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Shotgun metagenomics has greatly advanced our understanding of microbial communities 
over the last decade. Metagenomic analyses often include assembly and genome binning, 
computationally daunting tasks especially for big data from complex environments such 
as soil and sediments. In many studies, however, only a subset of genes and pathways 
involved in specific functions are of interest; thus, it is not necessary to attempt global 
assembly. In addition, methods that target genes can be computationally more efficient 
and produce more accurate assembly by leveraging rich databases, especially for 
those genes that are of broad interest such as those involved in biogeochemical cycles, 
biodegradation, and antibiotic resistance or used as phylogenetic markers. Here, we review 
six gene-targeted assemblers with unique algorithms for extracting and/or assembling 
targeted genes: Xander, MegaGTA, SAT-Assembler, HMM-GRASPx, GenSeed-HMM, 
and MEGAN. We tested these tools using two datasets with known genomes, a synthetic 
community of artificial reads derived from the genomes of 17 bacteria, shotgun sequence 
data from a mock community with 48 bacteria and 16 archaea genomes, and a large soil 
shotgun metagenomic dataset. We compared assemblies of a universal single copy gene 
(rplB) and two N cycle genes (nifH and nirK). We measured their computational efficiency, 
sensitivity, specificity, and chimera rate and found Xander and MegaGTA, which both use 
a probabilistic graph structure to model the genes, have the best overall performance 
with all three datasets, although MEGAN, a reference matching assembler, had better 
sensitivity with synthetic and mock community members chosen from its reference 
collection. Also, Xander and MegaGTA are the only tools that include post-assembly 
scripts tuned for common molecular ecology and diversity analyses. Additionally, we 
provide a mathematical model for estimating the probability of assembling targeted genes 
in a metagenome for estimating required sequencing depth.

Keywords: gene-targeted assembly, microbial ecology, gene-centric assembly, Xander, MegaGTA

Abbreviations: pHMM, protein profile hidden Markov model; DBG, de Bruijn graph; kmer, subsequence of length k; OTU, 
operation taxonomic units; Gbp, 1 billion base pairs; GB, 1 billion bytes; rplB, the gene encoding 50S ribosomal large subunit 
L2; rpsC, the gene encoding 30S ribosomal small subunit protein S3; nifH, the gene encoding nitrogenase reductase; nirK, the 
gene encoding nitrite reductase.

Frontiers in Genetics | www.frontiersin.org October 2019 | Volume 10 | Article 957

HypoTHEsis AnD THEoRy

doi: 10.3389/fgene.2019.00957
published: 15 October 2019

https://creativecommons.org/licenses/by/4.0/
mailto:tiedjej@msu.edu
https://doi.org/10.3389/fgene.2019.00957
https://www.frontiersin.org/article/10.3389/fgene.2019.00957/full
https://www.frontiersin.org/article/10.3389/fgene.2019.00957/full
https://www.frontiersin.org/article/10.3389/fgene.2019.00957/full
https://loop.frontiersin.org/people/586708
https://loop.frontiersin.org/people/109314
https://loop.frontiersin.org/people/760100
https://loop.frontiersin.org/people/291405
https://loop.frontiersin.org/people/82305
https://loop.frontiersin.org/people/82537
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2019.00957
https://www.frontiersin.org/journals/genetics#editorial-board
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2019.00957&domain=pdf&date_stamp=2019-10-15


Review: Gene-Targeted AssemblyGuo et al.

2

inTRoDUCTion

Metagenomics, involving the shotgun sequencing of DNA 
extracted from environmental samples, has transformed our 
understanding of microbial ecology in many environments (Qin 
et al., 2010; Howe et al., 2014; Sunagawa et al., 2015). This method 
produces reads from random DNA fragments from genomes in 
the community (National Research Council, 2007). Thus, it has 
the potential to both overcome the primer bias issue of amplicon-
based methods and to provide a broader functional picture of 
the sampled microbiome (Frank et al., 2008; Klindworth et al., 
2013; Guo et al., 2016). To accomplish this, the reads need to be 
assembled and/or binned in a meaningful way.

Global assembly and local (targeted) assembly are two 
common strategies for assembling shotgun reads. Global assembly 
attempts to recover most if not all genomes in metagenomes and 
has become a common step for shotgun metagenomic analyses. 
Many assemblers have been developed for this task including 
MetaVelvet, IDBA-UD, MEGAHIT, and metaSPAdes (Namiki 
et al., 2012; Peng et al., 2012; Li et al., 2015; Nurk et al., 2017). 
While major improvements have been made in recent years, global 
assembly still faces challenges including repeats, sequencing 
errors, uneven coverage, and the sheer size of data sets, especially 
for complex environments such as soil (Li et al., 2015; Nurk et al., 
2017; Sczyrba et al., 2017). Many studies, however, only focus on 
genes involved in certain pathways such as the biogeochemical 
cycles or other genes that are directly responsible for important 
ecological functions. In these cases, it is not necessary to assemble 
all of the shotgun metagenomic data, and local assemblers that 
target these genes of interest may be more advantageous because 
they focus computational efforts only on assembly of alleles 
of a specified gene. In parallel with global assembly, significant 
progress with local assembly has been made in the last 5 years 
(Zhang et al., 2014; Wang et al., 2015; Alves et al., 2016; Gregor 
et al., 2016; Zhong et al., 2016; Huson et al., 2017; Li et al., 2017). 
This has enabled microbial ecologists to recover full-length (or 
nearly so) marker genes of phylogenetic or functional interest 
from complex environmental samples without relying on PCR 
primers that often amplify only partial gene sequences and have 
well-known biases (Frank et al., 2008; Klindworth et al., 2013; 
Guo et al., 2016) resulting in more reliable taxonomic assignments 
and microbial community diversity analyses. Although the target 
of local assembly can be any genomic segments including genes, 
gene cassettes, plasmids, or even whole genomes, we focus on 
protein-coding gene-targeted assemblers in this review.

There are potential problems with all assembly-based 
methods. First, the assembled contigs may be chimeric. While 
some of these can be detected and removed using paired-end 
information, there is no method to verify all in silico (Edgar, 
2016). Second, sequence variations from closely related strains 
are collapsed in the assembly process (Awad et al., 2017; Nurk 
et al., 2017; Brown et al., 2018). Thus, the assembled contigs are 
not suitable for SNP (single-nucleotide polymorphism), primer 
design, or diversity analyses that involve fine taxonomic (species 
or strain) level discrimination. Third, rare members do not 
have enough coverage to assemble. All of the above are more 
problematic in complex metagenomes from environments that 

have high diversity with many closely related strains and many 
strains with low coverage (Howe et al., 2014).

Gene-targeted assemblers have potential advantages over global 
assemblers that may minimize such problems: (1) assembly guided 
by reference can reduce chimera formation and assembly errors 
arising from sequencing errors; (2) better efficiency from reduced 
graph and/or search space enables gene-targeted assemblers to 
use more sophisticated algorithms to explore micro-heterogeneity 
of closely related strains (Wang et al., 2015; Huson et al., 2017); 
and (3) the most common current genome binning approach, 
which relies on the results from global assembly, misses even 
more low coverage members than targeted assembly since only 
bins with high completeness and low contamination are usually 
selected for downstream analyses (Brown et al., 2018). While 
many gene-targeted assemblers reviewed here demonstrated 
better performance than global assembly in their original studies 
(Zhang et al., 2014; Wang et al., 2015; Huson et al., 2017; Li et al., 
2017), continual improvements in global as well as gene-targeted 
assemblers may result in different performances which may also 
depend on data size, quality, and gene characteristics. Here, we 
focus on comparing gene-targeted assemblers rather than gene-
targeted assemblers versus global assemblers.

While assembly outputs are linear sequences, assembly 
processes require more sophisticated graph data structures. The 
two most common data structures are de Bruijn graph (DBG) 
and overlap graph (Myers, 2016). The DBG method first chops 
reads into even smaller kmers and then builds a graph connecting 
kmers that share k − 1 bases. The overlap graph method first finds 
overlaps (larger than a length cutoff) among all reads and then 
connects reads based on the overlapping information (Peltola 
et al., 1984; Simpson and Durbin, 2012). Earlier methods for 
constructing the overlap graph required all-against-all pairwise 
read comparisons and thus were computationally expensive. 
Recently, efficient overlap detection methods using advanced 
data structures such as FM-index and Burrows and Wheeler 
Transform (Lippert et al., 2005; Simpson and Durbin, 2012) have 
been developed and make overlap detection highly efficient. The 
DBG is anti-intuitive by breaking down the reads first, but it 
achieves faster CPU time by avoiding the expensive all-against 
all pairwise comparisons since the connections among the kmers 
are implicit (there are only eight possible neighboring kmers for 
each kmer by extending A, T, C, or G on both ends). DBG is very 
sensitive to sequencing errors because each sequencing error can 
cause k spurious kmers and greatly increase the complexity of 
the graph. Overall, for global metagenomic assembly the overlap 
graph works well with long reads by preserving the integrity of 
the reads, whereas the DBG fits well with the massive amounts 
of short reads that second-generation sequencing platforms 
produce (Simpson and Pop, 2015; Myers, 2016).

protein-Coding Gene-Targeted 
Assemblers
Here, we review and compare the efficiencies and assembly 
quality of several gene-targeted assembly tools: Xander, 
MegaGTA, SAT-Assembler, HMM-GRASPx, GenSeed-HMM, 
and MEGAN’s gene-centric assembler (Zhang et al., 2014; 
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Wang et al., 2015; Alves et al., 2016; Huson et al., 2016; Zhong 
et al., 2016; Huson et al., 2017; Li et al., 2017). Our goal is to 
give biologists an easy-to-understand review on the gene-
targeted assembly algorithms. This is not a complete list of all 
gene-targeted assemblers. Rather, our selection criteria were 
(1) unique innovations in assembly algorithms and (2) scalability 
with large shotgun metagenomic data.

The tools reviewed here use a wide range of algorithms and 
can be divided into two main categories (Table S1): (1) read 
filtering, potentially iteratively, using sequences or pHMMs as 
search queries, and (2) assembly by alignment, where pHMMs 
are used for guiding graph traversal in assembly. Among the 
tools reviewed, pHMM-GRASPx, GenSeed-HMM, and SAT-
Assembler belong to first category. HMM-GRASPx and GenSeed-
HMM use iterative read-filtering steps to potentially elongate 
nascent contigs and then apply third party tools for assembly, 
while SAT-Assembler has a novel assembly algorithm. MEGAN’s 
gene-centric assembly function is similar to the first category 
except that it first aligns all reads against NCBI-nr and subsets 
reads that align to target genes. Further, Xander and MegaGTA 
belong to the second category and share a novel pHMM-guided 
graph traversal algorithm.

1) Xander
Xander combines a DBG with a protein profile Hidden 
Markov Model (pHMM) built from a reference set of target 
gene sequences. The probabilities from the pHMM guide gene 
assembly (Wang et al., 2015). The DBG is encoded as a lossy 
(approximate) data structure which compresses the sequence 
data (Pell et al., 2012). The memory needed for this data structure 
is dependent on the data complexity, not total data size. Xander 
requires the user to specify the amount of memory before 
compression. If too little memory is specified for an accurate 
compression, the user will need to re-run the time-consuming 
compression. Xander searches start at all nucleotide kmers with 
sequences that potentially encode short protein sequences found 
in one or more target gene reference sequences. These starting 
kmers are extended in both 5’ and 3’ directions using the encoded 
pHMM probabilities to find high-probability paths in the graph 
structure, analogous to the way a pHMM is used to find high-
probability alignments in a (linear) DNA sequence. The traversal 
advances three graph nodes (three kmers) at a time (one codon) 
to select a single reading frame for the pHMM. Xander uses the 
“A*” algorithm (Hart et al., 1968) to find the path with the highest 
probability and can also find multiple paths from one start, which 
is important when studying allelic diversity, using the modified 
Yen’s K shortest path algorithm (Yen, 1971; Lawler, 1972), which 
is further modified to require each additional path to contain at 
least one unique kmer. Therefore, pHMM-guided graph traversal 
not only reduces the search space compared to global assembly 
but also provides a probability measure analogous to the familiar 
BLAST bits score for how likely a contig would have matched the 
pHMM by chance and thus reduces assembly error.

To assemble sequences, Xander requires forward and reverse 
pHMMs built from a relatively small set of protein sequences 
(e.g., 117 for rplB) that capture the diversity of the target gene, 
and a larger set of aligned protein sequences (1,743 for rplB but 

can be several thousands) for finding starting kmers. The current 
Xander package includes models for the single copy ribosomal 
protein gene rplB and a few N cycle genes (AOA, AOB, nifH, nirK, 
nirS, norB_cNor, norB_qNor, nosZ_cladeI, and nosZ_cladeII). 
A tutorial is provided for preparing the required pHMMs and 
references for additional genes (https://github.com/rdpstaff/
Xander_assembler#per-gene-preparation-requires-biological-
insight).

Another unique aspect of Xander is that it is designed for 
microbial diversity analyses and thus includes post-assembly 
utilities such as chimera checking, de novo OTU clustering, 
taxonomic classification (the nearest neighbor in the reference 
database with percent identity), and quantification. After 
assembly, the contigs are clustered at 99% to remove redundancy, 
and the chimeras are removed by UCHIME (Edgar et al., 2011). 
For these post-assembly tasks, Xander requires a large set of 
protein sequences with taxonomy information in the descriptions 
(usually the same as those used for finding starting kmers) and a 
comparable set of nucleotide sequences.

2) MegaGTA
MegaGTA is designed based on Xander’s analysis framework 
and claims several improvements: (1) MegaGTA uses a different 
space-efficient variant of DBG, the succinct de Bruijn graph 
(sDBG) that was first implemented in the popular global 
assembly tool MEGAHIT (Li et al., 2015). The sDBG is highly 
parallelizable and can also be used to build an iterative DBG 
(Peng et al., 2010), which is difficult to achieve with the bloom 
filter employed by Xander. The iterative DBG allows the use 
of multiple kmer sizes, increasing sensitivity and specificity. 
(2) Xander is designed to remove erroneous kmers caused by 
sequencing errors by filtering out kmers with low abundance but 
then keeps single-copy “mercy-kmer” (Li et al., 2015) if they are 
the only kmers connecting two abundant kmers in a read for the 
purpose of retaining low abundance species in metagenomes. 
These are common in complex environments, but this could 
potentially reintroduce kmers that are sequencing errors. 
Although pHMM-guided graph traversal should reduce the 
chance of erroneous kmers entering assemblies, MegaGTA does 
penalize kmers with low coverage in the guided assembly step. 
This reduces assembly error from sequencing errors but might 
also introduce bias against low abundant members. Overall, 
MegaGTA achieves better sensitivity and specificity, although 
its memory requirement can still be a hindrance for large and 
complex metagenomes.

3) SAT-Assembler
Similar to Xander and MegaGTA, SAT-Assembler also uses 
pHMM, but it is a string graph–based assembler that includes 
two main steps. The first step searches for target gene fragments 
in reads using pHMM with HMMER3 with a permissive cutoff 
(e-value cutoff of 1,000), which greatly reduces the input data size 
for the next step without losing sensitivity. The second step builds 
a string graph for each targeted gene and assembles contigs. The 
read alignment location information against the model from the 
first step is used to guide the overlap calculation among reads. 
Multiple types of information such as paired ends, overlap 
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connection, and coverage are used to guide graph traversal and 
avoid chimeras. Contigs are merged into scaffolds using paired-
end information as the final step. To run SAT-Assembler, a file 
containing pHMMs of targeted genes is required. The pHMM for 
a specific gene can be built from aligned protein sequences of the 
gene using the hmmbuild command in HMMER3 (Eddy, 2009). 
Additionally, SAT-Assembler is also designed to work with 
pHMMs in the Pfam database, which has ~ 18,000 pHMMs in 
version 32.0 and covers ~ 80% of protein sequences in UniProtKB 
(Finn et al., 2016; Schaeffer et al., 2017).

As mentioned briefly above, Xander/MegaGTA and SAT-
Assembler use pHMMs in very different ways. In Xander/
MegaGTA, pHMMs are used to guide graph’s traversal in DBG. 
Although the graph traversal space is reduced to those paths 
related to the target gene, it is still computationally expensive 
(CPU time and memory) to load all reads into the graph and 
identify all starting kmers in a large graph. In contrast, SAT-
Assembler uses pHMMs to filter reads belonging to target genes 
as a data reduction step and then uses the reduced dataset to 
build the assembly graph, thus greatly reducing the memory and 
CPU cost of graph building. SAT-Assembler further uses read 
pHMM alignment information to speed up overlap computation 
among reads for building string graphs. It, however, does not 
apply pHMM to guide graph traversal on the resulting string 
graph, which could potentially improve the assembly.

4) HMM-GRASPx
HMM-GRASPx is also pHMM-based, but it integrates 
many tools including gene callers (MetaGeneAnnotator/
FragGeneScan) (Noguchi et al., 2008; Rho et al., 2010), 
HMMER3 (Eddy, 2009), nucleotide sequence assembler 
(SPAdes) (Nurk et al., 2017), and protein sequence assembler 
(SFA-SPA) (Yang et al., 2015). Its core algorithm, iterative search 
and assembly, is based on an overlap graph in protein space and 
hence can increase the sensitivity of gene identification. Short 
reads are not ideal for gene identification because they may not 
have enough information to be recognized as the target gene. 
HMM-GRASPx tackles this problem by iterative search and 
assembly. Intuitively, homologous protein sequences translated 
from reads with low sequence identity could be identified by 
being assembled first with other high identity reads into longer 
contigs. More specifically, (1) overlaps among reads are firstly 
computed, (2)  reads with high pHMM alignment scores are 
identified and used as starting contigs, (3) contigs are extended 
using overlapping reads, and (4) the extended contigs are 
aligned with pHMM to decide whether to continue extending. 
If the alignment score is below a certain threshold or there are 
no more overlapping reads, then the extension stops; (5) the 
resulting contigs are assembled again based on their overlap; and 
(6) finally, reads from the target gene are retrieved by mapping 
them to the assembled gene contigs. This core algorithm 
functions both as a finder and assembler. HMM-GRASPx’s 
authors suggest that, for quantitative results, the identified 
contigs be assembled with another program, i.e., SPAdes for 
nucleotide and SFA-SPA for protein reads. This is because the 
algorithm outputs all possible contigs to increase sensitivity and 
thus can produce redundant assemblies. However, it should be 

possible to simply remove the redundant contigs, which would 
improve the overall computational efficiency.

5) GenSeed-HMM
GenSeed-HMM applies an iterative assembly and extension 
strategy similar to that used by HMM-GRASPx. The key 
difference is GenSeed-HMM can extend beyond the gene 
boundaries, while HMM-GRASPx will automatically stop 
extending when the pHMM alignment score drops. GenSeed-
HMM has the advantage of being able to use nucleotide, protein 
sequences, or pHMMs as references, which gives the users 
more flexibility. Internally, it applies BLASTn with nucleotide 
references and TBLASTN for protein references to search against 
the (nucleotide) reads, and hmmsearch for pHMM search of the 
translated reads. At the assembly step, it uses third party assembly 
tools such as SOAPdenovo, ABySS, and CAP3 (Huang and 
Madan, 1999; Simpson et al., 2009; Li et al., 2010; Luo et al., 2012), 
and the choice of third party assembly tools might have an impact 
on its overall computational efficiency and assembly quality. For 
contig extension iterations, contig ends are extracted and used 
as new references for the next search iteration. If no contigs 
are extended, it will trim the extended part from the previous 
iteration and try new extension up to three iterations. Once a 
contig reaches or exceeds the maximum length set, it will not be 
included in subsequent iterations. GenSeed-HMM is not a typical 
gene-targeted assembler since its contigs may extend beyond 
gene boundaries. This makes it useful to study the nearby genes 
(genomic context) of the target gene. For marker gene–based 
microbial diversity studies, however, the parts beyond the gene 
boundaries would have to be trimmed before further analyses.

6) MEGAN-Assembler
MEGAN assembler is part of MEGAN version 6 (Huson et al., 2016; 
Huson et al., 2017), and its key algorithm is protein alignment-
guided assembly, an overlap graph–based method. It requires 
an all against all pairwise alignment of query metagenomes and 
reference database such as NCBI-nr using BLAST or DIAMOND 
(Altschul et al., 1997; Buchfink et al., 2015) as the first step, the 
same as all other analyses in MEGAN. MEGAN utilizes the above 
alignment information to find the overlap among reads based 
on their alignment to the same target references and further 
constructs overlap graphs based on 100% sequence match in 
the overlapped portion of the alignment. In this way, MEGAN 
avoids the expensive computation of all against all comparisons 
among query reads for constructing overlap graphs (similar to 
SAT-Assembler). Further, MEGAN weights overlap graph edges 
(connection between reads) by overlap sizes and then traverses 
the graph by finding an acyclic path with a maximum weight. It 
reports contigs with a minimal length, removes the reads used for 
the assembled contigs in overlap graphs, and iterates the above 
process until no more paths remain. Contigs are further extended 
if two contigs have overlap and an overlap identity larger than 
a certain thresholds (by default 20 bp and 98%, respectively). 
Although inducing the read overlap from alignment against 
references is a good strategy to improve computational efficiency, 
the first step of all vs. all comparison of query to NCBI-nr is still a 
daunting task for large metagenomes.
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METHoDs

Data
We evaluated the performance of these gene-targeted assemblers 
using three data sets. The synthetic data consisted of 150-bp single 
reads without errors generated from the 17 genomes in Table S2 
using Grinder (Angly et al., 2012) with the parameters “-rd 150 
-cf 10” to give 10X coverage of each genome. The seven species 
of Pseudomonas were selected as a challenge for assemblers 
regarding their production of chimeric contigs. The mock 
community data, generated from a mixture of known amounts 
of gDNA from 16 archaeal and 48 bacterial strains (Shakya et al., 
2013), consisted of 100-bp paired Illumina reads downloaded 
from NCBI as run SRR606249. These reads were trimmed using 
fastq-mcf (version 1.04.662) (http://code.google.com/p/ea-utils) 
with the parameters “-q 30 -l 50 -w 4 -x 10 -max-ns 0 -X.” The 
soil metagenome sample was sample C1 that was included in the 
original Xander paper (Wang et al., 2015) and is available from 
NCBI as run SRR3989263. Fifty million reads sampled from C1 
were trimmed with fastq-mcf with the same parameters above 
and converted to FASTA format to give 33.7 million paired reads 
designated C1-50M.

programs
Xander is included in RDPTools, which is available as source 
on GitHub (https://github.com/rdpstaff/RDPTools). It requires 
Python 2.7+, Java 1.6+, HMMER 3.1 (http://hmmer.janelia.org), 
and UCHIME (http://drive5.com/usearch/manual/uchime_algo.
html). All of these dependencies may be met by instead installing 
the Bioconda package from https://bioconda.github.io/recipes/
rdptools/README.html. Instructions for Xander are available 
at https://github.com/rdpstaff/Xander_assembler and https://
john-quensen.com/workshops/workshop-2/xander. We installed 
RDPTools from source. All required reference files for rplB, nifH, 
and nirK are included in the installation.

Two of Xander’s parameters depend on the input file size. 
We set FILTER_SIZE to 32, 36, and 38, and MAX_JVM_HEAP 
to 4G, 12G, and 64G for the synthetic, mock, and C1-50M 
data, respectively. We set MIN-COUNT to 1 and left all other 
parameters at their default values for all cases. Resulting false-
positive error rates were always less than 3.20E−05.

MegaGTA is a re-write in C++ of the first two portions of 
Xander: build and find. It may be installed from source from 
https://github.com/HKU-BAL/megagta or as a Bioconda package 
from https://bioconda.github.io/recipes/megagta/README.
html. MegaGTA requires RDPTools. If installed from source, 
RDPTools is included. If installed from Bioconda, RDPTools 
must be installed separately. We installed the Bioconda package.

We limited the available memory for MegaGTA to 19.2G for 
the synthetic data and left all other parameters at their default 
values, including memory, for the other data sets. Memory 
is set as a fraction (0.8 by default) of available memory. The 
gene_list.txt configuration file used pointed to the for_enone.
hmm, rev_enone.hmm, and ref_aligned.fasta files for each gene 
(rplB, nifH, and nirK) in the RDPTools/Xander_assembler/
gene_resource directory.

We installed SAT-Assembler from the forked version 
on GitHub at https://github.com/jiarong/SAT-Assembler, 
following the instructions on that web page. Older versions of 
SAT-Assembler on SorceForge.net and at https://github.com/
zhangy72/SAT-Assembler no longer work because of updates 
to some of the modules the program requires. For this program, 
HMM-GRASPx and GenSeed-HMM, we used pHMMs 
downloaded from the FunGene web page (http://fungene.cme.
msu.edu/).

We installed HMM-GRASPx from https://sourceforge.net/
projects/hmm-graspx/ and followed the directions under the 
Files tab on that page. To generate input files for HMM-GRASPx, 
we ran FragGeneScan with parameters “-complete 0 -train 
illumine_5 –thread 4.” For HMM-GRASPx, we left all parameters 
at their default values.

We installed the Linux version of MEGAN and its auxiliary 
mapping files from http://ab.inf.uni-tuebingen.de/data/software/
megan6/download/welcome.html. Use of MEGAN for gene-
centric assembly from metagenomic data requires that all 
sequences are first aligned against NCBI’s non-redundant 
protein database (NCBI-nr). We used DIAMOND (Buchfink 
et al., 2015) (https://github.com/bbuchfink/diamond) because 
of its speed and output format 100 since the resulting daa 
(DIAMOND alignment archive) files are more rapidly imported 
into MEGAN. We “meganized” the data files using the protein 
accession to InterPro mapping file acc2interpro-June2018X.bin 
downloaded from the MEGAN site and the command line tool 
daa-meganizer. For both DIAMOND and MEGAN assembler, 
we used the default values for all parameters.

GenSeed-HMM is a Perl script available at https://sourceforge.
net/projects/genseedhmm/. It operates by making calls to a 
variety of third-party tools including BLAST+, hmmsearch, 
EMBOSS, bowtie, and at least one assembler. We used the 
ABySS assembler for all of our tests with this program. We used 
Conda to create an environment containing these programs and 
their dependencies and ran GenSeed-HMM from within this 
environment. An YML file for creating the same environment is 
available at https://github.com/jfq3/Virtual-Environments.

Assembly Quality
We evaluated two aspects of assembly quality: (1) contigs 
should capture all target gene sequences known to be in 
the data (sensitivity), and (2) contigs should not include 
irrelevant sequences (specificity). Both aspects were evaluated 
by conducting a BLAST search of contigs against target gene 
sequences extracted from the genomes, or in the case of the 
soil sample C1-50M against NCBI-nr. Sequence similarity 
was defined as “alignment length” * identity/“length of shorter 
sequence.” Some contigs were too different from the target 
sequences to appear in the BLAST results. The relationships of 
such contigs to the target genes were investigated by searching 
against NCBI-nr and/or against the genomes themselves and 
viewing the alignment in NCBI’s genome browser. Potentially 
chimeric sequences assembled from the synthetic and mock 
data were also flagged by UCHIME using target gene sequences 
extracted from the genomes as the reference.
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To make these tests comparable among assemblers, we 
compared comparable contigs. For Xander and MegaGTA, we used 
the intermediate file “_prot_merged_rmdup.fasta.” Post-assembly 
per se, Xander and MegaGTA outputs are normally processed 
through a pipeline that removes potential chimeras and short 
sequences and clusters the remaining sequences at a user-defined 
distance, thus decreasing sequence variation in their final outputs. 
The file “_prot_merged_rmdup.fasta” has not been subjected 
to these processes and contains all unique contigs assembled. 
To investigate chimeras produced by Xander and MegaGTA, 
corresponding nucleotide sequences were selected from the 
“nucl_merged.fasta” files; these files are all nucleotide contigs 
assembled. As well as testing SAT-Assembler and GenSeed-HMM 
output directly, we also removed duplicate sequences and filtered 
to a minimum length of 450 bp (using RDPTool’s rm-dupseq 
command) to produce results more comparable to Xander’s and 
MegaGTA’s “_prot_merged_rmdup.fasta” files. We also compared 
MEGAN results filtered to the same minimum length.

sequencing Depth Estimation
In genome sequencing, the relation between sequencing 
depth and genome coverage is already a well-studied problem. 
Lander–Waterman statistics (Lander and Waterman, 1988) 
show that with “L” as read length, “N” as number of reads, 
and “G” as genome length (much larger than read length), the 
average coverage of genome (“a”) is “LN/G,” and the probability 
of each base not being covered (“p”) is “e−a.” In the context of 
metagenomics, however, a targeted species is only “R” (relative 
abundance) of the total community, so “a” (the average coverage 
of genome) should be redefined as “LNR/G” (we assume that all 
species have the same genome size, “G,” to simplify the problem). 
We can further deduce that the probability (“P”) of at least “M” 
continuous positions (a contig with at least “M” bp) in a target 
gene with a size of “S” bp being covered is:

 P S i p pS i i

i M

S
= − + −−

=∑ ( ) ( )1 1  

Further, the above only considers whether a position is 
covered but not the read overlaps that are needed for assembly. In 

DBG graph with kmer size of “k,” the minimal overlap required 
for two reads to connect is “k − 1.” To account for the “k − 1” 
overlap in either DBG or overlap graph, we can simply define the 
effective read to be the first “L−(k − 1)” position of each read, so 
when one shortened read follows right after where a preceding 
one ended, they effectively have an overlap of “k − 1.” Therefore, 
“p” can be redefined as the probability of a position not being 
covered by reads of effective length (“L − k + 1”) with the value:

 p e L k NR G= − − +( ) /1  

To evaluate the effect of sequencing depth on gene-targeted 
assembly, we first evenly divided our soil metagenome (C1) into 
2, 4, 8, 16, and 32 subsamples. For each sample, we ran Xander to 
assemble rplB with the same parameters mentioned above. The 
coverage information was retrieved from mean kmer coverage in 
“_rplB_45_coverage.txt” output file. We also included rpsC as a 
confirmation of rplB results. The reference files of rpsC for Xander 
can be downloaded from http://doi.org/10.5281/zenodo.1410823 
(Guo, 2018).

REsULTs

Time and Memory Requirements
Comparisons of computer time and memory resources required 
are complicated by the programs having different prerequisites 
and end points. Overall, SAT-Assembler was the most efficient 
requiring less than 6-min wall time and only 78 MB of memory 
to process the synthetic data for rplB (Table 1). SAT-Assembler 
stops short of providing quantitative results allowing sample 
comparisons as Xander does; such further processing would be 
close to that for MegaGTA’s post-processing step. Xander’s three 
steps took only slightly longer (7 min 31s) to provide quantitative 
results but required approximately 1.5 GB of memory. 
Xander’s build step is considered a bottleneck because it is not 
multithreaded, and MegaGTA is advertised as advancement over 
Xander in part because of greater speed. This is true only for 
wall time and if enough threads are used; the actual CPU time 
(78 min) was much greater than Xander’s but did require slightly 

TABLE 1 | Time and memory requirements for processing the synthetic data for rplB. Except for MEGAN BLAST/DIAMOND performed on MSU’s cluster, all times are 
for running on an HP ProBook 450 G5 with Intel i7-8550U CPU and 32 Gb RAM running Ubuntu 18.04 LTS.

program stage Threads Wall timehh:mm:ss CpU timehh:mm:ss peak memory (KB)

Xander Build 1 00:03:52 00:03:57 736,860
Find 4 00:00:57 00:04:48 1,512,728

Search 4 00:02:42 00:04:28 867,776
MegaGTA Main 8 00:10:06 01:15:02 1,133,248

Post-processing 4 00:00:47 00:02:16 729,624
FragGeneScan 4 00:24:20 01:29:15 65,356
HMM-GRASPx 4 00:05:28 00:05:28 8,159,504
SAT-Assembler NA 00:05:55 00:06:38 77,620
MEGAN Diamond 8 14:38:57 95:11:48 19,810,188

Meganize NA 00:05:46 00:15:57 21,659,968
Assembly NA 00:00:03 NA NA

GenSeed-HMM 4 00:07:46 00:16:57 1,425,368

Frontiers in Genetics | www.frontiersin.org October 2019 | Volume 10 | Article 957

http://doi.org/10.5281/zenodo.1410823
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Review: Gene-Targeted AssemblyGuo et al.

7

less memory. The memory requirement for GenSeed-HMM 
was comparable to that of Xander, but the processing time was 
approximately twice as long without including any of the post-
processing steps required for making sample comparisons.

The pre-processing required by HMM-GRASPx and MEGAN 
made them much less efficient to implement. HMM-GRASPx 
requires that all fragments first be translated into peptide reads 
by FragGeneScan or MetaGeneAnnotator. Furthermore, to 
obtain accurate quantitative results, the authors recommend 
that the contigs be re-assembled by another program; time 
and memory requirements for that process are not included in 
Table 1. MEGAN is by far the least efficient, requiring that all 
fragments first be aligned against NCBI’s non-redundant protein 
database. For this task, DIAMOND is preferred over BLAST due 
to its much greater speed (still required over 95-h CPU time), 
but the speed comes with a higher memory requirement (20 GB).

Assembly Quality Tested With synthetic Data
GenSeed-HMM was the most successful at capturing exact 
matches to the rplB genes in the synthetic data, matching all 17 
with 100% identity (Table 2). HMM-GRASPx, MEGAN, and 
SAT-Assembler did nearly as well, matching 16 of the sequences 
at 100% identity. HMM-GRASPx missed Pseudomonas putida 
while MEGAN missed Lacunisphaera limnophila even at a lower 
97% identity threshold. Many of the exact matches produced 
by HMM-GRASPx, MEGAN, and GenSeed-HMM were short; 
however, they captured only about half of the target genes if 
comparisons were restricted to contigs of at least 450 nucleotides. 
Xander and MegaGTA were the worst at producing exact 
matches, capturing only 12 of the 17 genes at 100% identity.

These same two assemblers were the best, however, at 
excluding irrelevant sequences; all 28 contigs were at least 96% 
identical to rplB gene sequences, and all 17 taxa were captured 
at a 97% identity threshold. HMM-GRASPx also did well, with 
only 5% of its assemblies having BLAST matches to rplB of 
less than 97% identity. MEGAN, on the other hand, assembled 
32 contigs (58% of the total) that were perfect matches to 
portions of the reference genomes but entirely unrelated to 
rplB, and 58 to 60% of the SAT-Assembler assemblies had 

less than 97% identity to rplB genes in the synthetic data. 
GenSeed-HMM also assembled some sequences unrelated to 
the target sequences.

Except for SAT-Assembler, all tools assembled contigs 
matching all six nifH (nitrogenase reductase) sequences present 
in the synthetic data with at least 97% identity (Table S3). SAT-
Assembler did not match any of the reads to nifH and so did 
not assemble any contigs for the gene. MEGAN and GenSeed-
HMM also produced high proportions of contigs (11 of 20 
and 71 of 127, respectively) unrelated to nifH sequences in the 
synthetic data.

HMM-GRASPx, MEGAN, SAT-Assembler, and GenSeed-
HMM all assembled contigs with 100% identity to all four 
nirK (nitrite reductase) sequences present in the synthetic data 
(Table S4). Xander and MegaGTA performed identically, each 
producing contigs which matched only two of the nirK sequences 
present in the synthetic data, but with 100% identity. MEGAN, 
SAT-Assembler, and GenSeed-HMM again produced non-
relevant contigs.

Assembly Quality Tested With Mock Data
Overall, MegaGTA was the most successful at assembling rplB 
contigs from the mock data, producing 86 unique contigs 
of more than 450 bp with at least 97% identity to 46 of the 
48 bacterial rplB sequences present (Table 3). While SAT-
Assembler using an overlap length of 40 produced more (1,318) 
contigs with 100% identities to 47 of the 48 rplB sequences 
present, most of the contigs were very short. There were only 61 
unique contigs of at least 450 bp, and only 13 of these matched 
expected rplB sequences with 100% identity. Xander did nearly 
as well as MegaGTA, while for MEGAN’s contigs, over 450 bp 
matched only 33 of the rplB sequences with at least 97% identity 
and GenSeed-HMM’s matched 28 with 100% identity. All the 
assemblers produced “missing” contigs, i.e., ones that did not 
appear in the BLAST tables due to very low sequence similarity to 
reference sequences. By BLAST to NCBI-nr, all of these produced 
by Xander, MegaGTA, and SAT-Assembler matched known rplB 
sequences at more than 99% identity. Only one, however, of the 
45 produced by MEGAN was related to rplB.

TABLE 2 | BLAST summary for rplB assembled from the synthetic data. There were 17 rplB sequences in the synthetic data. Entries in the % ID columns give the 
number of taxa matched over the number of contigs that match rplB by BLAST identity at the specified percentage. 

Method Contigs Length non-target <97% 97% 98% 99% 100%

Xander 28 807–828 0 1 17/27 15/23 12/16 12/12
MegaGTA 28 807–828 0 1 17/27 15/23 12/16 12/12
HMM-GRASPx 63 102–261 0 3 16/60 16/60 16/59 16/59
HMM-GRASPx 0 > =450 – – – – – –
MEGAN1 55 204–3,822 32 0 16/23 16/23 16/23 16/23
MEGAN2 20 453–3,822 11 0 9/9 9/9 9/9 9/9
SAT-Assembler3 176 150–997 49 60 17/67 17/50 16/28 16/23
SAT-Assembler4 106 465–997 0 58 16/48 15/33 13/14 11/11
GenSeed-HMM5 97 32–1,340 4 0 17/93 17/93 17/93 17/93
GenSeed-HMM6 9 724–1,340 1 0 8/8 8/8 8/8 8/8

MEGAN1: all contigs assembled. MEGAN2: contigs filtered to a minimum length of 450 bp. SAT-Assembler3: all contigs assembled with an overlap length of 40 bp. SAT-Assembler4: 
contigs were de-replicated, duplicates removed, and filtered to a minimum length of 450 bp. GenSeed-HMM5: all contigs assembled; GenSeed-HMM6: contigs were filtered to a 
minimum length of 450 bp.
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GenSeed-HMM and MEGAN did slightly better than Xander 
and MegaGTA in capturing nifH sequences in the mock data 
(Table S5), but both again produced high proportions of unrelated 
contigs and many of GenSeed-HMM’s were very short. As with 
the synthetic data, SAT-Assembler did not match any of the reads 
to nifH and so did not assemble any contigs for the gene.

SAT-Assembler did assemble nirK contigs, matching all five 
sequences present in the data at 100% identity (Table S6), but 
again, most contigs were short. Only two were over 450 bp, and 
these matched only one of the five nirK sequences in the mock 
data. GenSeed-HMM did better, producing contigs matching all 
five target genes with 100% identity even after they were filtered 
for length, but also a high proportion of contigs unrelated to the 
nirK sequences in the data. MEGAN contigs matched four of 
the five at 100% identity but also produced a high proportion of 
unrelated sequences. MegaGTA and Xander produced three and 
two contigs, respectively, matching two of the target sequences.

Assembly Quality Tested With soil 
Metagenome
For the C1-50M shotgun data, GenSeed-HMM produced the 
most contigs and matched the highest number of rplB sequences 
in NCBI-nr (Table 4). But most of the contigs were very short 
such that over 70% did not match rplB with an e-value of less 
than 10. Only two were over 450 bp. Considering only contigs 

over 450 bp, MegaGTA produced the most (316), all of which 
matched rplB sequences in NCBI-nr, and Xander was a close 
second. MEGAN produced far fewer contigs (30), only 3 of 
which were over 450 bp, and 11 of which were not rplB.

Chimera
The synthetic data set was meant to be challenging with regard to 
chimera formation, especially for rplB. Xander, MegaGTA, and 
SAT-Assembler all produced high proportions of rplB chimeras 
from this data set (Table S7). For the first two, chimeras were 
almost exclusively (10 of 11, over 90%) between species of 
Pseudomonas. For SAT-Assembler, however, approximately one 
fourth of the chimeras were between different genera, and the 
proportion of chimeras increased with contig length. None of 
MEGAN’s or GenSeed-HMM’s contigs were flagged as chimeras.

The same trend held for the mock data (Table S8). Xander and 
MegaGTA produced fewer rplB chimeras than SAT-Assembler, 
and when they occurred, they were exclusively between species 
of the same genus. In contrast, approximately 30 to 40% of the 
chimeras (depending on length) produced by SAT-Assembler 
were between different genera. As with the synthetic data, none 
of MEGAN’s rplB contigs were flagged as chimeras, and only 1 of 
408 produced by GenSeed-HMM was a chimera.

Xander and MegaGTA also produced a high percentage of 
nifH chimeras from the synthetic data (Table S9), but exclusively 

TABLE 3 | BLAST summary for rplB contigs assembled from the mock data. There were 48 bacterial rplB sequences in the mock data set. Entries in the % ID columns 
give the number of taxa matched over the number of contigs that match rplB by BLAST identity at the specified percentage. 

Method Contigs Length non-target <97% 97% 98% 99% 100%

Xander 95 459–849 2 5 44/88 43/85 40/80 30/30
MegaGTA 94 453–849 2 6 46/86 44/83 42/80 32/32
MEGAN1 93 201–1,611 45 1 39/47 39/47 38/46 35/39
MEGAN2 50 450–1,611 16 1 33/33 33/33 32/32 28/28
SAT-Assembler3 2,765 50–750 751 107 48/1,907 48/1,865 48/1,689 47/1,318
SAT-Assembler4 61 458–750 1 18 29/42 27/37 25/31 13/13
GenSeed-HMM5 408 31–1,360 60 7/9 47/339 47/330 46/187 43/183
GenSeed-HMM6 44 450–1,360 11 1/1 28/32 28/32 27/31 23/27

1Data for all MEGAN contigs assembled from reads mapping to IPR005880 using default parameters. 2Data for MEGAN contigs filtered to a minimum length of 450 bp. 3All SAT-
Assembler rplB contigs assembled from the mock data with an overlap length of 40 bp. Notice that the minimum length is one-half of the read length. 4SAT-Assembler contigs were 
assembled with an overlap length of 40 bp, de-replicated, duplicates removed, and filtered to a minimum length of 450 bp. HMM-GRASPx failed to complete with this data set. 
GenSeed-HMM5: all contigs assembled; GenSeed-HMM6: contigs were filtered to a minimum length of 450 bp.

TABLE 4 | BLAST summary for bacterial rplB contigs assembled from C1-50M aligned against NCBI-nr. Entries in the % ID columns give the number of taxa matched 
over the number of contigs that match rplB by BLAST identity at the specified percentage. 

Method Contigs Length non-target <97% 97% 98% 99% 100%

Xander 269 453–825 0 56/250 11/19 8/16 4/8 3/3
MegaGTA 316 450–825 0 82/290 13/26 12/19 8/11 4/4
MEGAN1 30 207–705 11 2/2 14/17 11/14 9/12 9/12
MEGAN2 3 462–705 1 2/2 2/2 2/2 2/2 2/2
SAT-Assembler3 705 51–436 9 125/207 179/469 154/381 132/316 131/312
SAT-Assembler4 0 – – – – – – –
GenSeed-HMM5 4340 31–1,058 3109 334/596 311/635 284/562 277/535 273/535
GenSeed-HMM6 4 458–1,058 0 2/2 2/2 2/2 1/1 1/1

MEGAN1: all contigs assembled. MEGAN2: contigs filtered to a minimum length of 450 bp. SAT-Assembler3: contigs assembled with an overlap length of 40 bp and de-replicated. 
SAT-Assembler4: contigs assembled with an overlap length of 40 bp were de-replicated and filtered to a minimum length of 450 bp. GenSeed-HMM5: all contigs assembled; 
GenSeed-HMM6: contigs were filtered to a minimum length of 450 bp.
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between sequences from the same genus. In fact, for Xander, two of 
the five and for MegaGTA three of the five chimeras were between 
nifH copies within the same species. There were only two other 
instances of chimera formation. Xander formed a nifH chimera 
with the mock data between strains S2 and C5 of Methanococcus 
maripaludis, and MEGAN formed a nifH chimera between 
Azotobacter vinelandii and A. chroococcum. There were no nirK 
chimeras from either data set by any of the assemblers.

sequencing Depth
With the derived model, we estimated that ~ 40 Gbp of sequences 
is needed to assemble a contig (>450 bp) from a gene with a length 
of 800 bp in a species that is 0.1% of the metagenome (assuming all 
genome sizes are 5 Mbp) (Figure 1). Additionally, when we evaluated 
the effect of sequencing depth on assembly by subsampling, we 
found the number of genes assembled decreased much faster than 
sequencing depth for both rplB and rpsC (Figure 2).

DisCUssion

Computer time and memory requirements can be limiting 
factors in deciding a method to process metagenomic data. 
SAT-Assembler required the least time and memory because 
it first selects a limited number of reads related to the target 
gene to assemble. HMM-GRASPx employs a similar strategy 
to reduce time and memory requirements, but by relying on 
FragGeneScan as a pre-step, it requires far more total time. 
Furthermore, its pHMM alignment at each contig extension is 
also computationally expensive and slows down the simultaneous 
search and assembly step. Similarly, GenSeed-HMM bogs down 
trying to extend both ends of the numerous sequences it finds 
in a first pass through complex data, and MEGAN’s reliance on 
conducting a BLAST search of all sequences against NCBI-nr 

makes it computationally very expensive to implement. We 
were only able to compare assembler performance with an 
environmental sample by reducing the C1 sample to 50 million 
reads. The full sample is five times as large, and neither GenSeed-
HMM nor DIAMOND BLASTX finished processing the full C1 
sample within the 7-day limit on our cluster. By contrast, Xander 
processing of the full C1 data set, including all post-assembly 
processing, for all three genes considered here took only 18 h 13 
min of wall time (40 h 30 min of CPU time).

SAT-Assembler’s savings in resource cost comes at great 
expense in performance, notably in the production of mostly 
short contigs. The similarity search step may have missed remote 
homologs of the references in pHMM despite the loose cutoff 
used in hmmsearch. Thus, by selecting relatively few reads 
to assemble, there are not enough left to fill gaps in the gene 
sequence, i.e., to join the shorter contigs. The same problem is 
seen with HMM-GRASPx. Since it utilizes all reads (in protein 
space) in its simultaneous search and assembly algorithm, short 
contigs might be caused by different factors in its pipeline such 
as the re-calibration step where locally extended contigs are 
merged. Xander, MegaGTA, and MEGAN, on the other hand, are 
able to assemble longer contigs because they work from all reads 
in the sample (at the cost of much larger memory usage and CPU 
time to load all data) and might also have more robust algorithms 
to maximize contig lengths.

Sensitivity is also of paramount importance. Considering the 
number of target genes matched with 100% identity, GenSeed-
HMM scored highest, matching all target sequences in the 
synthetic and mock data. SAT-Assembler scored nearly as well, not 
considering nifH. It matched all nirK genes in both the synthetic 
and mock data, all rplB genes in the synthetic data, and all but one 
of the 48 bacterial rplB genes in the mock data. HMM-GRASPx 
did as well for the synthetic data and additionally assembled 
contigs that matched all nifH genes in the synthetic data, which is 

FiGURE 1 | Relation between the probability of having a target gene from a species assembled and the relative abundance of the species at different sequencing 
depth. X axis is at log10 scale, the target gene length is set to 800 bp, and the minimum contig length is set to 550 bp.
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something SAT-Assembler failed to do. MEGAN did just as well 
with the synthetic data but matched only 35 rplB genes in the mock 
data and only four of the five nirK genes in the mock data. It did 
the best at matching 16 of the 18 nifH genes in the mock data at 
100% identity. It is easy to understand MEGAN’s performance at 
providing 100% matches to the target genes. Because of the way it 
works, the contigs it produces are essentially genes in NCBI-nr. As 
long as a gene in NCBI-nr is well represented in the sample, it is 
what you get back as the contig. This also means that MEGAN is 
less likely to capture novel gene diversity in environmental samples. 
Thus, with different datasets, different genes, and identity cutoff, it 
is difficult to find the tool with highest sensitivity. It is, however, 
also important to take assembly length into consideration since the 
sequence length is critical for target gene-based molecular ecology 
and diversity analyses. After filtering assemblies with length cutoff 
of 450 bp, Xander and MegaGTA provided the best sensitivity with 
all three datasets for rplB and nifH.

Another aspect of assembly quality is the production of non-
target sequences, i.e., false positives. All assemblers produced 
some, but Xander and MegaGTA by far produced the fewest while 
GenSeed-HMM, MEGAN, and SAT-Assembler produced the most. 
Some produced by MEGAN were exceedingly long and matched 
portions of a genome in the synthetic or mock community with 
100% identity. MEGAN assembler works by assembling all reads 
mapped to a GO (in our case) or KEGG category (Huson et  al., 
2017). We suspect that the production of non-target contigs has 
to do with how reads are mapped, and possibly with errors in the 
mapping file that maps NCBI IDs to functional categories in GO.

In most cases, chimeras are to be expected among close relatives 
from assembly of shotgun data whether gene-targeted or whole 
genome. MEGAN is the exception here because, as mentioned 
above, contigs are usually essentially genes or genome segments of 
what is in NCBI-nr. Our results are therefore somewhat surprising 
and encouraging. With the exception of SAT-Assembler, nearly all 
chimeras detected were between the most closely related sequences 
suggesting accurate taxonomic classification to the genus level.

“How much sequencing do I need” is often the first question 
asked when designing a metagenomics project. The answer 
depends on the target species (usually with specific functions) 
of interest, since it is difficult to estimate the true diversity 
(Rodriguez and Konstantinidis, 2014; Rodriguez-R et al., 2018) 
and also costly to sequence deep enough to cover most species 
in complex environments (Locey and Lennon, 2016). Therefore, 
sequencing depth estimates based on a target species or function 
is critical for experiment planning. With our derived model, 
the relation between the amount of sequencing data and the 
probability of assembling a contig with at least “M” bp of the target 
gene with a size of “S” bp from taxa with a relative abundance of 
“R” can be determined (Figure 1). The relative abundance (“R”) 
can be estimated using common 16s rRNA gene amplicon or 
qPCR methods. This estimate is a lower bound, since sequencing 
error, repeats, and micro-heterogeneity among closely related 
strains could complicate assembly of the target gene.

Because it is difficult to have enough sequencing depth to 
cover most species in a high diversity sample, follow-up questions 
are “how many rare members are not assembled” and “how 
does sequencing depth change the assembled read ratio?” Even 

though each rare member is only a small percentage of the total 
community, their sum could be a significant part of the community 
and thus have a significant role in community function. Missing 
rare members is an unavoidable problem for all assembly-based 
methods because there is simply not enough coverage (Guo 
et al., 2018). There are two cases of rare members: (1) those that 
are too rare to yield any read coverage and (2) those that have 
some coverage but not enough to assemble the target gene with 
minimum length. Here, we focus on the latter. In our soil sample 
(C1), the number of rplB assembled decreased much faster than 
linear decrease with sequencing depth (Figure 2), suggesting that 
sequencing depth has a strong impact on gene-targeted assembly 
in diverse communities and thus careful planning on sequencing 
depth is critical. As an upper bound, the quantity of a targeted 
gene can be assessed from the number of short reads annotated 
as the targeted gene without assembly. While this minimizes 
missing low coverage members, it often includes false positives 
(low specificity) when there are conserved motifs among protein 
families. There have been efforts to tackle this problem such as 
finder function in HMM-GRASPx and ROCKer (Orellana et al., 
2017). Also, ROCKer builds gene specific models that set specific 
sequence similarity score thresholds for different regions of a gene. 
These kinds of tools can not only improve gene quantification but 
also could be used as a preprocess step for all above gene-targeted 
tools, e.g., ROCKer has been shown to improve the accuracy of 
Xander (Orellana et al., 2017).

All tools reviewed here except MEGAN make use of pHMMs 
built from reference sequences. The use of pHMMs has clear 
advantages. It is a faster and more effective way to search gene 
fragments compared to pairwise alignment as implemented 
by BLAST or DIAMOND. Additionally, pHMM-based profile 
search can improve the sensitivity for remotely related protein 
identification (Eddy, 2009; Zhang et al., 2014; Reyes et al., 2017). 
The performance of pHMM-based tools, however, is dependent 
on the quality of the pHMMs used, which in turn is dependent 
on  the appropriateness of the reference sequences used to build 
them. Ideally, the pHMMs will selectively capture all diversity in 
the gene family.

The availability of reliable pHMMs may influence the 
choice of tools used. MEGAN does not require them, and SAT-
Assembler is designed to work with pHMMs downloaded from 
Pfam. Xander (and hence MegaGTA), however, come with a 
limited set of pHMMs and required reference sequences for 
finding starting kmers. Instructions are provided for adding 
capability for additional genes to Xander. The FunGene (Fish 
et al., 2013) website is provided to help with this task, but 
knowledge of the gene’s diversity is required. Profile HMMs are 
built to capture conserved regions (domains) of a gene family, 
and there is usually enough variation to divide the gene family 
into sub-groups. If the sequences used to build the pHMM do 
not include all subgroups of the gene, then not all gene diversity 
will be captured from metagenomic data. In some cases, as 
was shown for nosZ (Sanford et al., 2012), there is too much 
diversity to be captured by a single pHMM; hence, multiple 
models are necessary. Based on our experience, if there is large 
sequence variation in a gene (<50% identity), then it should be 
split, and subgroups can be defined based their segregation on 
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a phylogenetic tree. Thus, results are strongly dependent on the 
care with which the models are built.

Microbial ecologists are interested in comparing microbiomes 
among environments or treatments with respect to diversity and 
function. Metagenomic analyses can answer these questions, 
but the tools used must accurately assemble and quantify target 
genes in a manner that allows comparisons among samples. Of 
the tools reviewed here, only Xander and MegaGTA offer this 
capability directly (Table S9). Their search script includes steps 
for removing chimeras, clustering reads based on a user-defined 
distance, providing coverage adjusted counts, and taxonomically 
matching representative sequences to sequences in a database. 
An additional script is provided to combine this information 
from multiple samples to create files that may be imported into 
phyloseq (McMurdie and Holmes, 2013) as a coverage adjusted 
OTU table, representative sequences, and, with a function in 
RDPutils (Quensen, 2018), a corresponding taxonomy table. This 
gives great flexibility for subsequent analyses. MEGAN can also 
generate OTU tables and ordinate samples based on taxonomy 
from all reads, but not in a way that the results are based on a 
particular set of (pathway related) genes. Additionally, the high 
proportion of false positives we observed with MEGAN makes 
using its results for comparative analyses of functional genes 
questionable. Using SAT-Assembler or GenSeed-HMM results 
to make like comparisons would require writing additional 
custom scripts. HMM-GRASPx failed to assemble sequences 
from complex data, and its authors caution that its results are not 
quantitative. Most tools except Xander and MegaGTA do not have 
post-assembly diversity analyses across samples, but they can 
be improved by applying the post-assembly processing method 
in Xander. Further improvements can be made on Xander and 
MegaGTA too. Currently, their post-assembly processing method 

is designed for assembling each sample individually, but not for 
pooled assembly, which is common practice applied to increase 
coverage of rare species. Moreover, they do not directly provide 
a BIOM table that integrates both OTU table and taxonomy 
information (McDonald et al., 2012) and can be imported into 
other commonly used microbial diversity analysis tools such as 
Mothur (Schloss et al., 2009) and QIIME (Caporaso et al., 2010).

We tested the tools under comparable conditions by using 
default parameters, which by no means are the optimal parameters; 
especially kmer or overlap size can strongly impact contig length 
and number and chimera number. We did not try to find the 
optimal set of parameters for each tool and only adjusted them 
when a tool performed significantly more poorly than others, i.e., 
SAT-Assembler produced too many short and chimeric contigs, 
and we improved its results by increasing the overlap length.

sUMMARy AnD oUTLooK

Gene-targeted assembly offers advantages for metagenome analysis 
over whole genome assembly and binning because of (1) higher 
quality assembly (fewer chimera), (2) more extensive recovery of 
genes of interest (more sensitivity), and (3) faster and less costly 
analysis of complex communities which also makes these analyses 
available to a larger set of researchers. It does, however, give up 
information on gene context and host taxa that come from genome 
binning. Long-read sequencing, now available but in its infancy, 
has the potential to make assembly obsolete, but the present high 
error rates and low capacity make its reliable and routine use 
some years away. In the meantime, further improvements of gene-
targeted tools, some of which are noted above, will help speed the 
analysis of the now huge metagenomic data in public databases 
plus the data from even larger sequencing efforts underway.

FiGURE 2 | The effect of sequencing depth on the fold coverage of rplB or rpsC assembled. X axis is the number of subsamples C1 is evenly divided into. Y axis 
is rplB or rpsC fold coverage of a subsample divided by expected folded coverage as if it decreases linearly with sequencing depth (the fold coverage of original 
sample divided by number of even subsamples).
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