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The majority of microbial communities consist of hundreds to thousands of species, 
creating a massive network of organisms competing for available resources within an 
ecosystem. In natural microbial communities, it appears that many microbial species have 
highly redundant metabolisms and seemingly are capable of utilizing the same substrates. 
This is paradoxical, as theory indicates that species requiring a common resource should 
outcompete one another. To better understand why microbial species can coexist, we 
developed metabolic overlap (MO) as a new metric to survey the functional redundancy 
of microbial communities at the genome scale across a wide variety of ecosystems. 
Using metagenome-assembled genomes, we surveyed nearly 1,000 studies across nine 
ecosystem types. We found the highest MO in extreme (i.e., low pH/high temperature) 
and aquatic environments, while the lowest MO was observed in communities associated 
with animal hosts, the built/engineered environment, and soil. In addition, different 
metabolism subcategories were explored for their degree of MO. For instance, overlap in 
nitrogen metabolism was among the lowest in animal and engineered ecosystems, while 
species from the built environment had the highest overlap. Together, we present a metric 
that utilizes whole genome information to explore overlapping niches of microbes. This 
provides a detailed picture of potential metabolic competition and cooperation between 
species present in an ecosystem, indicates the main substrate types sustaining the 
community, and serves as a valuable tool to generate hypotheses for future research.

Keywords: bioinformatics, metagenomics, microbial communities, metagenome assembled genomes (MAGs), 
niche, functional redundancy

INTRODUCTION

Microorganisms drive global biogeochemical cycles, but they do not work or live in isolation. In 
order for any living species to survive, they must engage in competition for space and resources 
with other organisms that share similar nutritional requirements. The concept of loss of species less 
adapted relative to their competitors is known as competitive exclusion (Gause, 1934). When one 
species cannot sufficiently persist in a habitat, they become locally extinct. Through selection of 
traits that reduce the dependence on a common resource, populations may shift toward coexistence. 
This is known as niche partitioning, whereby competition is avoided through the utilization of 
different resources (Schoener, 1974). Evidence that these ecological and evolutionary forces shape 
microbial communities is prevalent in literature; however, the strength of these forces varies with the 
availability of resources [reviewed in (Nemergut et al., 2013)].

Describing a niche of an organism has remained challenging ever since the concept first emerged 
(Hutchinson, 1957). Typically, closely related species are thought to share similar niches, assuming 
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their evolutionary relatedness is reflected in their nutritional 
requirements (Langille et al., 2013). Recently, neutral genetic 
markers have emerged as a proxy to measure species’ divergence 
on an evolutionary timescale; however, these phylogenetic 
markers (i.e., 16S rRNA genes) are unsuitable to evaluate 
differences in the biochemical capacity of the organisms (Caro-
Quintero and Konstantinidis, 2012). Whole genomes contain 
information relevant to the metabolic capacity of a species, 
which is essential to describe the putative niches a microbial 
species may occupy. If one were to ask about the overlap of two 
microorganisms’ niches, it is conceivable that this is akin to 
asking how similar the two are on a genomic level. Consequently, 
the metabolic niche of an organism can be predicted from the 
genome. However, the metabolic niche must be distinguished 
from the fundamental niche, which includes factors such as 
morphological features or transcriptional and translational 
regulation. These features also influence an organism’s adaptation 
and persistence in a community, but their inclusion introduces 
additional complexities that are largely absent from genomics-
based investigations.

With the continued advancement in high-throughput DNA 
sequencing, large amounts of genomic data are frequently 
released and available for public use. Several recent publications 
have reported thousands of novel bacterial and archaeal 
metagenome-assembled genomes (MAGs; Anantharaman 
et al., 2016; Parks et al., 2017; Delmont et al., 2018; Tully et al., 
2018). The sequencing data originated from hundreds of studies 
investigating different ecosystems, such that these genomes 
represent a diverse set of taxa from ecosystems around the 
globe. This presents an opportunity to address the following 
important questions: how variable is niche overlap in microbial 
communities across different ecosystems and does the nature of 
the overlap (i.e., abundance of genes involved in nitrogen cycling) 
change based on habitat?

In the current study, we surveyed niche overlap in microbial 
communities by searching for shared pathways in the metabolic 
reaction network of species within these communities, which we 
refer to as “metabolic overlap” (MO). This approach was used to 
investigate two main questions. First, does the degree of niche 
overlap in microbial communities vary between ecosystems (i.e., 

do some communities have more species that utilize the same 
substrates)? Second, how do these microbial communities vary 
in the degree of overlap of different metabolic categories (e.g., 
nitrogen or sulfur metabolism)?

We observed patterns of overlap in microbial community 
members’ metabolism across different ecosystems, which 
were largely consistent with literature reports (Martiny et al., 
2006; Kelly et al., 2014; Reese et al., 2018). For instance, a low 
degree of MO was found in microorganisms involved in highly 
specialized animal host–microbe associations, while aquatic 
microbes displayed a cosmopolitan repertoire of strategies 
for nutrient acquisition. These variations seem to be driven by 
different categories of metabolism, depending on the ecosystem. 
In addition, we addressed the question of how much the 
phylogenetic relationship of microbes corresponds to their MO. 
We found that phylogenetic distance between microorganisms 
was indeed a good predictor for the degree of MO. The strength of 
this relationship, however, varied between different ecosystems. 
Generally, survey-based metrics like MO enable observations 
of global trends and prompt fundamental questions about the 
biology and ecology of microorganisms.

RESULTS

Definition of MO
We defined MO as the number of compounds (i.e., reactants) 
that can be utilized by two organisms based on their shared 
metabolic network (Figure 1). For example, an organism (Org1) 
that can perform all steps of denitrification from nitrate (NO3

−) 
to nitrogen gas (N2, four reactions in total) shares two reactants 
with a partially denitrifying organism (Org2) that only reduces 
NO2

− to N2O. This then results in a MO  =  2 (ignoring the rest 
of their metabolism). To obtain a value that reflects the degree 
in which species in a community have overlapping niches, we 
calculated the median MO between all MAGs in a given study. 
These studies were grouped into distinct ecosystems based 
on their origin (Figure 2, Table 1). Conceivably, identifying 
MO allows a broad identification of species with overlapping 
niches by counting the compounds that link complementary 

FIGURE 1 | Metabolic overlap is a metric that compares the overlap in the metabolism of two organisms by calculating the number of reactants these species can 
utilize in common. This is determined by establishing their shared biochemical pathways (A) and counting which reactants both can use in common (i.e., common 
reactants utilized by organisms 1 and 2 is NO2

− and NO; thus, the MOorg(1,2)  =  2). The number of substrates shared between a set of organisms is represented in a 
matrix (B). Once all pairwise MO comparisons have been made for a community, the median metabolic overlap can be calculated.
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metabolic pathways. As the metabolic routes used to degrade 
certain substrates can vary between organisms, counting the 
number of shared reactants will reveal MOs that would not 
be uncovered by shared reactions only. Furthermore, as the 
number of reactants can vary between reactions, this approach 
is more sensitive in identifying weak metabolic similarities 
between organisms.

We acknowledge that previous efforts to predict microbe–
microbe interactions within microbial communities have been 
made with similar logic to the current approach. In particular, 
the NetCooperate software, utilizing the NetSeed framework, 
is a method to identify putative interactions in a community. It 
does so by using genome information to predict auxotrophies of 
the organisms present, based on the incompleteness of certain 
biosynthesis pathways leading to a dependency of the respective 
organism to external sources of the lacking metabolite (Carr 

and Borenstein, 2012; Levy et al., 2015). Thus, the NetSeed/
NetCooperate approach predicts complementarity between 
species, which consequently occupy distinct niches, while the 
goal of our MO approach is to identify to what extent two species 
fill a common niche.

Metabolic Overlap of Microbial 
Communities in Different Ecosystems
In order to survey the degree of MO in various ecosystems from 
around the globe, thereby identifying the degree in which microbial 
species within the community overlap in the niches they fill, the 
set of Uncultivated Bacteria and Archaea (UBA) MAGs published 
by Parks et al. (2017) was utilized. Contrasting to the naming 
scheme, this set contained some MAGs of cultured species also. 
The average predicted genome completeness of these MAGs ranged 
from 50% to 100%. A completion-based inclusion threshold of 
MAGs was found to have a negligible impact on the average MO of 
communities (Supplemental Figure 1). In contrast, the number of 
MAGs included drastically decreased as a result of a more stringent 
threshold on genome completeness, resulting in ecosystems poorly 
or not at all represented (Supplemental Figure 2). Several studies 
included in the UBA dataset included only one MAG and were 
excluded from our analyses. In total, 6,727 MAGs from the Parks et 
al. dataset, representing 962 studies, were included (Table 1). Studies 
were classified into their respective ecosystems of origin based on 
information included in the submission to the public repository or 
by manual curation if this information was insufficient. This resulted 
in nine ecosystem categories (Table 1). In total, the reaction space 
consisted of 1,386 unique compounds predicted to be utilized by the 
organisms represented by the current set of MAGs.

In a given ecosystem, MO and the predicted average genome 
sizes of MAGs were strongly correlated (Supplemental Figure 3; 
p < 0.01). In addition, average genome sizes significantly varied 
between ecosystems (Supplemental Figure 4; ANOVA; F  =  88; 
p < 0.001). The average predicted genome sizes were the highest 
in studies from the built environment (4 ± 0.65 Mbp) and lowest 
in extreme environments (2 ± 0.96 Mbp). The number of MAGs 
in a given community (grouped per study) negatively correlated 
with the average MO of the community (Figure  2; Kendall 
τ =  −0.38; p < 0.001). As we were interested in investigating how 

TABLE 1 | Number of studies and metagenomes within each ecosystem.

Fresh water Brackish Extreme Marine Built Animal Engineered Plant Soil

Amino Acid 4.97E-05 4.24E-05 5.22E-05 4.63E-05 4.06E-05 3.33E-05 3.59E-05 4.09E-05 3.52E-05
Aromatic 6.61E-06 3.26E-06 6.55E-06 8.59E-06 6.91E-06 1.05E-06 2.80E-06 4.43E-06 6.02E-06
carbohydrates 5.58E-05 5.29E-05 6.03E-05 5.42E-05 5.09E-05 4.64E-05 4.33E-05 4.53E-05 4.31E-05
Cofactors 5.27E-05 4.71E-05 4.99E-05 4.79E-05 4.15E-05 3.20E-05 3.34E-05 4.12E-05 3.68E-05
Fatty acids 6.49E-05 7.01E-05 6.32E-05 6.13E-05 5.58E-05 5.33E-05 4.67E-05 5.07E-05 4.35E-05
Nitrogen 4.80E-06 4.90E-06 4.17E-06 3.71E-06 4.40E-06 2.02E-06 2.40E-06 2.63E-06 3.37E-06
Nuleoside 2.27E-05 1.82E-05 2.39E-05 2.28E-05 1.97E-05 2.46E-05 2.29E-05 1.86E-05 1.89E-05
Nuelotide sugars 5.01E-06 4.57E-06 5.38E-06 4.01E-06 3.78E-06 4.62E-06 4.51E-06 3.10E-06 4.43E-06
Phosphorus 4.62E-06 4.07E-06 2.91E-06 3.87E-06 3.50E-06 3.58E-06 3.24E-06 1.93E-06 3.05E-06
Protein 1.88E-05 1.75E-05 2.50E-05 1.62E-05 1.29E-05 1.82E-05 1.63E-05 1.66E-05 1.49E-05
Respiration 8.11E-06 8.48E-06 7.24E-06 7.12E-06 6.27E-06 2.98E-06 4.87E-06 4.74E-06 5.34E-06
Secondary 
Metabolism

2.40E-06 2.11E-06 3.93E-06 2.29E-06 1.80E-06 1.88E-06 1.95E-06 3.35E-06 2.28E-06

Sulfur 3.10E-06 2.88E-06 2.65E-06 3.26E-06 4.17E-06 9.78E-07 1.45E-06 9.84E-07 2.34E-06

FIGURE 2 | Relationship between metabolic overlap and the number of 
genomes in a community. Each point represents one of the 962 studies. 
The x axis depicts the total number of MAGs in a given study; the y axis, the 
mean metabolic overlap of that study.
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MO varied between ecosystems, irrespective of the differences 
in genome sizes between ecosystems, we normalized MO to 
the median genome size of the respective study (Figure 3). MO 
was found to vary significantly between ecosystems (χ2  =  75.3; 
p < 0.001). Communities from animal, built, engineered, and soil 
ecosystems had significantly lower MO than aquatic ecosystems 
(p < 0.05; Figure 3, Supplemental Table 1). Furthermore, extreme 
ecosystems had significantly higher MO than built and engineered 
ecosystems (p < 0.05; Figure 3, Supplemental Table 1).

Breakdown of MO Scores Across Different 
Ecosystems to Different Levels of 
Metabolism
To investigate how MO varied between ecosystems within 
different categories of metabolism (SEED subsystems), the 
MO within these subcategories was determined for each 
ecosystem and compared to the average value of all ecosystems 
(Supplemental Table 2). All metabolic subsystems varied 
between ecosystems (Kruskal–Wallis; p < 0.001; Supplemental 
Table 2). Animal, built, and engineered ecosystems in general had 
a lower MO for the majority of subcategories of metabolism with 
a few exceptions (Dunn; p < 0.01; Supplemental Tables 3–15). 
In contrast, communities from the engineered ecosystems had 
higher MO in protein and nucleotide sugar metabolism, as did 
communities from animal ecosystems. While most subcategories 
of metabolism from the built environment had lower MO than 
other ecosystems, these communities contained higher MO in 

nitrogen and sulfur metabolism (Supplemental Table 16). In 
contrast to the above communities, which were dominated by 
lower than average MO scores, extreme, freshwater, and marine 
ecosystems had higher than average MO scores in the majority of 
the categories of metabolism (Supplemental Tables 3–15).

Nitrogen metabolism was used to further investigate the 
influence of partial pathways on the MO. Therefore, the ratios of 
complete to partial denitrifiers were calculated for all ecosystems 
(i.e., complete denitrifiers encoding all proteins required for NO3

−, 
NO2

−, NO, and N2O reduction; partial denitrifiers missing at least 
one gene; Figure 4A). The proportion of MAGs containing at least 
one denitrification gene ranged between ecosystems, with the lowest 
in the animal ecosystem and the highest in the built environment 
(Figure 4B). The built environment contained one of the highest 
MO in nitrogen metabolism and also had the highest ratio of 
complete to partial denitrifiers of all other ecosystems (Figure 4C). 
Contrary, the animal ecosystem, which by far had the lowest MO in 
this category, also contained mostly partial denitrifiers (Figure 4C).

Phylogenetic Relationship of Organisms 
and Its Relationship to the MO
In order to determine if the evolutionary relatedness between 
MAGs was correlated with MO, the UBCG pipeline was utilized 
to infer a phylogenetic tree based on a concatenated alignment of 
92 universal bacterial marker genes (Na et al., 2018). A significant 

FIGURE 4 | Proportions of complete and partial denitrifiers across different 
ecosystems. (A) Number of MAGs encoding all proteins to reduce NO3

− to N2 
(complete denitrifiers) compared to the number of MAGs with one or more of 
the respective genes missing. (B) Proportion of MAGs of the total community 
that were either partial denitrifiers or complete denitrifiers. (C) Ratio of 
complete to partial denitrification pathways.

FIGURE 3 | Metabolic overlap across all ecosystems. Boxplots are plotted 
with the black bar representing the median, the box corresponds to the 25% 
and 75% quartiles, and the whiskers are the extreme values. The y axis is 
MO normalized by genome size to account for differences between median 
genome sizes across ecosystems. The ecosystems are sorted from left to 
right based on the median MO. Each point represents the median MO of all 
MAGs from a given study.

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Metabolic Overlap in Microbial CommunitiesHeste et al.

5 October 2019 | Volume 10 | Article 989Frontiers in Genetics | www.frontiersin.org

negative correlation was observed between phylogenetic distance 
and MO for all ecosystems (Figure 5; r  =  −0.33; p < 0.001); 
however, the strength of this association varied. Phylogenetic 
distance and MO had the strongest association in plant 
(r = −0.64), built (r  =  −0.53) and marine ecosystems (r  =  −0.47), 
whereas the lowest associations were seen in animal (r  =  −0.16), 
extreme (r  =  −0.19) and freshwater ecosystems (r  =  −0.21; 
Figure 5).

DISCUSSION

In the current study, a new metric termed MO, which describes 
how similar two species’ metabolisms are, was developed in the 
context of a genome-based survey of microbial communities 

from diverse ecosystems. High MO between two species suggests 
that they have the capacity to perform similar metabolic reactions 
and thus have similar growth requirements and fill similar niches. 
In contrast, low MO suggests that the two species in question 
may compete for fewer resources. Thus, the average MO of a 
community can be interpreted such that in a community with 
high MO many community members are overlapping in their 
biochemistry and could in theory compete for a similar niche, 
whereas a low average MO would suggest the opposite.

Ecological and Evolutionary Drivers of MO
There are several well-studied ecological forces that shape 
microbial community structure. Community diversity is 
maintained via dispersion (immigration and emigration) as well 

FIGURE 5 | Relationship between metabolic overlap and phylogenetic distance. Each point represents a pairwise comparison between two MAGs. The density of 
points is represented by a black and white gradient. The Spearman correlation coefficient is indicated in the upper left-hand corner of each plot.
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as speciation and extinction. In studying patterns of microbial 
biogeography, dispersion limitations were seen as one of the 
driving forces in structuring microbial community patterns in 
salt marshes and rice paddies and likely have an influence on 
the genomic adaptations of marine microorganisms (Martiny 
et al., 2006; Kelly et al., 2014; Lüke et al., 2014). Microbial 
biogeography theory has also been applied to help understanding 
compartmentalized host-associated microbial communities such 
as microbes in the human lungs (Whiteson et al., 2014). In this 
study, we observed major ecosystem-dependent differences in the 
MO of microbial community members (Figure 3). This variation 
may in part be attributed to dispersion limitations inherent to 
each ecosystem, where ecosystems in which the dispersion of 
microbial community members is limited would have less overlap 
than open homogenous ecosystems. Accordingly, the highest 
MO was observed in aquatic ecosystems, namely, communities 
from the marine open ocean environment, while animal host-
associated communities contained some of the lowest MO 
(Figure 3). Ecosystems such as the ocean are likely to not have 
as strong dispersal limitations as ecosystems like the animal gut 
or human lungs, and these differences may be a driving force in 
structuring the MO of their respective microbial communities.

In addition to dispersion as an ecological force, disturbances 
to ecosystems can also play a large role for species diversity, 
driving extinction or speciation within the community (Connell, 
1978; Buckling et al., 2000). Varying degrees of disruption would 
impart some signature on the metabolic pathways represented 
in the microbial community. A higher frequency of disturbance 
would contribute to the extinction of species and reduce the 
number of redundant metabolisms in a given system. For 
example, disturbances associated with the marine ecosystem 
(high MO) such as storms or temperature anomalies are likely less 
frequent and intense than the regular consumption of foodstuff 
or intermittent bouts of inflammation in animal guts (low MO) 
(Kashyap et al., 2013; David et al., 2014; Reese et al., 2018).

Substrate Spectrum as a Possible Driver 
of MO in Ecosystems
The availability of resources, both in quality and quantity, drives 
which species can thrive in a given system. In the open ocean, 
the input of labile organic matter is a major factor controlling 
microbial activity in the photic zone, where phototrophs fix 
large quantities of inorganic carbon, making new organic matter 
available to heterotrophic organisms (Hansell and Carlson, 2002; 
Aylward et al., 2015). It is understood that differences in the 
composition of dissolved organic matter enrich for different clades 
of microorganisms and that the composition of the community is 
highly influential on the capacity to degrade this carbon (Nelson 
et al., 2013; Solden et al., 2018). In the case of animal- and plant-
associated microorganisms, the composition of substrates provided 
to the microorganisms is often host-specific, which is thought to 
drive species specificity of the microbiota (Berg et al., 2014; Nelson 
et al., 2013; Hester et al., 2016; Quinlan et al., 2018; Reese et al., 
2018; Jones et al., 2019). It would follow that a higher substrate 
selection would drive diversity in the microbial community, and 

the higher diversity of substrates would then lead to more diverse 
microbial metabolisms. In the current study, a negative relationship 
between the richness of a community (number of genomes in a 
given sample) and their average MO was observed, which suggests 
that in more diverse communities there is less MO (Figure 2).

In addition to the quality of substrates, the quantity of 
organic matter also drastically differs between ecosystems. The 
concentration of dissolved organic carbon (DOC) can vary greatly in 
aquatic systems, with around 40 µmol L−1 DOC in groundwater and 
5,000 µmol L−1 in swamps and marshes (Søndergaard and Thomas, 
2004). Likewise, variations in animal’s diet influence the availability 
of different substrates for microorganisms. In particular, the diet of an 
animal influences the availability of nitrogen to microbes in animal 
guts (Reese et al., 2018). Equally, N availability has a strong impact on 
plant-soil feedbacks, influencing the abundance and metabolism of 
microorganisms in the rhizosphere (Hester, 2018). If substrates are 
available in high-enough concentrations, the effect of competition 
may be reduced, potentially leading to a higher number of species 
consuming a common substrate (i.e., higher MO). In the current 
study, we observe microbial communities from animal ecosystems 
had the lowest overlap in categories of metabolism involved in 
nitrogen and amino acid metabolism, which corresponds to the 
idea of N limitations in the animal gut and known auxotrophies 
(Supplemental Tables 3 and 8; Reese et al., 2018; Zengler and 
Zaramela, 2018). In contrast, microbial communities from the built 
environment tend to have higher overlap in nitrogen and sulfur 
metabolism, although the built environment is a loosely defined 
ecosystem type with limited literature detailing nutrient fluxes 
through the system (Supplemental Tables 8 and 15; Adams et al., 
2015). This stark contrast of nitrogen metabolism overlap between 
the built and animal ecosystems, which both generally displayed a 
lower than average MO, corresponded to the observed number of 
species capable of complete denitrification. The built ecosystem had 
the highest nitrogen metabolism MO, which largely was attributed 
to the highest proportion of microbial species capable of complete 
denitrification (Figure 4). This was contrasted by the low number 
of complete denitrifiers in the animal system. While the differences 
here could be due to nutrient availability, one should also consider 
possible differences in life strategies for persisting in a particular 
environment (i.e., detoxification vs. energy conservation).

Influence of Phylogenetic Relationship  
on MO
Populations that become isolated and diverge on an evolutionary 
timescale do so as a result of being exposed to different 
environments and thus different selection pressures on specific 
traits, although some mechanisms exist that make this divergence 
less clear (i.e., convergent evolution, horizontal gene transfer, 
etc.). In the current study, a correlation was observed between 
the MO of species and their phylogenetic relationship (Figure 5), 
with a reduced MO in taxa that are more distantly related. While 
this corresponds well to theory, the strength of the relationship 
between phylogenetic relatedness and MO varied between 
ecosystems, suggesting that ecological differences between these 
ecosystems influence this relationship.
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The dominant taxonomic groups often vary between 
different ecosystems as a result of the underlying nutrient 
profiles or physical properties of those ecosystems. This may 
be a result of stronger selection pressures in a given ecosystem 
for traits specific to a few select phylogenetic groups (i.e., 
methanogenesis, ammonia, and nitrite oxidation), as opposed 
to traits that are more widespread (i.e., denitrification). 
Phylogenetic groups may vary in the number of traits (i.e., some 
groups are more metabolically versatile than others, which often 
is also reflected in larger genome sizes within these groups), and 
MO is determined by the number of reactions a given pair of 
species share. For example, Zimmerman et al. (2013) found that 
a set of phylogenetically diverse bacteria and Archaea had the 
potential to produce a subset of three extracellular enzymes. The 
ability to produce these enzymes was nonrandomly distributed 
phylogenetically. It follows that ecosystems that have strong 
selection pressures for metabolically diverse phylogenetic groups 
would have a weaker relationship between the phylogenetic 
relatedness and MO. Interestingly, within each ecosystem type, 
there was a strong positive correlation between genome size 
and MO (Supplemental Figure 3), and the observed negative 
relationship of phylogenetic distance and MO seemed to be 
related to genome size (Figure 5). The built environment, 
which contained the largest genomes out of all ecosystems 
(Supplemental Figure 4), also had the strongest negative 
relationship between phylogenetic distance and MO (Figure 5). 
On the other hand, genomes from the animal ecosystem were 
the smallest and also showed the weakest relationship between 
MO and phylogenetic distance. It thus appears that both genome 
size (i.e., number of genes) and phylogenetic affiliation (closely 
related species sharing similar pathways) jointly influence MO 
between a given pair of species.

Caveats and Limitations of Genetic 
Predictions of MO
The emergence of vast amounts of sequence data has allowed 
the assembly of genomes of microorganisms from fragmented 
DNA isolated from the environment. The degree of information 
in whole genomes compared to that from marker genes (both 
phylogenetic and metabolic) is likely to provide significant 
advances in our understanding of the genetic organization 
of microorganisms. In addition, knowing that a certain set of 
genomes were physically in the same sample is advantageous 
in addressing fundamental questions about the ecology 
and evolution of microbial communities in natural settings. 
Unfortunately, there are still significant limitations when 
dealing with MAGs. Specifically, the amount of information 
lost in the process of genome assembly and binning reduces 
our understanding of population-level genetic variation. It 
is still challenging to assemble genomes from organisms of 
low abundance, in particular when communities are complex 
(Cleary et al., 2015; Ayling et al., 2019). This narrows our view 
of genetic linkages between microorganisms toward the highly 
abundant and thus frequently observed species. However, these 
are mainly technological limitations, with solutions like long 
read sequencing becoming more widely available. Additionally, 

there is a significant lack of information about the environments 
in which samples were taken in the public archives. For instance, 
knowing the abundance of an organism in the community 
would significantly aid in inferring ecological interactions. The 
absence of such information limits what can be assessed with 
metrics such as MO and calls for an urgent need to provide as 
much metadata on samples as possible.

In addition to the technical limitations mentioned above, 
there are also limitations in methods such as MO, which rely 
heavily on accurate automated annotation of genetic elements 
in genomes. Specifically, database quality is a key driver in the 
accuracy of survey studies such as the one presented here. A 
major issue is the inability to assign functions to many genes, 
even in the genomes of the most well-studied microorganisms 
(35% hypothetical proteins in Escherichia coli genome; 
Ghatak et al., 2019). Apart from the limitations to automatic 
annotation methods, there are different levels of biology 
associated with niches that are not captured in genome-level 
information. These limitations include a lack of information 
of whether a gene is transcribed, whether the transcript is 
translated to a functional product, and ultimately variations in 
affinity and activity of this protein. The variation in transport 
efficiency and regulatory mechanisms certainly contributes to 
the competitive advantage of an organism and thus the niche 
this organism fills. These complexities are not easily derived 
from genomic information. Complementary techniques, such 
as transcriptomics, proteomics, and exometabolomics, could 
supplement the approach presented here by highlighting 
pathways that are expressed or translated under a given 
condition. Ideally, as emphasized by Bowers et  al. (2017), in 
order to improve discovery-based approaches that rely on 
machine readable formats of public repositories, additional 
information should accompany MAG submissions. This set 
of information would not only help assess the quality of the 
genome but aid in associating the genetic information to the 
biology and ecology of the organism. Ideally, such information 
should include conditions of the environment from which the 
species’ genome was obtained (i.e., pH and temperature) and, 
if the species was cultivated, any physiological parameters that 
may have been measured (i.e., growth rate, substrate usage 
profile and affinities, etc.).

CONCLUSIONS

The observation of variation in MO across different ecosystems 
begs several questions about the nature of microbial community 
metabolism. Specifically, what drives metabolic versatility in 
microbial communities? Are there generalizable rules that can 
be deduced? Survey-based studies enriched with additional 
information, such as those highlighted above, may shed 
additional light on important factors that drive MO. In addition, 
there is an urgent need to complement predictions based on the 
genetics of microorganisms with phenotypic data. Ultimately, 
understanding drivers of microbial community metabolism 
will lead to a better ability to predict and engineer microbial 
communities for industrial or conservational purposes.
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METHODS

Data Origin and Annotation of Ecosystems
Metagenome-assembled genomes utilized in the current study 
comprised the set published by Parks et al. (2017). The UBA 
MAGs were downloaded from the authors’ repository (https://
data.ace.uq.edu.au/public/misc_downloads/uba_genomes/). 
The accompanying data from the UBA MAG set, including 
CheckM metrics of predicted genome completeness and size, 
were obtained from the publication (Parks et al., 2017). Each 
study in the UBA set of MAGs was manually sorted into a set of 
nine ecosystems.

Metabolic Overlap Calculation
All MAGs were subsequently annotated using a custom pipeline 
based on the SEED API (Overbeek et al., 2005; Aziz et  al., 
2008). In brief, protein encoding genes (pegs) were called 
from the assemblies using svr_call_pegs (http://servers.nmpdr.
org/sapling/server.cgi?pod=ServerScripts). Each of these 
proteins was then assigned to a figfam with svr_assign_using_
figfams (our annotations can be found at: ericrhester.com/
metabolicOverlap/annotations/results.tar.gz). The association 
of a protein to a biochemical reaction was then made with svr_
roles_to_reactions. Custom script (rxn_expandinfo) associated 
reactions with compounds from the reaction database, which 
is found on the ModelSEED git repository (https://github.com/
ModelSEED). Finally, the number of compounds shared between 
two organisms’ set of biochemical reactions is calculated to create 
a pairwise MO score, and an overlap matrix was constructed to 
store this information. This was made using the custom python 
scripts rxn_to_connections and lists_to_matrix, respectively 
(https://github.com/ericHester/metabolicOverlap). The overlap 
matrix represents the MO of all organisms within a single 
community and the average MO of all of these organisms is 
utilized in comparison in this study.

In addition to an overall MO score for a community, the above 
approach was used to calculate the MO of various subcategories 
of metabolism for the respective community. In addition to 
the above, an additional step was performed where pegs were 
assigned to their respective SEED subsystems and filtered with a 
custom script utilizing svr_roles_to_subsys. With pegs assigned 
to these metabolic categories, the above pipeline was used to 
identify reactions and compounds shared between pairs of 
organisms, subsequently resulting in an overlap matrix similar 
to that above. In this case, the overlap matrix stores the MO of 
the community pertaining to a specific category of metabolism. 
Matrices and accompanying data were further analyzed in R (R 
Core Team, 2016).

Relating Phylogenetic Distances of Mags 
to Their MO Within Communities
In order to associate the phylogenetic distance of assembled 
genomes to their MO, the UBCG pipeline was utilized (Na 
et al., 2018). This pipeline extracts 92 conserved phylogenetic 
marker genes and builds multiple alignments for each gene. 

The resulting alignments are concatenated, and a maximum 
likelihood tree is inferred. This tree was imported into R 
utilizing the ape package, and distances were extracted from the 
tree object with the cophenetic function (Paradis et al., 2004). 
The result is a distance matrix containing phylogenetic distances 
between each pair of MAGs. Subsequently, this phylogenetic 
distance matrix and the overlap matrix storing MO scores were 
correlated using the mantel.test function from the ape package. 
The Spearman rank correlation coefficient was calculated for 
each ecosystem subset.
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