st-/3rd-group samples.
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satisfactory result of classification. Actually, for the three species 
of fish: TB TBF F2 3

,  and BTF3
, their three replicated samples can 

always classified into the respective same class (see Tables 4 and 5), 
which may be related with higher correlation between them as 
shown in Figure 3.

Genes Of High Expression
In the end of this section, based on our classification result 
from the 2nd-group samples, we answer what are the differently 
expressed genes in all the six classes. By definition, we know 
that each column of the base matrix W gives the feature of 
gene expression for each class of fish. Since the sample of 
each class consists of 20093 genes, we only list a part of the 
highly expressed genes for each fish. When r = 6, the highly 
expressed genes are reported in Table A1 and Figures  1(a), 
1(b) and 1(c).

From the numerical results in Table A1 and Figures 1(a), 1(b) 
and 1(c), it follows that there exists stronger genetic similarity 
between the BSB (parents) and the hybrids. Actually, the BSB 
(the 6th class) has 3 shared highly expressed genes with TB

F1
 

(the 1st class), 45 shared highly expressed genes with BTF3
 (the 

2nd class) and 12 shared highly expressed genes with TB
F2

 (the 
4th class). In contrast, the TC (the 5th class) does not have any 
shared highly expressed genes with their hybrids, which implies 
that their hybrids seem to look more like BSB, rather than TC, 
regardless of reciprocal hybrids.

Apart from one-by-one comparison in Table A1, we also 
statistically analyze the numbers of shared highly expressed 
genes for more than three classes of fish. The reported results in 
Table A2 demonstrate that BSB (6-th class) has higher hereditary 
conservatism than TC (5th class). Actually, by comparing the 
numbers of shared highly expressed genes among BSB, TC and 
the hybrids, it is clear that the gene expression profile of their 
grandchildren looks more like BSB (6st class), rather than TC 
(5th class).

It is also noted that in Table A2, there are no shared expressed 
genes between BTF1

 (3rd class) and TBF1
 (1st class), or between BTF2

 
(3rd class) and TBF2 (4th class), and there only exist 3 shared highly 
expressed genes between the BTF3

 (2nd class) and TBF3 (1st class). 
It suggests that the trait separation occurs between these hybrids.

TABLE 4 | Results for the mixed samples of the 2nd/3rd group.

Coordinate matrices

Class BSB 2L BSB 3L BT
1

2
F
L BT

1

3
F
L BT

2

2
F
L BT

2

3
F
L BT

3

2
F
L BT

3

3
F
L

1st 0 0.119 0.0451 0.0984 0 0 0.0208 0.0486
2nd 0 169.6 2662 17.07 1801 2057 0 27.20
3rd 0.4607 0 0.5200 0.0245 0 0.3763 2.565 2.5614
4th 0 139.7 0 545.9 129.5 3.907 0 3.533
5th 2719 2378 0 922.6 669.6 276.0 0 0
6th 0 0.4276 0 1.414 1.342 1.940 0.1942 0.0491

Class TB
1

2
F
L TBF

L

1

3 TBF
L

2

2 TBF
L

2

3 TBF
L

3

2 TBF
L

3

3 TCL2 TCL3

1st 0 0 0.4164 0.4112 0 0 3.993 0.1466
2nd 80.51 0.7667 803.5 745.8 0 0 0 1016
3rd 0.0997 0 0.0059 0 0.0094 0 0 0
4th 206.2 938.5 0 55.71 0 7.602 3.805 106.1
5th 633.8 0 1572 1635 215.5 184.9 0 0
6th 3.514 0 1.430 0.6670 7.588 8.066 0 4.545

Membership matrices

Class BSBL2

 BSBL3 BTF
L
1

2 BTF
L

1

3 BTF
L
2

2 BTF
L

2

3 BTF
L
3

2 BTF
L

3

3

1st 0 0.1093 0.0705 0.0813 0 0 0.0702 0.0894
2nd 0 0.1001 0.6086 0.0140 0.4571 0.4481 0 0.0340
3rd 0.4360 0 0.3210 0.0256 0 0.1797 0.8340 0.8241
4th 0 0.1616 0 0.3274 0.1147 0.0102 0 0.0204
5th 0.5640 0.4885 0 0.2465 0.1746 0.0803 0 0
6th 0 0.1404 0 0.3052 0.2536 0.2818 0.0957 0.0322

Class TBF
L

1

2 TBF
L

1

3 TBF
L

2

2 TBF
L

2

3 TBF
L

2

3 TBF
L

3

3 TCL2 TCL3

1st 0 0 0.1882 0.2061 0 0 0.9315 0.0855
2nd 0.0420 0.1985 0.2412 0.2507 0 0 0 0.2608
3rd 0.0720 0 0.0138 0 0.0406 0 0 0
4th 0.1629 0.8015 0 0.0580 0 0.0327 0.0685 0.0906
5th 0.1735 0 0.3064 0.3376 0.1043 0.0941 0 0
6th 0.5496 0 0.2504 0.1476 0.8550 0.8733 0 0.5632
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In addition, from Table A2 and Figure A1, it follows that the 
hybrids have larger transcript intersection than that between the 
hybrids and the parents, since the number of shared highly expressed 
genes between the hybrids (offspring) is far more than that between 

them and their parents. Actually, there are 277 shared highly 
expressed genes among TB TBF F3 1

,  (1st class), BTF3
 (2nd class) and 

TBF2
 (4th class). In contrast, there are only less than 45 shared highly 

expressed genes between the parent (BSB) and the hybrids ( BTF3
).

TABLE 5 | Results for the mixed samples of all three groups.

Coordinate matrices

Class BSBL1 BSBL2 BSBL3 BTF
L
1

1

 
BTF

L
1

2 BTF
L

1

3 BTF
L
2

1 BTF
L
2

2

1st 0 671.3 2229 11.60 1301 5250 0 2311
2nd 0.4599 1.978 0 1.329 1.977 0.0994 0 0
3rd 3648 9042 7691 1933 832.1 2782 0 2691
4th 690.1 0 593.0 0 7580 949.7 1376 5044
5th 0.7721 0 0.3744 8.097 0 0 18.35 0
6th 172.2 0 0 152.1 0 188.9 0 126.2

Class BTF
L

2

3 BTF
L
3

1 BTF
L
3

2 BTF
L

3

3 TBF
L

1

1 TBF
L

1

2 TBF
L

1

3 TBF
L

2

1

1st 1110 0 123.9 221.6 0 2112 7793 0
2nd 1.421 10.46 10.86 10.92 1.504 0.3468 0.0952 0.6075
3rd 1541 70.23 0 0 0 1854 0 6045
4th 6029 256.2 292.7 313.2 7931 1914 870.3 1571
5th 0 0 0 0 0.1716 0 0.0828 0
6th 221.6 24.25 19.02 0 112.6 420.3 0 365.6

Class TBF
L

2

2 TBF
L

2

3 TBF
L

3

1 TBF
L

3

2 TBF
L

3

3 TCL1 TCL2 TCL3

1st 326.0 1437 72.05 0 11.29 232.5 3530 1687
2nd 0 0 0 0 0 0.1171 0.4372 0
3rd 6203 6205 0 0 0 3044 1001 0
4th 3084 2639 1890 1785 1988 415.9 0 4294
5th 0 0 0 0 0 1.252 2.323 0.1871
6th 233.9 128.4 908.8 1051 1080 402.1 656.6 523.1

Membership matrices

Class BSBL1 BSBL2 BSBL3 BTF
L
1

1 BTF
L
1

2 BTF
L

1

3 BTF
L
2

1 BTF
L
2

2

1st 0 0.1364 0.2535 0.0060 0.1487 0.3563 0 0.2087
2nd 0.0895 0.3355 0 0.1431 0.2199 0.0209 0 0
3rd 0.3139 0.5281 0.4873 0.1323 0.0767 0.2086 0 0.1864
4th 0.1110 0 0.1117 0 0.5546 0.1782 0.1522 0.4512
5th 0.2104 0 0.1475 0.5728 0 0 0.8478 0
6th 0.2752 0 0 0.1459 0 0.2360 0 0.1538

Class BTF
L

2

3 BTF
L
3

1 BTF
L
3

2 BTF
L

3

3 TBF
L

1

1 TBF
L

1

2 TBF
L

1

3 TBF
L

2

1

1st 0.1046 0 0.0459 0.0722 0 0.1783 0.5848 0
2nd 0.1417 0.7920 0.7840 0.7989 0.1929 0.0497 0.0571 0.0823
3rd 0.1026 0.0226 0 0 0 0.1327 0 0.3242
4th 0.4424 0.1169 0.1187 0.1289 0.5787 0.2390 0.2783 0.2185
5th 0 0 0 0 0.0627 0 0.0799 0
6th 0.2087 0.0685 0.0514 0 0.1657 0.4003 0 0.3750

Class TBF
L

2

2 TBF
L

2

3 TBF
L

3

1 TBF
L

3

2 TBF
L

3

3 TCL1 TCL2 TCL3

1st 0.0518 0.1602 0.0275 0 0.0179 0.0325 0.1950 0.1457
2nd 0 0 0 0 0 0.0227 0.0487 0
3rd 0.3371 0.3534 0 0 0 0.2219 0.0634 0
4th 0.3345 0.3177 0.2540 0.2431 0.2457 0.0555 0 0.3488
5th 0 0 0 0 0 0.2311 0.2466 0.0586
6th 0.2765 0.1687 0.7185 0.7569 0.7364 0.4363 0.4464 0.4468
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DISCUSSION

In our numerical experiments, it is found that the nonnegative 
factorization of the matrix A is not unique. In particular, if we 
choose different initial matrices W0 and H0, the base and coordinate 
matrices W and H may be different. However, our numerical 
experiments show that for Algorithms 1 and 2, different choices of 
W0 and H0 do not affect the final result of classification. For example, 
as r = 6, the result of classification always is the same for any W0 and 
H0, which can show robustness of our classification method.

Hybridization is considered as the rapidly driving forces 
that shape epigenetic modifications in plants and parts of lower 
vertebrate (Liu et al., 2016; Mallet, 2005). The merge of divergent 
genome always results in a ‘genomic and transcriptome shock’ 
in newborn hybrid (Ren et al., 2017b; Wu et al., 2016; Ren et al., 
2016). Analysis on the expression changes after hybridization, 
including expression dominance and expression bias related to 
specific function-regulated genes, always provides us insights 
into the molecule mechanism of various phenotypes including 
heterosis (Ren et al., 2016; Zhou et al., 2015). However, the 
multiple regulatory mechanism and complex protein interaction 
network restricted our ability to investigate the underlying 
regulation in hybrid.

It is noted that in this research, we choose the 2nd-group 
samples as the training set, instead of the 1st-group or 3rd-group, 
and the latter is regarded as test samples to verify the trained 
result. One of the reasons for our doing so lies in that correlation 
analysis of the three-group samples indicates that each sample in 
the second-group is better correlated with the other replicated 
samples than those in the other two groups.

The proposed model and algorithms in this paper can be 
extended to solve more practical engineering problems from 

other fields. For example, if we can collect sufficient transcriptome 
data of patients possibly suffering from breast cancer, we can 
apply the proposed model and algorithms to identify the classes 
of patients, even development of the relevant smart aided-system 
of diagnosis for the sufferers.

CONCLUSIONS

In this paper, we have constructed a classification model for the 
distant multi-generation hybrid fishes based on transcriptome 
data, and developed an efficient algorithm, called the modified 
spectral conjugate gradient algorithm, for solving such a model.

In virtue of our model and algorithm, we have obtained a 
satisfactory classification for a given full-length transcriptome 
data of fish samples, and the differently expressed genes of each 
class have been identified. Our results are first obtained by a 
training set of samples, then are tested by many test samples 
generated by different ways.

Main results are stated as follows.

(1) Even for input data with larger detection error, the average 
accuracy rate of classification still achieves 75.52% in all the 
test experiments. It suggests that our model and algorithms 
are promising in classifying the distant multi-generation 
hybrid fishes.

(2) Owing to the weakest intersection of highly expressed genes 
between BSB and TC, they are deterministically divided into two 
classes. However, there exists a higher transcript intersection 
between them and their hybrids. These findings have further 
deeply mined the biological genetic characteristics of distant 
hybridization generated by BSB and TC, based on optimization 
techniques and transcriptome data.

FIGURE 3 | Correlation of the input 24 sample data.
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APPENDICES

Results On Highly Expressed Genes

TABLE A1 | A part of higly expressed genes of the six classes of fishes.

GeneID NO Elements in matrix W for each class

1st 2nd 3rd 4th 5th 6th

Mam27488 4285 8.04 x 10-5 0 0 0 0 0.2813
Mam12843 10739 5.91 x 10-5 0 0 0 0 0.279
Mam09635 15053 4.23 x 10-4 0 0 0 0 0.1783
Mam27746 109 0 0.4815 0 0 0 0.2766
Mam05349 1066 0 0.4789 0 0 0 0.1765
Mam04721 1278 0 0.4775 0 0 0 0.1254
Mam18643 1610 0 0.4789 0 0 0 0.1765
Mam26461 1720 0 0.4815 0 0 0 0.2766
Mam16947 2485 0 0.4815 0 0 0 0.2766
Mam03075 2654 0 0.4815 0 0 0 0.2766
Mam06110 2974 0 0.4815 0 0 0 0.2766
Mam21839 3102 0 0.4815 0 0 0 0.2766
Mam04828 3760 0 0.4815 0 0 0 0.2766
Mam08966 4306 0 0.4815 0 0 0 0.2766
Mam29639 4324 0 0.3065 0 0 0 0.2746
Mam11009 4467 0 0.4815 0 0 0 0.2766
Mam30659 5940 0 0.4815 0 0 0 0.2766
Mam10292 6294 0 0.4815 0 0 0 0.2766
Mam02487 7396 0 0.4815 0 0 0 0.2766
Mam07898 7412 0 0.4815 0 0 0 0.2766
Mam20311 7557 0 0.4815 0 0 0 0.2766
Mam05748 7783 0 0.4815 0 0 0 0.2766
Mam22143 8170 0 0.4815 0 0 0 0.2766
Mam16193 8446 0 0.4815 0 0 0 0.2766
Mam26424 8827 0 0.4815 0 0 0 0.2766
Mam25840 9858 0 0.4771 0 0 0 0.1103
Mam13519 10285 0 0.4815 0 0 0 0.2766
Mam25865 11901 0 0.4815 0 0 0 0.2766
Mam19044 12352 0 0.4815 0 0 0 0.2766
Mam16831 12585 0 0.4815 0 0 0 0.2766
Mam05543 13326 0 0.3065 0 0 0 0.2746
Mam13771 13506 0 0.4815 0 0 0 0.2766
Mam26854 13652 0 0.4815 0 0 0 0.2766
Mam00577 13715 0 0.4792 0 0 0 0.1905
Mam07942 14000 0 0.2847 0 0 0 0.2744
Mam07030 14089 0 0.4789 0 0 0 0.1765
Mam17634 14312 0 0.4815 0 0 0 0.2766
Mam18307 14829 0 0.4815 0 0 0 0.2766
Mam00814 15556 0 0.4789 0 0 0 0.1765
Mam10384 15720 0 0.4815 0 0 0 0.2766
Mam00295 16707 0 0.3065 0 0 0 0.2746
Mam11738 16870 0 0.4815 0 0 0 0.2766
Mam20672 17245 0 0.4815 0 0 0 0.2766
Mam27740 18056 0 0.4815 0 0 0 0.2766
Mam18895 18725 0 0.4815 0 0 0 0.2766
Mam22493 19575 0 0.3065 0 0 0 0.2746
Mam17452 19798 0 0.4815 0 0 0 0.2766
Mam00511 19852 0 0.4815 0 0 0 0.2766
Mam24132 6027 0 0 0 0.0342 0 0.2762
Mam14897 6151 0 0 0 0.0342 0 0.2762
Mam04754 6751 0 0 0 0.0342 0 0.2762
Mam00928 7106 0 0 0 0.0342 0 0.2762
Mam17991 8808 0 0 0 0.0342 0 0.2762
Mam05763 9053 0 0 0 0.0342 0 0.2762
Mam09936 10053 0 0 0 0.0342 0 0.2762
Mam09532 10428 0 0 0 0.0342 0 0.2762
Mam10304 12794 0 0 0 0.0342 0 0.2762
Mam19016 13794 0 0 0 0.0342 0 0.2762
Mam03189 16523 0 0 0 0.0342 0 0.2762
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TABLE A2 | The number of highly shared genes.

Relationship among BSB , TC2 2L L  and hybrids

Relationship Number Relationship Number

5th - 6th – 1st 107 5th - 6th – 2st 366
5th - 6th – 3st 58 5th - 6th – 4st 108

Relationship between TC 2L  
and hybrids

Relationship between BSBL2  
and hybrids

relationship number relationship number

5th – 1st 0 6th – 1st 3
5th – 2nd 0 6th – 2nd 45
5th – 3rd 0 6th – 3rd 0
5th – 4th 0 6th – 4th 12
5th – 1st – 2nd 5 6st – 1st – 2nd 40
5th – 1st – 3rd 0 6st – 1st – 3rd 0
5th – 1st – 4th 0 6st – 1st – 4th 1
5th – 1st – 3rd 2 6st – 2nd – 3rd 13
5th – 2nd – 4th 587 6st – 2nd – 4th 125
5th – 3rd – 4th 0 6st – 3rd – 4th 2
5th – 1st – 2nd – 3rd 16 6th – 1st – 2nd – 3rd 27
5th – 1st – 2nd – 4th 483 6th – 1st – 2nd – 4th 168
5th – 1st – 3rd – 4th 1 6th – 1st – 3rd – 4th 6
5th – 2nd – 3rd – 4th 229 6th – 2nd – 3rd – 4th 88
5th – 1st – 2nd – 3rd 
– 4th

2340 6th – 1st – 2nd – 3rd 
– 4th 

499

Relationship among hybrids

Relationship Number Relationship Number

1st – 2nd 3 1st – 3rd 0
1st – 4th 0 2nd – 3rd 7
2nd – 4th 0 3rd – 4th 0
1st – 2nd – 3rd 4 1st – 2nd – 4th 277
1st – 3rd – 4th 0 2nd – 3rd – 4th 171

Other relationship

1st 0 2nd 0
3rd 0 4th 0
5th 0 6th 0
5th – 6th 0 1st – 2nd – 3rd – 4th 194
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TABLE A3 | A part of the base matrix W of the 1st-group samples L1.

GeneID NO Elements in base matrix W for each class

1st 2nd 3rd 4th 5th 6th

Mam01912 1 4.6868 x 10-4 0.0504 0.1706 0.0201 0.3837 9.3883 x 10-6

Mam21118 5 4.8315 x 10-4 5.7525 x 10-4 0.2237 7.2186 x 10-4 0 0
Mam11102 6 6.2526 x 10-4 0.0455 0.2249 0.0129 0.0745 0
Mam17081 7 3.7106 x 10-4 0.0671 0.1641 0.0389 0.0488 1.3303 x 10-4

Mam07456 8 5.2856 x 10-4 0.0398 0.0406 0.0509 0.3191 1.4597 x 10-4

Mam20030 9 4.2426 x 10-5 0.0411 0.1378 0.0614 0.3605 1.7073 x 10-4

Mam09854 10 1.3894 x 10-4 0.0300 0.2225 0.0552 0.1944 4.3024 x 10-5

Mam29205 13 1.5492 x 10-4 0.0072 0.1055 0.0185 0.4056 2.0497 x 10-5

Mam06683 14 3.0380 x 10-4 0.0530 0.0647 0.0470 0.3659 0
Mam19604 15 4.6509 x 10-4 0.0415 0.2180 0.0617 0.1979 0
Mam09824 16 1.2105 x 10-5 7.4416 x 10-4 0 6.2839 x 10-4 0.3519 0
Mam05355 18 2.1428 x 10-4 0.0662 0.2270 0.0496 0.3109 1.1562 x 10-4

Mam18093 19 3.2739 x 10-5 0.0264 0 0.0106 0.3837 6.1219 x 10-5

Mam23784 20 1.2477 x 10-4 0.0626 0.1883 0.0376 0.3666 1.1244 x 10-4

Mam16985 21 6.0934 x 10-4 6.7898 x 10-4 0.2239 8.5996 x 10-4 0 0
Mam02753 22 4.6572 x 10-6 0.0257 0.0570 0.0151 0.3913 1.2711 x 10-4

Mam23187 23 1.2105 x 10-5 7.4416 x 10-4 0 6.2839 x 10-4 0.3519 0
Mam05281 24 1.2105 x 10-5 7.4416 x 10-4 0 6.2839 x 10-4 0.3519 0
Mam28834 25 3.3784 x 10-4 0.0263 0.2251 0.0131 0.1040 0
Mam23819 26 3.1750 x 10-4 0.0668 0.1627 0.0500 0.1532 0
Mam07226 29 1.2105 x 10-5 7.4416 x 10-4 0 6.2839 x 10-4 0.3519 0
Mam11598 31 4.4154 x 10-4 0.0149 0.0745 0.0141 0.3357 0
Mam01497 32 2.5714 x 10-4 0.0327 0.1177 0.0195 0.4134 5.8852 x 10-5

Mam06448 33 5.0585 x 10-6 0.0313 0.0204 0.0512 0.1571 2.7127 x 10-4

Mam22869 35 2.2395 x 10-4 0.0187 0.1009 0.0178 0.3928 1.1210 x 10-4

Mam02037 36 2.1937 x 10-4 0.0180 0.0626 0.0269 0.3948 6.2672 x 10-5

Mam03780 37 0 0 0.0039 0 0.4115 2.4943 x 10-5

Mam23080 38 6.8878 x 10-4 0.0583 0.0636 0.0456 0.0646 9.1700 x 10-5

Mam23255 42 5.1783 x 10-4 8.9804 x 10-4 0.2263 0.0635 0.3869 2.3669 x 10-4

Mam18330 44 5.2189 x 10-4 0.0622 0.2187 0.0488 0 1.4495 x 10-4

Mam27424 45 0 0.0250 0.0786 0.0235 0.3616 6.7036 x 10-5

Mam22074 46 8.8226 x 10-5 0.0522 0.2247 0.0373 0.1112 0
Mam09837 47 5.6519 x 10-4 0.0404 0.1379 0 0 1.3783 x 10-5

Mam09179 49 1.5330 x 10-4 0.0433 0.0725 0 0.3250 2.1539 x 10-4

Mam11463 50 2.0732 x 10-4 0.0538 0.0675 5.8679 x 10-4 0.0547 2.5670 x 10-4

Mam28066 51 0 0 0.0110 0 0.4514 7.0319 x 10-5

Mam05693 52 0 0.0126 0.0025 0 0.4030 1.4919 x 10-5

Mam20805 53 1.2105 x 10-5 7.4416 x 10-4 0 6.2839 x 10-4 0.3519 0
Mam08145 54 3.1010 x 10-4 0.0512 0.0897 0.0244 0.3974 9.3436 x 10-5

Mam26031 55 1.6025 x 10-4 0.0060 0.0816 0.0211 0.4431 6.8717 x 10-5

Mam14647 56 5.9877 x 10-4 2.2448 x 10-4 0.1418 0.0139 0.3567 8.0921 x 10-5

Mam28671 57 2.9578 x 10-4 0.0422 0.1423 0.0630 0.2385 1.3530 x 10-4

Mam13535 58 5.4066 x 10-5 0.0172 0.0934 0.0274 0.3661 3.3498 x 10-5

Mam26404 61 2.0524 x 10-4 0.0110 0.0558 0 0.2177 1.4219 x 10-4

Mam28865 63 1.1933 x 10-5 0.0170 0.1906 0.0160 0.4052 1.0805 x 10-4

Mam14143 64 3.3864 x 10-4 0.0180 0.2079 0.0383 0.3853 0
Mam16854 65 0 0 0.0034 0 0.4082 2.1172 x 10-5

Mam22835 66 4.7533 x 10-4 1.3585 x 10-4 0.1844 0.0499 0.3343 1.7809 x 10-4

Mam05740 68 5.7847 x 10-4 0.0658 0.1137 0.0435 0.3608 0
Mam11399 69 4.5144 x 10-4 0.0660 0.2113 0.0175 0.0761 0
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FIGURE A1 | Shared highly expressed genes for the second-group samples.
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