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Transcriptome analyses have increased our understanding of the molecular mechanisms 
underlying human diseases. Most approaches aim to identify significant genes by 
comparing their expression values between healthy subjects and a group of patients with 
a certain disease. Given that studies normally contain few samples, the heterogeneity 
among individuals caused by environmental factors or undetected illnesses can impact 
gene expression analyses. We present a systematic analysis of sample heterogeneity in 
a variety of gene expression studies relating to inflammatory and infectious diseases and 
show that novel immunological insights may arise once heterogeneity is addressed. The 
perturbation score of samples is quantified using nonperturbed subjects (i.e., healthy 
subjects) as a reference group. Such a score allows us to detect outlying samples and 
subgroups of diseased patients and even assess the molecular perturbation of single 
cells infected with viruses. We also show how removal of outlying samples can improve 
the “signal” of the disease and impact detection of differentially expressed genes. The 
method is made available via the mdp Bioconductor R package and as a user-friendly 
webtool, webMDP, available at http://mdp.sysbio.tools.
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INTRODUCTION

Gene expression profiling methods such as microarrays and RNA-seq have been extensively used to 
examine the molecular changes associated with a biological “perturbation.” This perturbation can 
be drug treatments, vaccinations, infections, cancers, and autoimmune or inflammatory diseases 
(Nakaya et al., 2012; Prada-Medina et al., 2017; Jochems et al., 2018). For human diseases, the initial 
analysis usually tries to find genes whose expression is significantly altered in the perturbed condition 
(i.e., patients with the disease) compared to the nonperturbed subjects (i.e., the healthy subjects). 
However, the definition of health and disease is broad, and the inherent variation among individuals 
can make any group of human samples highly heterogeneous. Variation can be due to genetic and 
environmental factors, as well as undetected health problems (Whitney et al., 2003; Albert and 
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Kruglyak, 2015). Similarly, patients with the same disease can 
present huge variation in terms of symptoms or score (Hersh 
and Prahalad, 2015; Garg and Smith, 2015). Thus, the removal 
of outlier samples can impact downstream analyses, especially 
in studies investigating mild diseases or the administration of 
inactivated vaccines.

Transcriptome datasets typically contain expression values of tens 
of thousands of genes from a relatively small number of samples. 
This presents a dimensionality problem when trying to identify 
significant changes in gene expression (Wang et al., 2008). Most 
methods will classify a gene as differentially expressed if there is a 
large difference in the mean expression between classes and a low 
variance within classes (De Hertogh et al., 2010). Therefore, genes 
that have heterogeneous expression within a class due to technical or 
biological outliers will have their detection as differentially expressed 
hindered. Individual heterogeneity can arise from past infections, 
environmental factors, microbiota, and genetics (Gibson, 2008), 
as well as undetected problems such as chronic disease, worms, 
food poisoning, or asymptomatic infection. In order to reduce 
biological heterogeneity, scientists try to enroll subjects with similar 
characteristics, controlling them for gender, clinical information, 
age, and so on. However, many hidden factors will invariably remain 
in the final set of samples and contribute to individual differences.

The molecular distance to health (Pankla et al., 2009) is a 
method that analyzes sample heterogeneity by scoring samples 
based on how distant their expression is to healthy and has been 
applied to quantify the perturbation of samples from diseased 
subjects (Berry et al., 2010; Banchereau et al., 2012; Bell et al., 
2016). However, there has been no systematic assessment of how 
human heterogeneity affects downstream analyses. Also, none of 
the previous studies have used specific knowledge-based gene 
sets to evaluate subject perturbation or provided a tool for users 
to assess the heterogeneity in their own datasets.

Here we describe a systematic analysis on heterogeneity of 
several RNA-seq and microarray datasets from a diverse set 
of  human diseases. Our approach, called the molecular degree 
of perturbation (MDP), is available as a Bioconductor R package 
(https://bioconductor.org/packages/release/bioc/html/mdp.
html) and can identify potentially problematic subject data from 
transcriptomic dataset, as well as to quantify the perturbation 
score of healthy and diseased samples. Meanwhile, our user-
friendly web-based application (https://mdp.sysbio.tools/) allows 
scientists to run MDP without any knowledge of bioinformatics 
or programming languages. We demonstrated that the application 
of our method on inflammatory and infectious disease datasets 
can affect the detection of differentially expressed genes (DEGs). 
Finally, these tools were used to analyze RNA-seq data of single 
cells infected with dengue virus (DENV), revealing the individual 
cell heterogeneity of infected cells.

METHODS

MDP Algorithm
The MDP score measures how much a sample is distant from a 
reference group of samples. Let G be the genes in a given expression 
dataset with N samples, out of which h are the healthy control 

samples. Also, let Ci
h  be a centrality measurement (either the mean 

or the median; the default is median), and Si
h , a measure of the 

variability (the standard deviation or the MAD) for each gene i in the 
control samples. Finally, let zi be a modified z-score transformation 
using Ci

h  and Si
h  as parameters. The absolute values of zi are taken, 

and values less than 2 are set to 0. The values that remain represent 
significant deviations from the healthy control samples. The MDP 
score for each sample j (both in the control and perturbed groups) 
is then the mean of the modified absolute zi values considering all 
genes or just the perturbed ones. The “perturbed genes” represent 
the top (default is 25%) genes with the highest absolute zi values 
across all samples in a perturbed group. Additionally, the MDP 
package can automatically identify outlier samples based on the 
number of standard deviations (default = 2) from the mean of MDP 
scores of all samples within each class.

Data Acquisition and Processing
Normalized gene expression data from RNA-seq and microarray 
studies were downloaded from the GEO database (https://www.
ncbi.nlm.nih.gov/geo/). If normalized data were not available, 
we processed the raw CEL files using the affy Bioconductor 
R package (Gautier et al., 2004) and performed data quality 
control using the arrayQualityMetrics Bioconductor R package 
(Kauffmann et al., 2009). Normalization was performed using 
the “RMA” function from the affy package. Samples that failed 
at least two quality control tests before or after normalization 
were removed from downstream analyses. For the single-
cell RNA-seq data, we utilized the gene counts table from 
Supplementary File 7 published by Zanini et al. (2018). Prior 
to the calculation of MDP on single-cell data, we kept only the 
top 30% genes with the highest mean expression on all single 
cells and then removed the genes with zero values in 40% or 
more single cells.

Differential Gene Expression Analysis
Student t test was used to identify DEGs between patients with 
a disease and the healthy subjects. Different log2 fold change and 
adjusted P value (Benjamini and Hochberg) cutoffs were used 
and are shown in Table S1.

Pathway and Network Analyses
We used the NetworkAnalyst tool (Xia et al., 2015) to create the 
protein–protein interaction network with the DEGs. For the 
JIA analysis, we used the protein–protein interaction database 
STRING (score >900) and the minimum network. For the single-
cell RNA-seq analysis, we used the protein–protein interaction 
database STRING (score >900) and the zero-order network. 
Overrepresentation analyses using the Gene Ontology gene sets 
were performed using the genes in the networks. Cytoscape 
software (Shannon et al., 2003) was used to display the networks.

MDP Webtool Implementation
The code of the tool was implemented in HTML, CSS, JavaScript, 
PHP, and R. To upload files, check for errors and check the 
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structure of the data; we used the languages JavaScript and 
PHP. An R script containing the https://cloud.r-project.org repo 
packages: data.table, withr, ggplot2, plotly, and pandoc was used 
to process the data and generate the results in HTML.

For defining style and appearance of pages, we used CSS 
with Bootstrap, which is a front-end framework with several 
components included. For dynamic manipulation of the page, 
we used JavaScript with Jquery. The latter is a framework for 
JavaScript itself, where its main purpose is to facilitate, streamline, 
and reduce the complexity in development.

In the infrastructure, we used the concept of containers 
and microservice with the platform Docker. In parallel, we 
used the tool Docker Compose to orchestrate and to deploy 
these containers. In total, we have three containers: proxy, 
nginx, and php-fpm. In the proxy container, the functions 
of reverse proxy and load balancing were performed, which 
were left in charge of the traefik service (https://traefik.io/). It 
also implements SSL certificate management through the Let’s 

Encrypt project (https://letsencrypt.org/). The nginx container 
is our webserver, and the php-fpm is the backend that processes 
requests to php files.

RESULTS

Molecular Degree of Perturbation 
Algorithm and Webtool
We developed a user-friendly tool that inspects sample heterogeneity 
by assigning a score to each sample based on the cumulative 
perturbation of its gene expression levels relative to control samples. 
The algorithm performs a Z-score normalization of gene expression 
values for noncontrol samples, using the control samples to 
compute the median (M) and median absolute deviation (MAD). 
Absolute normalized expression values less than 2 are designated as 
unperturbed and are set to 0. Sample MDP scores are the average of 
normalized expression values for a given gene set (Figure 1A).

FIGURE 1 | The molecular degree of perturbation approach to calculating sample heterogeneity. (A) The MDP algorithm scores samples based on their perturbation 
from user-defined control samples (often healthy subjects). A Z-score normalization is performed using the control samples as a reference. The absolute values 
of the normalized scores are then taken, and values below 2 are set to 0. The sample scores are the average of these gene scores for each sample. (B) Running 
the MDP webtool. Expression and phenotypic files are required to run MDP; the results are a simple barplot and boxplot showing molecular perturbation for each 
submitted sample. An optional feature allows users to run MDP using a specific gene set, provided as a.gmt file. 
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The web interface for MDP (http://mdp.sysbio.tools) has been 
developed to allow non–bioinformatics users to quickly assess 
the MDP in their samples without the need for any previous 
computational knowledge or additional software (Figure 1B). 
The minimal requirements to execute the webtool are the input 
gene expression file and the phenotype data file. As long as 
the data are already normalized (CPM, TMM, FPKM, RMA, 
etc.), gene expression data from both RNA-seq and microarray 
experiments are supported.

The MDP tool has an additional feature that allows users to 
assess the MDP using a specific gene set or pathway. This may 
be useful in cases where there is a prior knowledge about the 
pathways involved with the disease. For running this optional 
analysis, users must provide a pathway annotation file in.gmt 
format and then select a specific gene set or pathway to calculate 
the perturbation score.

The Sample Perturbation Score for 
Different Human Diseases
We applied the MDP to 20 transcriptome studies (11 microarray 
and 9 RNA-seq) obtained from the GEO (Edgar et al., 2002) and 

SRA (Leinonen et al., 2011) databases in order to investigate how 
sample heterogeneity can impact the downstream differential 
expression analysis. Studies were related to tuberculosis (TB), 
cancer, juvenile idiopathic arthritis (JIA), sepsis, and other 
autoimmune and infectious diseases.

We initially showed that the perturbation scores of samples 
broadly vary within and between different diseases or treatments 
(Figure S1). Infection with the bacteria Staphylococcus aureus, 
for instance, seems to be a stronger perturbation than infection 
with influenza virus (Figure S1A) (Ramilo et al., 2007). Similarly, 
different types of cancer may show lower or higher perturbation 
scores regardless of their known prognostic values (Figure S1B) 
(Best et al., 2015). Our approach also differentiates between 
several subtypes of inflammatory diseases such as JIA, Crohn 
disease, and ulcerative colitis (Figure S1C) (Mo et al., 2018).

MDP Identifies Potential Outlier Samples
By assessing the sample perturbation scores, we were able to 
identify potential outlier samples for each of the 20 microarray and 
RNA-seq studies. One representative boxplot (Figure 2A) shows 
that one of the healthy subjects may be in fact “perturbed” when 

FIGURE 2 | Removal of potential outlier samples impacts differential expression analyses. (A) Sample MDP scores were calculated for 60 patients with Crohn 
disease using as a reference group 12 healthy subjects. Data were obtained from whole blood and are available under GEO accession GSE112057. Healthy 
subjects (blue) were used as reference group. Potential outlier samples are shown as red dots. (B) Differential expression analyses between patients with a disease 
and healthy controls. Numbers of DEGs before and after removal of potential outlier samples are shown as red and black bars, respectively. Random removal of 
samples followed by differential expression analysis was performed 1,000 times for each comparison, and the number of DEGs was averaged (black vertical line).
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compared to the rest of the healthy group. Similarly, 12 of Crohn 
disease patients do not seem greatly perturbed at the molecular 
level (Figure 2A). Treating these samples as outliers and thus 
removing them from differential expression analyses increased 
the number of DEGs. For the GSE112057 comparison between 
healthy subjects and Crohn disease patients, we identified 188 
DEGs before the removal of outliers (Figure 2B). After removal, 
the number of DEGs for this comparison was 3,477 (18.50-fold 
increase). If only the single control outlier sample is removed 
(Figure 2B), the number of DEGs increases to 1,931 (10.1-fold 
increase). We also randomly removed the same number of samples 
considered as outliers and counted the number of DEGs for each 
comparison. This process was repeated 1,000 times showing that 
the increase in DEG number is not due to random chance (Figure 
2B). We performed this analysis for the 19 other comparisons as 
well. In all of them, the number of DEGs increased after removing 
the potential outliers (Figure 2B).

Removal of Potential Outlier Samples 
Increases Biological Consistency Across 
Similar Studies
Five JIA datasets (three RNA-seq and two microarrays) were 
used to assess the consistency between DEGs before and after 
removal of potential outlier samples identified by MDP. After 
removal, we found 21 genes that were differentially expressed 
in at least four JIA datasets, and none using all original 
samples (Figure 3A). Overrepresentation analysis of the genes 
consistently up-regulated in three or more datasets revealed 
that the top 1 gene set, neutrophil degranulation (GO:0043312), 
was recently associated with JIA (Brown et al., 2018) (Figure 
3B). We then created a protein–protein interaction network 
with these consistently up-regulated genes (Figure 3C). This 
approach revealed highly connected genes, which may be 
central to JIA, such as STAT3, UBE2D1, MAPK14, and TLR4 
(Figure 3C).

Using a Specific Gene set to Determine 
the MDP
T cells play a critical role in the outcome of Mycobacterium 
tuberculosis infection (Jasenosky et al., 2015). One important 
cytokine released by these cells is interferon gamma (IFNg). 
However, Berry et al. (2010) have shown that the blood 
transcriptome of patients with active TB was dominated by 
neutrophil-driven type I IFN-related genes. We thus decided 
to evaluate if gene modules related to specific blood immune 
cell populations can capture the MDP of patients with active 
TB. In the analysis, we used transcriptional modules that have 
been extensively validated to be highly specific for different 
immune cell types (Pollara et al., 2017). We also used modules 
derived from the unique transcriptome of human monocyte-
derived macrophages (Mф) stimulated in vitro with different 
cytokines (Bell et al., 2016). For the study GSE19435 
(Berry et al., 2010), the sample MDP scores calculated with 
gene modules of macrophages treated with IFNg for 4 h, 
neutrophils and T cells were higher in patients with active 

TB compared to those from healthy controls (Figure S2A). 
We also performed the same analysis for all 15 gene modules 
and all 7 TB datasets (Figure S2B) and found that the genes 
associated with macrophages treated with IFNg for 4 or 24 h 
are greatly perturbed in active TB. This analysis demonstrated 
that prior knowledge about a disease can be used to quantify 
sample perturbation and that the gene set used will impact the 
MDP scores.

MDP Analysis for Single-Cell RNA-Seq 
Dataset
Finally, we applied the MDP approach to analyze the molecular 
perturbation caused by a viral infection at single-cell level. 
Zanini et al. (2018) developed an approach named viscRNA-seq 
(virus-inclusive single-cell RNA-seq) to probe the host single-
cell transcriptome together with intracellular viral RNA. We first 
evaluated if the MDP score was correlated with the DENV counts 
(herein defined as viral load or VL). Using uninfected single cells 
as the reference control, we calculated the MDP score for all cells 
infected with DENV and then compared these scores with VL 
(Figure 4A). No clear correlation was seen between MDP score 
and VL. Based on the VL (cutoff VL = 103) and on the MDP 
score (cutoff MDP  =  1), we split the single cells into four subsets: 
MDPhighVLlow, MDPhighVLhigh, MDPlowVLlow, and MDPlowVLhigh. 
We then performed differential expression analyses between 
these subsets to assess the transcriptomic alterations caused 
by DENV infection. Figure 4B shows that the highest number 
of DEGs was found when we compared MDPhighVLhigh with 
MDPlowVLlow subsets (1,158 DEGs), rather than either of 
these criteria alone. Comparing cells with high MDP score 
(MDPhighVLlow + MDPhighVLhigh) with those with low MDP score 
(MDPlowVLlow + MDPlowVLhigh) resulted in 872 DEGs. The lowest 
number of DEGs (196 DEGs) was found when we compared 
cells with high VL (MDPhighVLhigh + MDPlowVLhigh) with those 
with low VL (MDPhighVLlow + MDPlowVLlow) (Figure 4B). These 
results suggest that VL alone cannot be a strong marker of cell 
perturbation.

Network and pathway analyses were then performed on the 
1,158 DEGs identified in the MDPhighVLhigh with MDPlowVLlow 
comparison (Figure 4C). The top associated pathways were 
“regulation of cell cycle,” “viral infectious cycle,” and “endoplasmic 
reticulum unfolded protein response” (Figure 4C). In addition to 
VL, MDP provided another layer of information for quantifying 
heterogeneity at single-cell level and generated novel insights 
associated to viral infections.

DISCUSSION

We have shown that the MDP tool provides an intuitive way 
to inspect gene expression data and identify samples that are 
potential biological outliers. Although it can be argued that it is 
important to embrace the heterogeneity of samples and use all of 
them to perform analyses, we have shown that, for DEG analyses, 
sample removal can result in a dramatic improvement in the 
number of DEGs found, particularly removal of clear outlier 
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samples in an otherwise uniform control group. Removing 
perturbed outliers could also potentially prove useful for finding 
disease classifiers by increasing the consistency of DEGs between 
similar studies. For single-cell analyses, it is not clear, however, 
how dropouts and cells with low MDP scores may impact the 
interpretation of the results since zero-inflated datasets may 
affect the calculation of MDP.

We observe that there is a great variation in the transcriptional 
profile of patients with different diseases. Part of this variability 
is due to the genetic contributions of each individual, as well as 
their prior infections, nutritional condition, stress, microbiota, 

and so on (Nakaya et al., 2012). There is still the possibility of 
hidden comorbidities in the diseased individuals, which were 
not part of the exclusion criteria of the clinical trials. The degree 
of molecular perturbation can provide a good indication of the 
health status of the individual and also identify the genes most 
perturbed by the disease in question.

Finally, the MDP approach can also be used to identify 
disease-associated perturbation in a priori–defined clinical or 
immunological factors (Bell et al., 2016; Pollara et al., 2017). In 
this way, the analysis can be used to split patients with the same 
disease into new subgroups with distinct gene expression profiles.

FIGURE 3 | Consistency of JIA signatures increases after removal of potential outlier samples. (A) Number of DEGs before and after removal of potential outlier 
samples in five JIA datasets. The lines show the number of genes (y axis) considered as DEGs in one or more JIA datasets (x axis). (B) Enrichment pathway analysis 
of genes consistently up- or down-regulated in three or more JIA datasets after removal of potential outlier samples. Bar graph shows the log10 adjusted P value 
(x axis) of top Gene Ontology gene sets (y axis). (C) Protein–protein interaction network showing the connectivity of up-regulated DEGs in at least three JIA datasets. 
Genes added to minimum network are shown as gray nodes. Edges were defined by InnateDB (Breuer et al., 2013).
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FIGURE S1 | Sample MDP scores of different human diseases. (A) Sample 
MDP scores of patients acutely infected with either virus or bacteria. Data 
were obtained from blood leukocytes and are available under GEO accession 
GSE6269. Healthy subjects (blue) were used as reference group. (B) Sample 
MDP scores of different types of cancer. Data were obtained from platelets and 
are available under GEO accession GSE68086. Healthy subjects (blue) were 
used as reference group. (C) Sample MDP scores of patients with inflammatory 
diseases. Data were obtained from whole blood and are available under GEO 
accession GSE112057. Healthy subjects (blue) were used as reference group.

FIGURE 4 | Molecular degree of perturbation at single-cell level. (A) Sample MDP score (y axis) and DENV count (VL, x axis) for all single cells infected with DENV. 
The quadrants divide cells according to their MDP score (cutoff = 1) and/or the VL (cutoff = 3). Each circle represents a single cell, and the gradient color represents 
the different MOI (multiplicity of infection) and time postinfection. (B) Differential expression analyses between cell subsets shown in A. The numbers of DEGs 
are indicated in the Venn diagram. (C) Protein–protein interaction network using the DEGs from MDPhighVLhigh versus MDPlowVLlow comparison. Genes related to 
regulation of cell cycle (blue circles), viral infectious cycle (green circles), and endoplasmic reticulum unfolded protein response (purple circles) are shown.
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FIGURE S2 | MDP calculated with specific gene modules. (A) Sample MDP 
score of patients with active TB (brown bars) and healthy controls (blue bars) 
using three different specific gene modules. Data were obtained from whole 
blood and are available under GEO accession GSE19435. (B) Sample MDP 
score calculated using all gene modules and for all TB datasets. The circles 
represent the difference between the median sample MDP score of patients with 
active TB and the healthy controls with no active TB within each study. The size 
and color of the circles are proportional to this difference. MФ: macrophages.

TABLE S1 | Differential expression analysis with or without removal of 
potential sample outliers. The transcriptomic studies are shown as rows. 
StudyId = number of the study; GEOId = GEO accession ID with the 
type of disease; TotalControlSamples = number of samples in control 
group; TotalTreatedSamples = number of samples in disease group; 
TotalControlOutliers = number of samples in control group that were 
considered outlier by MDP; TotalTreatedOutliers = number of samples in 
disease group that were considered outlier by MDP; TotalOutliers = number of 

samples in total that were considered outlier by MDP; DEGsBefore = number 
of differentially expressed genes without removing any potential sample 
outlier (using samples in TotalControlSamples and TotalTreatedSamples); 
DEGsAfter = number of differentially expressed genes after removing 
potential sample outliers (using samples in TotalControlOutliers and 
TotalTreatedOutliers); DEGMin = minimum number of differentially expressed 
genes found after removing random samples (number of samples removed 
on each itineration is equivalent to the corresponding number in TotalOutliers) 
from TotalControlSamples and TotalTreatedSamples; DEGMax = maximum 
number of differentially expressed genes found after removing random 
samples (number of samples removed on each itineration is equivalent to 
the corresponding number in TotalOutliers) from TotalControlSamples and 
TotalTreatedSamples; DEGMean = average number of differentially expressed 
genes found after removing random samples (number of samples removed on 
each itineration is equivalent to the corresponding number in TotalOutliers) from 
TotalControlSamples and TotalTreatedSamples; AdjPcut = Adjusted P-value 
cutoff used on the differential expression analysis.
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