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Background: Tuberculosis disease, caused by Mycobacterium tuberculosis, is a major 
public health problem. The emergence of M. tuberculosis strains resistant to existing 
treatments threatens to derail control efforts. Resistance is mainly conferred by mutations 
in genes coding for drug targets or converting enzymes, but our knowledge of these 
mutations is incomplete. Whole genome sequencing (WGS) is an increasingly common 
approach to rapidly characterize isolates and identify mutations predicting antimicrobial 
resistance and thereby providing a diagnostic tool to assist clinical decision making.

Methods: We applied machine learning approaches to 16,688 M. tuberculosis isolates 
that have undergone WGS and laboratory drug-susceptibility testing (DST) across 14 
antituberculosis drugs, with 22.5% of samples being multidrug resistant and 2.1% being 
extensively drug resistant. We used non-parametric classification-tree and gradient-
boosted-tree models to predict drug resistance and uncover any associated novel putative 
mutations. We fitted separate models for each drug, with and without “co-occurrent 
resistance” markers known to be causing resistance to drugs other than the one of interest. 
Predictive performance was measured using sensitivity, specificity, and the area under the 
receiver operating characteristic curve, assuming DST results as the gold standard.

Results: The predictive performance was highest for resistance to first-line drugs, 
amikacin, kanamycin, ciprofloxacin, moxifloxacin, and multidrug-resistant tuberculosis 
(area under the receiver operating characteristic curve above 96%), and lowest for third-
line drugs such as D-cycloserine and Para-aminosalisylic acid (area under the curve below 
85%). The inclusion of co-occurrent resistance markers led to improved performance 
for some drugs and superior results when compared to similar models in other large-
scale studies, which had smaller sample sizes. Overall, the gradient-boosted-tree models 
performed better than the classification-tree models. The mutation-rank analysis detected 
no new single nucleotide polymorphisms linked to drug resistance. Discordance between 
DST and genotypically inferred resistance may be explained by DST errors, novel rare 
mutations, hetero-resistance, and nongenomic drivers such as efflux-pump upregulation.
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conclusion: Our work demonstrates the utility of machine learning as a flexible approach 
to drug resistance prediction that is able to accommodate a much larger number of 
predictors and to summarize their predictive ability, thus assisting clinical decision 
making and single nucleotide polymorphism detection in an era of increasing WGS data 
generation.

Keywords: Mycobacterium tuberculosis, MDR-TB, XDR-TB, drug resistance, machine learning

inTRODUcTiOn

Tuberculosis (TB), caused by Mycobacterium tuberculosis bacteria, 
remains a major global public health challenge, with over 10.0 
million people infected with TB and an estimated 1.6 million 
deaths in 2017 (World Health Organization, 2018a). An increasing 
prevalence of drug resistance presents a serious challenge to effective 
TB control (World Health Organisation, 2018b). First-line anti-TB 
therapy is centered around four drugs: rifampicin (RIF), isoniazid 
(INH), ethambutol (EMB), and pyrazinamide (PZA) (World Health 
Organization, 2017). M. tuberculosis strains resistant to at least RIF 
and INH are termed multidrug-resistant (MDR-TB), with >550,000 
new resistant cases in 2017 (World Health Organisation, 2018b). 
Additional resistance to second-line drugs, the fluoroquinolones 
[FQ; ciprofloxacin (CIP), ofloxacin (OFL), or moxifloxacin 
(MOX)] and injectables [INJ; amikacin (AMK), kanamycin (KAN), 
capreomycin (CAP)], is termed extensively drug resistant (XDR-TB), 
and such cases have been reported in >115 countries (World Health 
Organisation, 2018b). Conventional TB treatment regimens 
are relatively long (>6 months) and include the simultaneous 
application of several drugs (World Health Organization, 2017). 
Treatment of drug-resistant TB is even more prolonged and involves 
drugs with severe side effects and with lower efficacy (World Health 
Organization, 2018a).

Anti-TB drugs act on M. tuberculosis via three main mechanisms: 
(i) blocking enzymes involved in the synthesis of components of the 
cell wall (e.g., EMB), (ii) disrupting protein synthesis at the level 
of the ribosomes [e.g., streptomycin (STM)] and (iii) hindering 
various processes at a DNA level such as RNA/DNA synthesis (e.g., 
RIF, FQ) (Nasiri et al., 2017). While M. tuberculosis drug-resistance 
mechanisms are not fully understood, they have been observed to 
be driven mainly by single nucleotide polymorphisms (SNPs) or 
other polymorphisms (e.g., small insertions and deletions, “indels”) 
resulting in the modification of drug targets (e.g., rpoB gene for RIF, 
gidB and rpsL genes for STM, embB gene for EMB, gyrA and gyrB 
genes for FQ, rrs gene for INJ) or in the loss of an ability to activate 
prodrugs (e.g., katG gene for INH, pncA gene for PZA) (Gygli 
et al., 2017). Mutations can be located within gene coding regions or 
within promoters [e.g., the inhA promoter for INH and ethionamide 
(ETH) resistance] (Palomino and Martin, 2014). A resistance 
mutation can directly alter drug action or be compensatory via 
activation of an alternative pathway. Mutations may cause resistance 
to multiple drugs and contribute to complex gene–gene interactions 
(Safi et al., 2013; Trauner et al., 2014; Gygli et al., 2017).

Drug resistance is traditionally diagnosed using bacterial 
culture and phenotypic testing, where uncovering resistance to 

first-line treatments leads to an assessment of second-line regimens. 
However, this approach is relatively slow and expensive, and it 
has inherent inaccuracies and reproducibility challenges (Farhat 
et al., 2016). Whole genome sequencing (WGS) is increasingly 
being used as a diagnostic tool to rapidly identify a wider set 
of mutations to inform clinical decision making (Dheda et al., 
2017). WGS can also be used to identify new putative resistance 
loci, for example, through genome-wide association (GWAS) and 
phylogenetic-tree-based convergent evolution approaches (Coll 
et al., 2018). Classic regression methods, with and without the 
incorporation of regularization techniques, have been applied 
within a GWAS context to improve model generalizability and 
prevent model overfitting. However, these methods may fail to 
detect interactions among covariates and might be less suited to 
the analysis of large and high-dimensional datasets that arise from 
large-scale WGS projects (Lunetta et al., 2004; Hastie et al., 2009). 
This issue is of special relevance, as prior studies have indicated 
that there are likely to be as-yet undetected epistatic effects that 
might influence resistance (Farhat et al., 2016).

Machine learning is concerned with the development and 
application of computationally intensive analytical methods to 
extract information from complex datasets, with an emphasis 
on the task of prediction. With increasing numbers of M. 
tuberculosis clinical isolates undergoing WGS and the expanding 
numbers of loci implicated in resistance, machine learning offers 
a complementary approach to regression-based GWAS, as it has 
a superior capability to adapt to the growing body of clinical 
and biological data. Compared with regression, nonparametric 
machine learning methods such as classification trees (CTs) 
and gradient-boosted trees (GBTs) have few underlying 
model assumptions related to the distribution and functional 
relationships between the included covariates or predictors. They 
potentially provide greater flexibility for problems of prediction 
in high-dimensional variable spaces, when each individual 
covariate may contain limited information and covariate 
interactions are important (Lunetta et al., 2004; Heidema et al., 
2007; Hastie et al., 2009). CTs and GBTs are recursive partitioning 
methods that have outperformed other classification techniques 
in genome-wide studies (Chen and Ishwaran, 2012) and provide 
predictions and the ranked importance of predictors as outputs 
(Efron and Hastie, 2017). GBTs in particular have achieved state-
of-the-art results on many standard classification benchmarks 
and demonstrated scalability and speed, suggesting that they 
may perform well in drug-resistance studies (Chen and Guestrin, 
2016). We aim to leverage the great interpretability of CTs with 
the superior prediction performance of GBTs.
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Machine learning methods have previously been applied in a 
TB context, including to support digital X-ray analysis (Lakhani 
and Sundaram, 2017) and drug development and to assess 
antitubercular properties of compounds (Periwal et al., 2011). In 
the context of predicting pathogen drug resistance, researchers 
have looked to apply random forest classification and GBT 
models (Farhat et al., 2016; Yang et al., 2018; Kouchaki et  al., 
2018). For TB, different statistical models have been applied 
to different drugs within the same study, rather than adopting 
a single approach across all drugs (Kouchaki et al., 2018). Our 
approach differs from these and other studies in one or more of 
the following aspects. First, our dataset is one of the largest for 
TB, consisting of nearly 17,000 M. tuberculosis isolates sourced 
globally, and considers phenotypic data for a wider range of 
drugs (n = 14), including for less often used ones such as para-
aminosalisylic acid (PAS), cycloserine (CYS), and ETH. Not only 
do we focus on known drug-resistance SNPs or genes, but we 
also analyze (640K) genome-wide SNPs with an opportunity to 
inform new variant discovery. Therefore, our dataset provides 
a unique opportunity to evaluate machine learning methods, 
which could be rolled in a clinical setting, based on actual M. 
tuberculosis “big data.” Second, we use a combination of CTs 
and GBTs to optimize resistance prediction and SNP discovery 
(Hastie et al., 2009). Third, we assess the impact and implications 
of including “co-occurrent resistance” markers in the prediction 
models. These are mutations that are known to be causing 
resistance to other drugs. Furthermore, we have developed a 
new approach to graphically interpret and rank the results of 
the GBT models and propose approximate novel SNP detection 
thresholds, supporting the detection and interpretation of 
putative new SNPs linked to drug resistance. In summary, we 
investigate the potential of applying cutting-edge CT and GBT 
machine learning methods to predict drug resistance and thereby 
support surveillance and clinical decision making, as well as 
assist the discovery of putative new SNPs linked to resistance.

ReSULTS

M. Tuberculosis Sequence Data, Genetic 
Diversity, and Drug Resistance
WGS and drug susceptibility testing data were available across 
16,688 isolates (S1 Table), which cover the four main lineages 
(L1, 11.1%; L2, 21.9%; L3, 17.0%; L4, 50.1%; S2 Table). Across 
the isolates, 642,580 high-quality genome-wide SNPs were 
identified, with the majority in genic regions (91.6%; 56.9% of 
mutations leading to nonsynonymous amino acid changes). The 
majority of SNPs (98.9%) have low minor allele frequencies (< 
1%). We also included covariates representing the aggregation of 
nonsynonymous mutations by locus within our machine learning 
approach. A phylogenetic tree constructed using all genome-wide 
SNPs revealed the expected clustering by lineage (Figure 1). The 
CT and GBT approaches implemented also selected lineage-
specific markers to account for the phylogeographic-based 
population stratification.

Laboratory drug susceptibility testing (DST) of anti-TB 
drugs found that 35.5% of isolates had a resistance phenotype 

(MDR-TB, 22.5%; XDR-TB, 2.1%; other, 11.0%; Table 1; S2 Table; 
S3 Table). Due to oversampling, these rates are higher than those 
typically seen in clinical or surveillance settings. Fourteen drugs 
were included in the genome-wide analysis: INH, RIF, ETH, 
PZA, EMB, STM, AMK, CAP, KAN, CIP, OFL, MOX, CYS, and 
PAS, as well as the composite MDR-TB phenotype. Phenotypic 
DST data were not available for every isolate across each of the 14 
drugs, as only those individuals resistant to first-line treatments 
are typically tested for second-line resistance. Therefore, the 
number of samples tested ranged from >16,000 for the most 
commonly tested first-line drugs (INH and RIF; ≥98.0%) to <407 
(≤2.4%)  for less often phenotypically assessed drugs such as 
PAS, CYS, and CIP (S3 Table). Insufficient phenotypic data were 
available for the inclusion of the new and repurposed drugs such 
as bedaquiline, delamanid, and linezolid as well as for XDR-TB.

Machine Learning Models to Predict Drug 
Resistance
CT and GBT approaches were used to predict drug resistance 
and support new SNP discovery. We fitted CT models using 
datasets either consisting of SNPs in genes known to be linked 
to drug resistance (CT-KDG) or genome wide (CT-ALL). One 
GBT model was fitted to datasets with all genome-wide SNPs 
(GBT-ALL). All of these three models (CT-KDG, CT-ALL, and 
GBT-ALL) excluded known co-occurrent resistance markers. 
We fitted one additional approach (GBT-CRM) that included 
all genome-wide SNPs and, therefore, potential co-occurrent 
resistance markers in the model. Finally, for the purpose of 
comparison, we fitted a logistic regression (LR) model on the 
SNPs in genes known to be linked to drug resistance (LR-KDG). 
For all approaches, we also included the aggregated count of 
all nonsynonymous mutations per gene in the dataset, to allow 
the models to use this covariate as a potential starting point 
and potentially cover known resistance mutations that have 
low frequency (Phelan et al., 2019). It should be noted that the 
dataset did not contain large deletions, which we have found to 
be present in some resistant isolates, but at very low frequency 
overall (Coll et al., 2018). The resulting CT-KDG models included 
between one and four SNPs or loci. For the CT-ALL and GBT-
ALL, the number of predictors selected varied from 1 to 10 and 
from 30 to 134, respectively (Table 1), and included lineage or 
strain-specific markers that are not causally linked to resistance. 
All models overlapped with respect to known drug-resistance 
loci (Table 1), confirming that they are the strongest predictors 
of resistance. In some cases, the CT-KDG and CT-ALL models 
were identical (e.g. RIF, EMB, AMK, CAP, CIP, OFL).

The Performance of the Machine Learning 
Models
The predictive performance of the machine learning approaches 
was assessed by calculating the sensitivity and specificity and the 
area under the receiver operating characteristic curve (AUC), 
assuming the laboratory DST result was the gold standard (Table 2). 
The GBT-CRM sensitivity for RIF (88.8%) and INH (91.1%) was 
higher than for EMB (82.8%) and PZA (69.7%). The sensitivity 
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for  fluoroquinolones was highest for CIP (85.7%), followed by 
OFL (81.0%) and MOX (53.3%). The sensitivity for the injectables 
was highest for KAN (82.2%), followed by AMK (80.5%) and CAP 
(74.6%). The model sensitivity for the remaining drugs [ETH 

(68.1%), CYS (50.0%), and PAS (20.0%)] is substantially lower. The 
overall sensitivity for MDR-TB was 90.4%. The GBT-ALL model 
tended to outperform the CT models, with respect to sensitivity 
and specificity, and CT-ALL had stronger performance than 

FiGURe 1 | Phylogenetic tree*(attached as separate file)* The tree includes all 16,688 isolates, complemented by additional data from lineages 5–7 and M. bovis. 
The tree was fitted using a maximum likelihood approach implemented in RAxML (Stamakis, 2014).

TABLe 1 | Drug-resistance loci identified in the machine learning models.

Drug N Resistant % cT-KDG (n) cT-ALL (n) GBT-ALL (n) Overlapping Loci

Isoniazid 16,422 5,215 31.8 2 5 103 katG*, fabG
Rifampicin 16,507 4,462 27.0 1 1 39 rpoB*
Pyrazinamide 11,968 1,813 15.1 2 4 116 pncA
Ethambutol 14,830 2,576 17.4 1 10 36 embB*
Streptomycin 5,213 1,338 25.7 4 4 134 rpsL*, rpsl, rrs*, rrs
Amikacin 1,435 335 23.3 1 1 35 rrs
Capreomycin 1,731 389 22.5 1 3 44 rrs
Kanamycin 1,843 639 34.7 1 2 43 rrs
Ciprofloxacin 400 63 15.8 1 1 30 gyrA*
Ofloxacin 1,993 506 25.4 1 1 42 gyrA*
Moxifloxacin 885 104 11.8 1 2 36 gyrA*
Ethionamide 940 329 35.0 3 1 60 fabG*
Cycloserine 391 105 26.9 1 5 44 alr
PAS 407 43 10.6 1 1 54 folC
MDR-TB – 3748 22.5 1 1 82 rpoB*, katG, fabG

PAS, para-aminosalisylic acid; CT-KDG is a classification tree (CT) applied to a dataset with SNPs that are known to be associated with drug resistance [derived from 
Ref. (Phelan et al., 2019)]; CT-ALL and GBT-ALL are, respectively, a CT and gradient boosted tree (GBT) applied to a dataset that includes all genome-wide SNPs, 
except those linked to resistance for other drugs (co-occurrent resistance markers); GBT-CRM is a GBT that is applied to all genome-wide SNPs; MDR-TB is multidrug 
resistant TB, that is, resistance to isoniazid and rifampicin. *Total number of nonsynonymous mutations in that gene.
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CT-KDG. The AUC values for most major first- and second-line 
drugs for the GBT model were above 90% (and often above 95%) 
(S4 Table). The overall predictive performance across models 
for CYS and PAS was relatively weak. In general, larger datasets 
with well-characterized PAS and CYS phenotypes will be needed 
to assist with identifying the full repertoire of related resistance 
mutations (Farhat et al., 2016; Coll et al., 2018).

Comparison Between GBT-CRM and Other Machine 
Learning Models
Owing to the inclusion of co-occurrent resistance markers, 
the GBT-CRM model was almost always the best in terms of 
predictive accuracy and AUC, with a marked improvement for 
PZA and PAS (S1 Table). The GBT-ALL model, which excludes 
co-occurrent resistance markers, but can include marker 
interactions and strain markers, also tended to outperform 
the KDG models, but to a lesser extent than GBT-CRM. The 
difference in predictive performance between the GBT-ALL and 
the KDG models was especially large for ETH and CYS.

Comparison With an in Silico Panel of Known 
Mutations and GWAS
We also compared the predictive abilities of GBT-ALL, CT-ALL, 
and CT-KDG models to those from the TB-Profiler mutation 
panel consisting of >1,300 markers across the 14 drugs (S5 Table) 
(Coll et al., 2015; Phelan et al., 2019). First, we used only those 
markers with minor allele frequency of >0.5% to predict resistance 
(“TB Panel”; S6 Table) and attained a performance similar to KDG 
models (Table 2). We then used the TB-Profiler (full) mutation 
panel and software (Phelan et al., 2019), which rules in observed 
frameshift mutations, large deletions, and missense mutations 
in known resistance genes. As TB-Profiler includes mutations 
occurring at low frequencies, the predicted accuracy was superior 

than the machine learning approaches for most drugs. For five 
drugs, where the resistance mechanisms are less understood, 
including STM, ETH, and PAS, the GBT-CRM model had a 
marginally better performance than the TB-Profiler (S6 Table). 
We also compared the predictive abilities of the GBT-CRM to 
those from an updated GWAS analysis [similar implementation to 
(Coll et al., 2018)] (S6 Table). Overall, the accuracy of both models 
was in the same range (<1% difference) for most drugs, with the 
exception for CAP, KAN, and CYS, where the performance of 
GWAS was distinctively greater, and with exception for PZA, 
MOX, and ETH, where the performance of GBT-CRM was better.

Comparison With Other Studies That Apply Machine 
Learning Methods
We compared our models to the results of four recent studies 
that have applied different machine learning models (Yang et al., 
2018; Kouchaki et al., 2018; Chen et al., 2019; Yang et al., 2019). 
Specifically, we compared both the average and maximum of the 
reported results for each metric (sensitivity, specificity, AUC) for 
each drug across the four studies (S7 Table; S8 Table). All the 
comparator studies included co-occurrent resistance markers. 
The specificities tended to be greater for the GBT-CRM model. 
The sensitivities tended to be greater for one or more of the 
models used in the other studies. However, overall, for six drugs 
(PZA, AMK, CAP, KAN, CIP, and MOX), the AUC scores of the 
GBT-CRM were higher than for the best model for that specific 
drug in other studies.

Detection and interpretation of Putative 
new SnPs
The CT-ALL and GBT-based approaches did not discover any 
putative new SNPs that met the stringent detection thresholds. 
We present and display a new visual approach to mutation 

TABLe 2 | Sensitivity, specificity, and accuracy for the models (maximum value per prediction measure is bolded).

Drug LR-KDG cT-KDG cT-ALL GBT-ALL GBT-cRM

Sens. Spec Acc. Sens Spec Acc Sens Spec Acc Sens Spec Acc Sens Spec Acc

INH 87.3 99.1 95.3 87.3 99.1 95.3 87.3 99.1 95.3 88.0 99.0 95.4 91.1 98.8 96.3
RIF 82.8 99.6 95.1 82.8 99.6 95.1 82.8 99.6 95.1 82.8 99.6 95.1 88.8 98.9 96.2
PZA 21.6 100 87.2 21.6 100 87.2 35.2 98.5 88.2 42.8 99.2 90.0 69.7 96.1 91.8
EMB 84.7 93.1 91.6 80.9 94 91.6 80.9 94.0 91.6 81.7 94.7 92.4 82.8 94.2 92.1
STM 71.6 97.8 91.1 72.3 96.5 90.3 71.2 97.3 90.6 72.3 97.3 90.9 79.8 96.0 91.9
AMK 80.5 99.5 95.1 80.5 99.5 95.1 80.5 99.5 95.1 80.5 99.5 95.1 80.5 99.5 95.1
CAP 69.6 95.5 89.6 69.6 95.5 89.6 69.6 95.5 89.6 72.1 95.8 90.4 74.6 96.2 91.3
KAN 74.4 99.1 89.7 74.4 99.1 89.7 82.2 97.8 91.8 80.8 97.8 91.3 82.2 98.2 92.1
CIP 92.8 98.5 97.5 92.8 98.5 97.5 92.8 98.5 97.5 85.7 98.5 96.2 85.7 98.5 96.2
OFL 80 97.7 93.5 80.0 97.7 93.5 80.0 97.7 93.5 81.0 97.7 93.7 81.0 97.0 93.2
MOX 66.6 93.2 90.9 66.6 93.2 90.9 46.6 98.1 93.7 53.3 96.2 92.6 53.3 97.5 93.7
ETH 75.7 75.6 75.6 75.7 75.6 75.6 74.2 79.6 77.7 66.6 92.6 83.5 68.1 93.4 84.6
CYS* 57.6 88.6 78.4 38.4 98.1 78.4 30.7 94.3 73.4 46.1 92.4 77.2 50.0 92.4 78.4
PAS 0 100 87.8 20.0 100 90.2 0 100 87.8 10.0 100 89.0 20.0 100 90.2
MDR 85.9 96.9 94.4 85.9 96.9 94.4 85.9 96.9 94.4 86.2 97.5 95.0 90.4 96.9 95.5

*No known drug-resistance SNPs for CYS were included in the KDG models; reported outcomes are the performance on the test set; RIF, rifampicin; INH, isoniazid; 
EMB, ethambutol; PZA, pyrazinamide; CIP, ciprofloxacin; OFL, ofloxacin; MOX, moxifloxacin; AMK, amikacin; KAN, kanamycin; CAP, capreomycin; PAS, para-
aminosalisylic acid (PAS); CYS, cycloserine; ETH, ethionamide; CT-KDG is a classification tree (CT) fitted to a dataset with SNPs that are known to be associated 
with drug resistance [derived from Ref. (Phelan et al., 2019)]; LR-KDG is a logistic regression model applied to the same SNP set as CT-KDG; CT-ALL and GBT-ALL 
are, respectively, a CT and gradient boosted tree (GBT) applied to a dataset that includes all genome-wide SNPs, except those linked to resistance for other drugs 
(co-occurrent resistance markers); GBT-CRM is a GBT that is applied to all genome-wide SNPs; MDR is multidrug resistant TB.
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ranking that leverages the output of the GBT-ALL model 
(S1 Fig). A number of known candidates (e.g., Rv1463 for RIF 
resistance) presented with marginal evidence.

DiScUSSiOn

With the rollout of WGS-based TB diagnosis across many 
countries (including UK) (PHE, 2018), there is a need to 
develop global TB datasets and databases (Coll et al., 2018; 
ReSeqTB, 2018), which in turn will require the implementation 
of “big data” analytical approaches (e.g., machine learning 
methods) to assist clinical and control program decision 
making. We have shown that CT and GBT machine learning 
approaches can play a value-adding role in predicting drug 
resistance and the possible detection of new putative variants. 
In general, the predictive performance of the CT models 
was inferior to the GBT approaches, but they captured the 
most common mutations driving resistance. When using 
aggregated counts of nonsynonymous mutations in known 
resistance genes as a predictor in the trees, the CT models 
did not include any known individual SNPs in that respective 
gene in an exclusionary manner as an additional predictor. 
This observation provides not only support for the validity 
and accuracy of the overall TB-Profiler lists but also the use 
of aggregation as a first parse approach to identifying relevant 
genes. The possible exception relates to KAN, CAP, and AMK, 
where the machine learning models chose a subset of the list 
of TB-Profiler SNPs.

The predictive performance of the GBT models, and 
especially the GBT-CRM model, is similar or higher than that 
of the models developed in other studies (Yang et al., 2018; 
Kouchaki et al., 2018; Chen et al., 2019; Yang et al., 2019). 
The performance of the more complex GBT models (GBT-
ALL and GBT-CRM) in some cases is worse than TB-profiler 
(Phelan et al., 2019), but the comparison is affected by the 
fact that the latter approach uses rare alleles and deletions for 
prediction. For some drugs where the resistance mutations are 
not fully established (e.g., CYS, STM, and PAS), the GBT-CRM 
model had a similar or better predictive performance to the 
TB-profiler panel. The improved performance of the GBT-CRM 
over GBT-ALL and CT models may be explained by its ability to 
capture covariate interactions and the inclusion of co-occurrent 
resistance markers and strain-specific SNPs that may be 
informative in resistance outbreaks but in themselves may be 
related to transmissibility and not drug resistance. The inclusion 
of co-occurrent resistance markers might lead to overoptimism 
in the estimated performance that may not translate optimally 
into clinical practice. This optimism bias affects both prediction 
as well as detection (i.e., through mutation ranking) and may be 
caused by an interplay between high DST measurement errors 
(e.g., for pyrazinamide) (APHL, 2016), sequential testing, 
data from settings where drug availability is unregulated, the 
structure and stratification of the datasets, and differential 
resistance mechanisms not captured in a database (e.g., Lisboa 
strain types which have different MDR-TB mutations) (Coll 
et al., 2018). Ideally, resistance predictions should be based 

on underlying biological mechanisms, with co-occurring 
mutations having little effect, thereby assisting with the 
identification of novel putative markers and pathways. While 
our machine learning analysis suggested no novel SNPs at the 
importance thresholds used, in general, the approach ranks the 
informativeness of SNP mutations, which assists the detection 
of novel polymorphisms. As databases get larger with greater 
numbers of well-characterized resistance samples, especially 
for third-line drugs, there is improved potential to identify 
novel resistance mutations using machine learning approaches.

As expected, the overall predictive ability of INH, RIF, and 
MDR-TB resistance across the machine learning approaches 
was high (~90% sensitivity) because the underlying mutations 
and loci involved are well established. However, 10% of 
resistance cases were not identified by the models. The 
genotypic–phenotypic discordance, as measured with the 
GBT-ALL model, was higher for other first-line (e.g., EMB, 
~20% and PZA, ~60%) and second-line drugs (AMK and CAP, 
~20–25%; ETH, ~35%; CYS, ~55%), and large discrepancies 
point towards unknown genetic factors. However, other factors 
potentially have an effect, including laboratory DST errors 
or misspecified or truncated drug assay breakpoints (World 
Health Organization, 2018c), efflux-pump upregulation 
(Balganesh et al., 2012; Gygli et al., 2017), and epigenetic 
and hetero-resistance effects (Folkvardsen et al., 2013; Farhat 
et al., 2016). For example, the recent downward revision of the 
critical concentrations for the fluoroquinolones and injectables 
is likely to decrease specificity and increase sensitivity of 
WGS-based analysis (World Health Organization, 2018c). 
Future studies should aim to use quantitative minimum 
inhibitory concentration scores as phenotypes (Farhat et al., 
2018). For heteroresistance, both resistance and wild-type 
mutations occur in a mixed infection. If the resistant strain 
has a relatively low abundance, the drug may be labeled 
resistant according to the DST result but sensitive in genomic 
sequencing (Folkvardsen et al., 2013; Farhat et al., 2016), 
leading to false negative results. Across the 32 drug targets 
in the TB-Profiler mutation library, 28 appear to have some 
evidence of heteroresistance within the 17k dataset (Phelan 
et al., 2019). With the lower error rates and higher depth of 
WGS, the detection of such low frequency variants is possible; 
therefore, combined with robust bioinformatic approaches, 
sequencing is being viewed as the gold standard for drug 
resistance characterization (Coll et al., 2018).

In summary, our approach has shown that machine 
learning can robustly predict drug resistance and inform on 
its underlying mutations. Furthermore, such approaches will 
be scalable when WGS becomes routine and increasingly “big 
data” analyses are required.

MATeRiALS AnD MeThODS

Phenotypic and Sequencing Data
The dataset consists of 16,688 isolates (lineages 1–4) with WGS 
data and phenotypic DST data (see S1 Table for accession 
numbers). The laboratory drug susceptibility testing followed 
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WHO recommended protocols and practice [see Ref. (Coll 
et al., 2018)]. The raw sequence data were mapped to the H3Rv 
reference genome using bwa-mem software, and SNPs and 
insertions and deletions (indels) called from the consensus of 
GATK and samtools software. The final set of SNPs (N = 642,580) 
and indels included those with low levels of missing genotypes 
(<2%) and excluded those in the hypervariable PE/PPE gene 
families. Missing values were imputed using a nearest neighbor 
imputation approach. The dataset was augmented with covariates 
that aggregated the number of nonsynonymous mutations 
isolated in a locus.

Fitting the Machine Learning Models
CTs (Hastie et al., 2009) were created from two SNP sets: one 
based on those in known drug resistance genes (Coll et al., 2015) 
(N = 1,421 SNPs; “CT-KDG”) and the other using all SNPs in 
the dataset (N = 641,159, “CT-ALL”). CT algorithms produce 
only one easy to interpret tree as output. GBT models (Friedman, 
2000; Hastie et al., 2009) were fitted to a genome-wide SNP 
dataset (GBT-ALL), leading to an ensemble of short and stumpy 
decision trees constructed in an adaptive manner. The GBT 
models allowed us to move beyond binary inclusion of SNPs 
in the final model and assess, for the purpose of SNP discovery, 
the weight and importance of the SNPs included. The LR model 
was applied to the same set of SNPs as the CT-KDG model. As 
mentioned, we excluded known resistance markers for drugs that 
were not the phenotype of interest in each individual model in 
the logistic regression LR-KDG, CT-KDG, CT-ALL, and GBT-
ALL, but included these markers in the GBT-CRM approach.

We created a split in the dataset where 80% was used as a 
training and validation set, and 20% was used as a test set. We 
applied five-fold cross-validation to the training set to calculate 
the prediction accuracy and used this to select the maximum 
depth parameter of the CT and GBT models. (Hastie et al., 
2009). The penalized LR model was cross-validated on the 
regularization strength C for the L1 penalty. The final models 
were trained on the training set and were subsequently applied 
to the test set, with those outcomes reported in the Results 
section. For the CT models, the maximum depth parameter 
was selected as the smallest value that was within one standard 
error from the best performing maximum depth setting. We 
followed this “one-standard-error” rule to further induce the 
selection of parsimonious models and to mitigate the risk 
of over-fitting (Hastie et al., 2009). In both the GBT and CT 
models, the predictions in the final leaf nodes of the tree were 
determined by the majority class in those nodes. The reported 
scores (sensitivity, specificity, accuracy, positive predicted value, 
negative predicted value, and AUC) were calculated after fitting 
the model to the training dataset with the maximum depth as 
described per above and other parameter values (described 
in S9 Table). The GBT models are based on an ensemble of 50 
trees (to facilitate a consistent comparison across drugs with 
regards to the mutation ranking) with a subsampling of 60% of 
isolates to fit each tree. These models provide a score for weight, 
coverage, and importance. The “weight” refers to the number of 
times a feature (covariate) appears in a tree/forest; “coverage” is 

the relative quantity of observations affected by a feature (which 
would be higher for covariates that are higher up in the tree), and 
“importance” is the average gain in the predictive accuracy when 
a SNP is chosen to split a tree node. SNP discovery using GBTs 
was assisted by construction of a two-dimensional mutation-
ranking graph (see S1 Figure) displaying importance gain versus 
weight, with coverage as the bubble size. Those SNPs with high 
importance and weight are more likely to be predictive in a large 
number of trees across different subsamples of the data and, 
therefore, more generalizable. The suggested thresholds for the 
importance and weight were chosen pragmatically based on the 
inclusion of known and established resistance markers. These 
thresholds are shown as dotted lines on the graphs (S1 Figure).

The core packages used in the analysis included the SHAP 
(Lundberg and Lee, 2017) to visualize the relative contribution 
of each predictor, the decision tree classifier in sklearn (version 
0.19.1), and the Xgboost implementation (version 0.70) was 
used to construct the CTs and GBTs (Chen and Guestrin, 
2016). The default settings were used for the implementation 
of these machine learning algorithms, with the exception of 
the parameters as specified (see S9 Table). The plausibility of 
putatively causal SNPs identified was assessed through a search 
of the literature, including for gene function on Mycobrowser 
(Kapopoulou et al., 2011).

comparisons to Mutation Libraries, 
GWAS, and Other Studies.
We compared our machine learning prediction results to those 
from using a set of known SNPs associated with drug resistance 
on a rule-in basis. A first comparison was made with predictions 
based on mutations in the TB-Profiler panel (Phelan et al., 2019) 
that were common (minor allele frequency > 0.5%) in our dataset 
(TB-Panel). A second comparison was made with the application 
of the TB-Profiler software and its full mutation library (Phelan 
et al., 2019) to the dataset. We also compared our results to the 
application of a mixed-model regression GWAS approach (Coll 
et al., 2018) to the ~17k dataset, as well as other studies that 
applied machine learning methods (Yang et al., 2018; Kouchaki 
et al., 2018; Chen et al., 2019; Yang et al., 2019).
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