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MicroRNAs (miRNAs) are one class of important noncoding RNA molecules, and their 
dysfunction is associated with a number of diseases. Currently, a series of databases 
and algorithms have been developed for dissecting human miRNA–disease associations. 
However, these tools only presented the associations between miRNAs and disease but 
did not address whether the associations are causal or not, a key biomedical issue that 
is critical for understanding the roles of candidate miRNAs in the mechanisms of specific 
diseases. Here we first manually curated causal miRNA–disease association information 
and updated the human miRNA disease database (HMDD) accordingly. Then we built a 
computational model, MDCAP (MiRNA-Disease Causal Association Predictor), to predict 
novel causal miRNA–disease associations. As a result, we collected 6,667 causal miRNA–
disease associations between 616 miRNAs and 440 diseases, which accounts for ~20% of 
the total data in HMDD. The MDCAP model achieved an area under the receiver operating 
characteristic (ROC) curve of 0.928 for ROC analysis by independent test and an area under 
the ROC curve of 0.925 for ROC analysis by 10-fold cross-validation. Finally, case studies 
conducted on myocardial infarction and hsa-mir-498 further suggested the biomedical 
significance of the predictions.
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INTRODUCTION

MicroRNAs (miRNAs) are a class of ~22-nucleotide-long small noncoding RNA that mediate 
gene posttranscriptional regulation. MiRNAs could suppress gene expression by targeting the 3′ 
untranslated region of mRNAs (Carthew and Sontheimer, 2009; Ameres and Zamore, 2013). With 
the development of high-throughput sequencing technology, over 2,600 mature miRNA molecules 
have been identified in human body, and these miRNAs regulate more than 15,000 genes in total 
(Chou et   al., 2018; Kozomara et al., 2019). Increasing studies reveal that miRNAs are involved in 
many essential biological processes such as proliferation, differentiation, apoptosis, and development 
(Esteller, 2011; Gebert and MacRae, 2019). And the dysfunction of miRNAs is associated with large 
number of diseases, including but not limited to cancers, cardiovascular diseases (CVDs), and 
neurological disorders (Esteller, 2011; Small and Olson, 2011; Wang et al., 2019b). Thus, databases for 
miRNA–disease associations are increasingly important for dissecting the roles of miRNAs in diseases. 
For this purpose, in 2007, we built the human miRNA disease database (HMDD) (Lu et al., 2008) and 
launched versions 2 and 3 in 2013 and 2018, respectively (Li et al., 2014; Huang et al., 2019). According 
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to the latest update of HMDD, 35,547 experimentally verified 
miRNA–disease associations have been manually collected, which 
cover 1,206 miRNAs and 893 diseases.

Although these miRNA–disease association data have 
significantly benefited the research of the disease-related 
miRNAs, the experimental methods for verifying miRNA–
disease associations are labor-intensive and time-consuming, 
and therefore computational approaches for predicting novel 
miRNA–disease associations are also highly warranted to 
facilitate diagnosis, prognosis, and treatment of complex diseases 
(Liu et al., 2008; Chen et al., 2019; Wang et al., 2019a; Yu et al., 
2019). Indeed, a series of computational methods for predicting 
potential miRNA–disease associations have been developed, for 
example, (Jiang et al., 2010; Chen et al., 2012; Wang et al., 2019a; 
Yu et al., 2019). However, most of the algorithms used miRNA–
disease associations in HMDD as training set, and many of them 
achieved a reliable performance (Chen and Huang, 2017; Chen 
et al., 2018a). According to a recent review, these methods can 
be divided into four categories: score function–based, complex 
network algorithm–based, machine learning–based, and multiple 
biological information–based models (Chen et al., 2019).

Nevertheless, in biomedical views, the miRNA–disease 
associations can be causal (e.g., miRNAs that could result in disease 
phenotypes when permutated) or passive (e.g., differentially 
expressed miRNAs with no significant involvement of disease 
mechanism). Intuitively, the causal associations are more important 
for better understanding of the roles of miRNAs in diseases, 
efficiently discovering new biomarkers for diseases progress and 
precisely dissecting the putative miRNA therapeutic targets for 
the intervention of diseases. Yet, to our knowledge, none of the 
current available databases and algorithms addressed the causality 
information between miRNAs and diseases.

Given the importance of the causality information in miRNA–
disease study, recently we reviewed all associations in the latest 
version of HMDD (January 2019, HMDD v3.1) and identified 
the causal miRNA–disease associations among them. With these 
causal association data, we further developed a prediction model 
named MDCAP (MiRNA-Disease Causal Association Predictor) 
based on the label propagation algorithm for predicting potential 
causal miRNA–disease associations. Ten-fold cross-validation 
and independent testing were performed to evaluate the model 
performance, and several predictions were also confirmed by the 
latest experimental results.

MATERIALS AND METHODS

Data Collection
The miRNA–disease association dataset was downloaded from the 
latest HMDD database (http://www.cuilab.cn/hmdd/) (Huang et al., 
2019), which was updated recently (January 2019, HMDD v3.1). 
The miRNA family information was obtained from miRBase v22 
(http://www.mirbase.org/) (Kozomara et al., 2019). And the single-
nucleotide polymorphism (SNP) data were downloaded from 
dbSNP (ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606/VCF/). 
Medical Subject Headings data were downloaded from its website 
(https://www.nlm.nih.gov/databases/download/mesh.html).

Curation of Causal miRNA–Disease 
Associations
To get reliable results, we performed the manual literature review 
following the workflow in Figure 1. First, we used the evidence 
code provided in HMDD v3.1 for preliminary screen. Records 
with the evidence code classes “Target” and “Genetics” were 
selected as candidate except those with “Genetics_GWAS” label 
for the reason that genome-wide association study presents 
associations between genetic loci and disease but does not present 
causality. Next, causal associations are identified independently 
by different curators according to the following criteria: (1) the 
corresponding study must contain gain-of-function and/or loss-
of-function experiments on the given miRNAs; (2) functional 
experiments must be conducted in cell line and/or disease animal 
model; (3) those associations of which miRNAs could enhance 
drug effects but have no contributions to diseases are excluded. 
Finally, one curator’s results were double checked by another 
curator, and only those confirmed by at least two researchers are 
marked as causal miRNA–disease associations.

Workflow of MDCAP
MDCAP performs the label propagation algorithm on miRNA 
similarity matrix and disease similarity matrix to predict potential 
causal miRNA–disease associations based on known causal 
associations. The workflow of MDCAP is shown in Figure 2. First 
of all, we calculated the disease sematic similarity and miRNA 
functional similarity. In order to better using the topological 
information of known miRNA–disease causal association network, 
we also calculated the Gaussian interaction profile kernel similarity 
of miRNAs and diseases (van Laarhoven et al., 2011; Chen et al., 
2016). As we found miRNAs with a higher number of causal diseases 
were more conserved, we adjusted the transition matrices with hub 
promoted index. Then we generated the transition matrices for 

FIGURE 1 | Curation workflow of the causal miRNA–disease associations.
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label propagation by integrating similarities above for miRNAs and 
diseases, respectively. Finally, we performed the label propagation 
on two matrices separately, and the final score of each miRNA–
disease pair consisted of the two label propagation results. To 
evaluate the performance of MDCAP, we performed independent 
test and 10-fold cross-validation on it. One-fifth causal associations 
were randomly extracted from all known causal associations as test 
set and rest associations were used as training set. 10-fold cross-
validation was performed on training set to optimize parameters. 
More details are described in File S1. Source codes of MDCAP are 
available at https://github.com/cuppeanuts/MDCAP.

RESULTS

Overview of the Causal miRNA–Disease 
Associations
Using the workflow in Figure 1, we curated the causal miRNA–
disease association data, and using the workflow in Figure 2, we 
implemented an algorithm (MDCAP) to predict novel causal 
miRNA–disease associations (see details in Materials and Methods). 
As a result, there are in total 35,547 miRNA–disease associations in 
HMDD v3.1 including 1,206 miRNAs and 893 diseases. By manual 
curation, 6,667 miRNA–disease associations are labeled as causal, 
and these data represent about one-fifth of the total miRNA–disease 
associations in HMDD v3.1 (Figure 3A, http://www.cuilab.cn/
hmdd). These miRNA–disease causal association data contain 616 
miRNAs and 440 diseases. We assigned all miRNAs in HMDD v3.1 

into five groups according to their causal disease numbers (cdn). 
We found that ~50% of all the miRNAs have no causal information 
for any diseases, while ~3% of all the miRNAs are causal in more 
than 30 diseases (Figure 3B). Moreover, the number of causal-
associated diseases of one miRNA is significantly correlated with 
the total number of diseases that are associated with this miRNA 
(Figure 3C). However, there are also plenty of miRNAs associated 
with many diseases but without known causal-associated diseases 
(Figure 3D). For example, many mental disorders such as autistic 
disorder are associated with lots of miRNAs, but currently none 
of these miRNAs have been reported to be causal, suggesting 
that it could be more difficult to identify causal miRNAs for these 
diseases. The top 10 miRNAs with the highest number of causal-
associated diseases are shown in Figure 3E. The top 10 diseases 
with the highest number of causal miRNAs are shown in Figure 3F. 
We found that cancers, as the well-known complex diseases, have 
occupied the top list.

Correlation Between miRNA Cdn and 
miRNA Conservation
Conservation of a gene could indicate the importance of this gene in 
organism development. Therefore, miRNAs with higher conservation 
may be causally associated with more diseases. Thus, we investigated 
the relationship between cdn of miRNAs and their conservation. 
Here we used the number of miRNA family members and the 
number of SNP sites harbored in miRNA precursors to represent 
miRNA conservation (File S2). We found that cdn of miRNAs 

FIGURE 2 | Workflow of the MDCAP prediction model.
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is positively correlated with miRNA family member numbers 
(Figure 4A). And cdn also has a significant negative correlation with 
SNP number (Figure 4B). Besides, disease spectrum width (dsw) 
is a metric measuring the total number of associated diseases, no 
matter whether causal or not, for each miRNA. We also noted that 
cdn of miRNAs has a higher correlation with miRNA conservation 
than dsw in terms of both indexes (Figure 4), indicating that the 
number of causal-associated diseases could a better indicator of 
evolutionarily conserved (and more likely functional important) 
miRNAs than the total number of associated diseases.

Prediction of Causal miRNA–Disease 
Associations
In order to efficiently discovery new causal miRNA–disease 
associations, we developed a prediction model named MDCAP 
for predicting causal miRNA–disease associations. MDCAP was 
built based on label propagation algorithm. MDCAP would give a 
score for every miRNA–disease pair in training set. The closer the 
score is to 1, the more likely the miRNA is causal for the disease. 
To evaluate the performance of MDCAP to infer potentially causal 
associations between miRNAs and diseases, 20% associations 

FIGURE 3 | Overview of the causal miRNA–disease associations. (A) Pie chart showing the proportion of causal miRNA–disease associations. (B) Pie chart depicting the 
fractions of miRNAs with different causal disease numbers. (C) Correlation between the associated disease numbers and the causal disease numbers. Blue line shows the 
smooth line based on the linear model smoothing, and the shadow indicates 95% confidence interval. (D) Bar plot shows the associated disease numbers of all miRNAs. 
MiRNAs were ranked by causal disease numbers and total associated disease numbers. Blue bar represents causal disease numbers, and red bar represents noncausal 
disease numbers. (E) The top 10 miRNAs with the highest numbers of causal-associated diseases. (F) The top 10 diseases with the highest numbers of causal miRNAs.
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were randomly extracted from all known causal associations as 
the independent testing set, and the rest causal associations were 
used as the training set. Tenfold cross-validation was implemented 
on training set to optimize the parameters. During each round of 
cross-validation, the causal associations were also randomly 
divided into a training set and a test set. MiRNA and disease 
similarity matrices were generated solely from the training set, and 
associations where the miRNA or disease name was not included 
in training set were discarded from the testing set since no 
prediction result will be produced for such associations. Based on 
the prediction scores of MDCAP on the testing samples, receiver 
operating characteristic (ROC) curve was plotted according to true 
positive rate (sensitivity) and false positive rate (1 − specificity) at 
different thresholds. Then the area under the ROC curve (AUC) 
was calculated to estimate the performance of MDCAP. As shown 
in Figure 5, MDCAP achieved overall reliable prediction accuracy 
with an AUC of 0.925 on 10-fold cross-validation and AUC of 
0.928 on the independent testing set. Moreover, we repeated the 

cross-validation and independent test randomly for 10 times. 
As a result, the average AUCs of the independent test and cross-
validation are 0.930 and 0.927, respectively. We also performed 
5-fold cross-validation and independent test randomly for 10 
times. The results showed that the average AUCs of the independent 
test and cross-validation are 0.932 and 0.922, respectively.

Case Studies About the Prediction Results
With MDCAP scores, we can predict potential causal miRNAs for 
a given disease. CVD is one leading cause of deaths and disability-
adjusted life-years globally, and the global number of deaths from 
CVD has been increasing during the past decades (Joseph et al., 
2017). Myocardial infarction (MI), referred to as heart attack, is 
an acute coronary syndrome in which a coronary artery is blocked 
often by thrombus and results in heart failure. Here we used 
MDCAP to predict miRNAs that might play a causal role in the 
mechanism of MI. We found that hsa-mir-155 has a score of 0.243 
and is ranked first out of all potential miRNAs (Table 1). And the 

FIGURE 5 | ROC curve showing the performance of MDCAP. (A) ROC curve of 10-fold cross-validation. (B) ROC curve of independent testing set.

FIGURE 4 | Correlation between causal disease number of miRNAs and miRNA conservation. The X axis represents normalized cdn or dsw. Lines show the smooth 
lines based on the linear model, and the shadow indicates 95% confidence interval. (A) Correlation with the miRNA family member number. (B) Correlation with the 
number of SNPs harbored in miRNA precursors.
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causal association between mir-155 and MI has been verified in the 
latest literature that has not been recorded in HMDD v3.1 (Guo 
et al., 2019). In this article, researchers found that the expression of 
miR-155 was dynamically upregulated in murine hearts subjected 
to MI, and the inhibition of miR-155 expression with AMO-155 
(an antisense inhibitor oligodeoxyribonucleotides against miR-
155) could significantly increase cell viability, reduce cell apoptosis, 
and improve the cardiac function. As the authors used carefully 
designed experimental intervention to modulate the miRNA and 
the modulation has a clear effect on disease progression in disease 
animal model, it can be confirmed that the association between 
miR-155 and MI is indeed causal.

Similarly, MDCAP could also be helpful to find new causal-
associated disease of a miRNA. Hsa-mir-498 has been proven to 
be aberrantly expressed in several human malignancies and allergic 
diseases. Here we used MDCAP to predict causal disease associations 
of hsa-mir-498. We found that hepatocellular carcinoma obtained a 
score of 0.223 and is ranked the first among all potential diseases 
(Table 2). This result also has been verified in the latest literature 
that has not been recorded in HMDD v3.1 (Zhang et al., 2019). 
In this article, the authors found that miR-498 was significantly 
downregulated in liver cancer patient tissues, and the overexpression 
of miR-498 markedly inhibited liver cancer cell proliferation, 
migration, and invasion. Clearly, the results of this article provide 
a direct evidence for the causal miRNA–disease association between 
mir-498 and hepatocellular carcinoma, where the modulation of the 
miRNA has a clear effect on disease progression in disease animal 
model. Finally, we applied MDCAP to predict potentially causal 
miRNA–disease associations (in the download page of HMDD).

DISCUSSION

Increasing evidence shows that miRNAs are involved in many 
diseases such as cancers, CVDs, and neurodegenerative diseases 
(Esteller, 2011). However, most of them could be merely “passenger 
miRNAs,” which are passively altered during the progression of 
diseases. Identification of disease causal miRNAs is more helpful for 
understanding diseases. Moreover, targeting miRNAs is becoming 
a new strategy in drug discovery (Warner et al., 2018); the causal 

information could also be helpful for exploring therapeutic target 
miRNAs more precisely and quickly. Many algorithms have been 
developed to predict novel miRNA–disease associations but not 
address the causal information. (Chen et al., 2018b; Chen et al., 
2018c) Here we curated the causal associations from the latest 
version of HMDD database and came up with a model MDCAP 
for miRNA–disease causal association prediction. MDCAP 
achieved a reliable performance on 10-fold cross-validation and 
independent testing data. Besides, several latest publications also 
support our prediction. These results indicated that MDCAP is a 
reliable model for miRNA–disease causal association prediction. 
With causal information, users could perform various analyses 
including, but not limited to, discovering therapy target miRNAs 
and performing functional enrichment analysis. However, there 
exist some limitations. One major limitation is that the prediction 
space for miRNAs was limited to the existed miRNAs in the 
miRNA matrix. In this study, the miRNA matrix was generated 
using the causal miRNA–disease association data, which limited 
the predictive model to the miRNAs included in the causal 
miRNA–disease association dataset. One solution is to generate 
the matrix based on other dataset, for example, miRNA–target 
interaction, expression, and sequence. Finally, we believe that these 
data and tools represent a useful resource for future investigations 
on the miRNAs’ involvement in the causal disease mechanisms.
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TABLE 1 | The top 5 miRNAs with the highest causal potential for MI.

miRNA Disease Score Rank PMID
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hsa-mir-145 Myocardial infarction 0.190895 2 –
hsa-mir-221 Myocardial infarction 0.166031 3 –
hsa-mir-26a Myocardial infarction 0.158790 4 –
hsa-mir-19a Myocardial infarction 0.157822 5 –

TABLE 2 | The top 5 disease with the highest causal potential by hsa-mir-498.

miRNA Disease Score Rank PMID

hsa-mir-498 Carcinoma, hepatocellular 0.223151 1 30592286
hsa-mir-498 Stomach neoplasms 0.170807 2 –
hsa-mir-498 Colorectal neoplasms 0.143714 3 –
hsa-mir-498 Glioma 0.124206 4 –
hsa-mir-498 Neoplasms 0.121018 5 –

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
http://www.cuilab.cn/hmdd
https://www.frontiersin.org/articles/10.3389/fgene.2019.00935/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2019.00935/full#supplementary-material


Predicting Causal miRNAs for DiseasesGao et al.

7 October 2019 | Volume 10 | Article 935Frontiers in Genetics | www.frontiersin.org

REFERENCES

Ameres, S. L., and Zamore, P. D. (2013). Diversifying microRNA sequence and 
function. Nat. Rev. Mol. Cell. Biol. 14 (8), 475–488. doi: 10.1038/nrm3611

Carthew, R. W., and Sontheimer, E. J. (2009). Origins and mechanisms of miRNAs 
and siRNAs. Cell 136 (4), 642–655. doi: 10.1016/j.cell.2009.01.035

Chen, X., and Huang, L. (2017). LRSSLMDA: laplacian regularized sparse 
subspace learning for MiRNA-disease association prediction. PLoS Comput. 
Biol. 13 (12), e1005912. doi: 10.1371/journal.pcbi.1005912

Chen, X., Liu, M. X., and Yan, G. Y. (2012). RWRMDA: predicting novel human 
microRNA-disease associations. Mol. Biosyst. 8 (10), 2792–2798. doi: 10.1039/
c2mb25180a

Chen, X., Wang, L., Qu, J., Guan, N. N., and Li, J. Q. (2018a). Predicting miRNA–
disease association based on inductive matrix completion. Bioinformatics 34 
(24), 4256–4265. doi: 10.1093/bioinformatics/bty503

Chen, X., Xie, D., Wang, L., Zhao, Q., You, Z. H., and Liu, H. (2018b). BNPMDA: 
bipartite network projection for MiRNA-disease association prediction. 
Bioinformatics 34 (18), 3178–3186. doi: 10.1093/bioinformatics/bty333

Chen, X., Xie, D., Zhao, Q., and You, Z. H. (2019). MicroRNAs and complex 
diseases: from experimental results to computational models. Brief Bioinform. 
20 (2), 515–539. doi: 10.1093/bib/bbx130

Chen, X., Yan, C. C., Zhang, X., You, Z. H., Deng, L., Liu, Y., et al. (2016). WBSMDA: 
within and between score for MiRNA-disease association prediction. Sci. Rep. 
6, 21106. doi: 10.1038/srep21106

Chen, X., Yin, J., Qu, J., and Huang, L. (2018c). MDHGI: matrix decomposition 
and heterogeneous graph inference for miRNA–disease association prediction. 
PLoS Comput. Biol. 14 (8), e1006418. doi: 10.1371/journal.pcbi.1006418

Chou, C. H., Shrestha, S., Yang, C. D., Chang, N. W., Lin, Y. L., Liao, K. W., et al. 
(2018). miRTarBase update 2018: a resource for experimentally validated 
microRNA–target interactions. Nucleic Acids Res. 46 (D1), D296–D302. doi: 
10.1093/nar/gkx1067

Esteller, M. (2011). Non-coding RNAs in human disease. Nat. Rev. Genet. 12 (12), 
861–874. doi: 10.1038/nrg3074

Gebert, L. F. R., and MacRae, I. J. (2019). Regulation of microRNA function in 
animals. Nat. Rev. Mol. Cell. Biol. 20 (1), 21–37. doi: 10.1038/s41580-018-0045-7

Guo, J., Liu, H. B., Sun, C., Yan, X. Q., Hu, J., Yu, J., et al. (2019). MicroRNA-155 
promotes myocardial infarction-induced apoptosis by targeting RNA-binding 
protein QKI. Oxid. Med. Cell. Longev. 2019, 4579806. doi: 10.1155/2019/4579806

Huang, Z., Shi, J., Gao, Y., Cui, C., Zhang, S., Li, J., et al. (2019). HMDD v3.0: a 
database for experimentally supported human microRNA-disease associations. 
Nucleic Acids Res. 47 (D1), D1013–D1017. doi: 10.1093/nar/gky1010

Jiang, Q. H., Hao, Y. Y., Wang, G. H., Juan, L. R., Zhang, T. J., Teng, M. X., et al. 
(2010). Prioritization of disease microRNAs through a human phenome–
microRNAome network. BMC Syst. Biol. 4. doi: 10.1186/1752-0509-4-S1-S2

Joseph, P., Leong, D., McKee, M., Anand, S. S., Schwalm, J. D., Teo, K., et al. 
(2017). Reducing the global burden of cardiovascular disease, part 1: the 

epidemiology and risk factors. Circ. Res. 121 (6), 677–694. doi: 10.1161/
CIRCRESAHA.117.308903

Kozomara, A., Birgaoanu, M., and Griffiths-Jones, S. (2019). miRBase: from 
microRNA sequences to function. Nucleic Acids Res. 47 (D1), D155–D162. doi: 
10.1093/nar/gky1141

Li, Y., Qiu, C., Tu, J., Geng, B., Yang, J., Jiang, T., et al. (2014). HMDD v2.0: a 
database for experimentally supported human microRNA and disease 
associations. Nucleic Acids Res. 42 (Database issue), D1070–D1074. doi: 
10.1093/nar/gkt1023

Liu, Z., Sall, A., and Yang, D. (2008). MicroRNA: an emerging therapeutic target 
and intervention tool. Int. J. Mol. Sci. 9 (6), 978–999. doi: 10.3390/ijms9060978

Lu, M., Zhang, Q., Deng, M., Miao, J., Guo, Y., Gao, W., et al. (2008). An analysis 
of human microRNA and disease associations. PLoS One 3 (10), e3420. doi: 
10.1371/journal.pone.0003420

Small, E. M., and Olson, E. N. (2011). Pervasive roles of microRNAs in 
cardiovascular biology. Nature 469 (7330), 336–342. doi: 10.1038/nature09783

van Laarhoven, T., Nabuurs, S. B., and Marchiori, E. (2011). Gaussian interaction 
profile kernels for predicting drug–target interaction. Bioinformatics 27 (21), 
3036–3043. doi: 10.1093/bioinformatics/btr500

Wang, L., You, Z. H., Chen, X., Li, Y. M., Dong, Y. N., Li, L. P., et al. (2019a). 
LMTRDA: using logistic model tree to predict MiRNA–disease associations by 
fusing multi-source information of sequences and similarities. PLoS Comput. 
Biol. 15 (3), e1006865. doi: 10.1371/journal.pcbi.1006865

Wang, M., Qin, L., and Tang, B. (2019b). MicroRNAs in Alzheimer’s Disease. 
Front. Genet. 10, 153. doi: 10.3389/fgene.2019.00153

Warner, K. D., Hajdin, C. E., and Weeks, K. M. (2018). Principles for targeting 
RNA with drug-like small molecules. Nat. Rev. Drug Discov. 17 (8), 547–558. 
doi: 10.1038/nrd.2018.93

Yu, S. P., Liang, C., Xiao, Q., Li, G. H., Ding, P. J., and Luo, J. W. (2019). MCLPMDA: 
a novel method for miRNA–disease association prediction based on matrix 
completion and label propagation. J. Cell. Mol. Med. 23 (2), 1427–1438. doi: 
10.1111/jcmm.14048

Zhang, X., Xu, X., Ge, G., Zang, X., Shao, M., Zou, S., et al. (2019). miR498 inhibits 
the growth and metastasis of liver cancer by targeting ZEB2. Oncol. Rep. 41 (3), 
1638–1648. doi: 10.3892/or.2018.6948

Conflict of Interest: The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could be construed as a 
potential conflict of interest.

Copyright © 2019 Gao, Jia, Shi, Zhou and Cui. This is an open-access article 
distributed under the terms of the Creative Commons Attribution License (CC 
BY). The use, distribution or reproduction in other forums is permitted, provided 
the original author(s) and the copyright owner(s) are credited and that the original 
publication in this journal is cited, in accordance with accepted academic practice. No 
use, distribution or reproduction is permitted which does not comply with these terms.

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://doi.org/10.1038/nrm3611
https://doi.org/10.1016/j.cell.2009.01.035
https://doi.org/10.1371/journal.pcbi.1005912
https://doi.org/10.1039/c2mb25180a
https://doi.org/10.1039/c2mb25180a
https://doi.org/10.1093/bioinformatics/bty503
https://doi.org/10.1093/bioinformatics/bty333
https://doi.org/10.1093/bib/bbx130
https://doi.org/10.1038/srep21106
https://doi.org/10.1371/journal.pcbi.1006418
https://doi.org/10.1093/nar/gkx1067
https://doi.org/10.1038/nrg3074
https://doi.org/10.1038/s41580-018-0045-7
https://doi.org/10.1155/2019/4579806
https://doi.org/10.1093/nar/gky1010
https://doi.org/10.1186/1752-0509-4-S1-S2
https://doi.org/10.1161/CIRCRESAHA.117.308903
https://doi.org/10.1161/CIRCRESAHA.117.308903
https://doi.org/10.1093/nar/gky1141
https://doi.org/10.1093/nar/gkt1023
https://doi.org/10.3390/ijms9060978
https://doi.org/10.1371/journal.pone.0003420
https://doi.org/10.1038/nature09783
https://doi.org/10.1093/bioinformatics/btr500
https://doi.org/10.1371/journal.pcbi.1006865
https://doi.org/10.3389/fgene.2019.00153
https://doi.org/10.1038/nrd.2018.93
https://doi.org/10.1111/jcmm.14048
https://doi.org/10.3892/or.2018.6948
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	A Computational Model to Predict the Causal miRNAs for Diseases

	Introduction

	Materials and Methods

	Data Collection

	Curation of Causal miRNA–Disease Associations

	Workflow of MDCAP


	Results

	Overview of the Causal miRNA–Disease Associations

	Correlation Between miRNA Cdn and miRNA Conservation

	Prediction of Causal miRNA–Disease Associations

	Case Studies About the Prediction Results


	Discussion

	Data Availability Statement

	Author Contributions

	Funding

	Supplementary Material

	References



