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Cobitoidea is one of the two superfamilies in Cypriniformes; however, few genomes have 
been sequenced for Cobitoidea fishes. Here, we obtained a total of 252.90 Gb of short 
Illumina reads and 31.60 Gb of long PacBio Sequel reads, representing approximate 
genome coverage of 256× and 50×, respectively. The final assembled genome is about 
583.47 Mb with contig N50 sizes of 2.87 Mb, which accounts for 91.44% of the estimated 
genome size of 638.07 Mb. Using Hi-C–based chromatin contact maps, 99.31% of the 
genome assembly was placed into 25 chromosomes, and the N50 is 22.3 Mb. The gene 
annotation completeness was evaluated by BUSCO, and 2,470 of the 2,586 conserved 
genes (95.5%) could be found in our assembly. Repetitive elements were calculated 
to reach 33.08% of the whole genome. Moreover, we identified 25,406 protein-coding 
genes, of which 92.59% have been functionally annotated. This genome assembly will 
be a valuable genomic resource to understand the biology of the Tibetan loaches and 
will also set a stage for comparative analysis of the classification, diversification, and 
adaptation of fishes in Cobitoidea.
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INTRODUCTION

The fish superfamily Cobitoidea is one of the two superfamilies of the order Cypriniformes, 
which is the largest monophyletic group of freshwater fishes in the world (Nelson et al., 2016). 
The classification and relationship of Cobitoidea are still under debate based on morphological and 
few molecular markers, for example, which families constitute the Cobitoidea (Tang et al., 2006; 
Slechtova et al., 2007; Mayden et al., 2009; Kottelat, 2012; Nelson et al., 2016). Therefore, it is essential 
to investigate the relationship of Cobitoidea fishes at the genomic level. Compared with the many 
genome sequences released from fishes in Cyprinoidea, there are still few genomes that have been 
sequenced yet for Cobitoidea fishes, which hampers remarkably further comparative analyses of all 
Cobitoidea fishes. As ecologically and commercially important freshwater species, some fishes of the 
superfamily Cobitoidea play important roles in the commercial fisheries on China, such as oriental 
weatherloach (Misgurnus anguillicaudatus) (Chen et al., 2014) and giant stone loach (Triplophysa 
siluroides) (Figure 1) (Zhu, 1989; Chen et al., 2016).
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The giant stone loach belongs to the family Nemacheilidae 
(Cypriniformes) and is an endemic species restricted to the 
upper reaches of the Yellow River drainage in China (Ding, 
1994). It is the biggest member of balitorid loachs in the world 
attaining about 0.5 m in total length and weight of about 1.5 kg 
(Zhu, 1989) and was previously an important economic fish in its 
distribution regions (Zhu, 1989; Chen et al., 2016). However, the 
natural population of the giant stone loach has reduced sharply 
in recent years because of heavy fishing and habitat destruction, 
which makes it a vulnerable species in the China Red Data 
Book of Endangered Animals (Wang et al., 1998; Wang and 
Xie, 2004; He et al., 2008). Thus, it is in urgent need to perform 
genetic analysis on the giant stone loach to protect their natural 
resources, especially at the genomic level. However, so far, only 
transcriptome, mitochondrial genome, and SNP data have been 
reported for the giant stone loach (Wang et al., 2015; Chen et al., 
2016; Chen et al., 2018). It is thus essential to sequence the genome 
of the giant stone loach, which will help protect this species, 
identify functional genes controlling important economic traits, 
reveal the genetic basis of adaptation to the extreme environments 
of the Tibetan Plateau, and, most importantly, provide a reference 
genome for the Cobitoidea fishes.

In this work, we integrated genomic sequencing data from 
Illumina short reads and PacBio long reads to generate a reference 
genome for T. siluroides. The completeness and continuity of this 
chromosome level genome were comparable with other model fish 
species, which will definitely provide valuable genomic resources 
for studies for the evolution and adaptation of Cobitoidea fishes.

MATERIALS AND METHODS

Tissue Sampling and Ethics Statement
Tissue for genome sequencing of T. siluroides (NCBI taxonomy 
ID: 422203) was sampled from a single individual collected from 
the Yellow River at Gansu Province in China (33°25′N, 102°17′E). 
Muscle was collected and frozen in liquid nitrogen. All animal 
experimental procedures were approved by the ethics committee 
of Institute of Hydrobiology, Chinese Academy of Sciences.

Library Construction and Sequencing
Genomic DNA was extracted from the muscle tissue using 
Qiagen GenomicTip100 (Qiagen, Hilden, Germany). For 
Illumina sequencing, we constructed a total of seven libraries 
with four short-insert libraries (170, 220, 320, and 600 bp) and 
three long-insert libraries (2, 5, and 10 kb) using the standard 
protocol provided by Illumina (San Diego, CA, USA). Paired-
end sequencing was performed using the Illumina HiSeq 2000 
platform for each library.

For the long insert size library, we sequenced it on a PacBio 
Sequel instrument with Sequel SMRT cells 1M v2 (Pacific 
Biosciences, Menlo Park, CA, USA) with one movie of 600 min 
at the Genome Center of Nextomics (Wuhan, China). In brief, 
approximately 5 µg of DNA was used to construct one single-
molecule real-time (SMRT) library with an insert size of 20 kb. 
The library was sequenced in five SMRT DNA sequencing cells.

Genome Size Estimation and  
Genome Assembly
We estimated the genome size based on the 17-mer depth 
frequency distribution method (Liu et al., 2013) with the following 
formula: genome size = k-mer_number/k-mer_depth (k-mer_
number is the total number of k-mer from the sequencing data, 
and k-mer_depth is the peak frequency that was higher than any 
other frequencies).

Hybrid assembly of Illumina short reads and PacBio Sequel 
long reads was performed using the programs Platanus (Kajitani 
et al., 2014) and DBG2OLC (Ye et al., 2016). In short, the high-
quality paired-end reads were used to construct accurate de 
Bruijin graph contigs using the program Platanus (Kajitani et al., 
2014). Then, the program DBG2OLC (Ye et al., 2016) was used 
to map short contigs to PacBio Sequel long reads and generate 
a hybrid assembly. We further corrected the mixed assembly 
results by Pilon (Walker et al., 2014), with default parameters. 
Finally, the program SSPACE (Boetzer et al., 2011) was used to 
scaffold the hybrid assembly by incorporating mate pair reads.

Genome Scaffolding With Chromatin 
Contact Maps
The processes of crosslinking, lysis, chromatin digestion, biotin 
marking, proximity ligations, crosslinking reversal, and DNA 
purification steps were used in previous studies (Dudchenko 
et al., 2017). Briefly, the fresh fish muscle sample was treated with 
1% formaldehyde for 10 min at room temperature to perform 
cross-linking. The reaction was then quenched by adding 
2.5 M glycine to 0.2 M for about 5 min. Nuclei were further 
digested with 100 units of DpnII and marked with biotin-14-
dCTP (Invitrogen) and then ligated by T4 DNA ligase. After 
incubating overnight to reverse cross-links, the ligated DNA was 
then sheared to 300- to 600-bp fragments. The DNA fragments 
were further blunt-end repaired and A-tailed, followed by 
purification through biotin-streptavidin–mediated pull-down. 
Finally, the Hi-C libraries were quantified and sequenced on 
the Illumina HiSeq X Ten platform (San Diego, CA, USA) with 
150 paired-end mode. The sequencing reads were mapped to 
the hybrid genome assembly with BWA (Li and Durbin, 2010), 

FIGURE 1 | Photograph of the Tibetan loach, Triplophysa siluroides.
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and uniquely mapped read pairs were retained. Contigs from the 
hybrid genome assembly were clustered, ordered, and oriented 
using Proximo (Burton et al., 2013).

Assessment of Genome Completeness
The completeness of our de novo genome assembly was evaluated 
using benchmarking universal single-copy orthologs (BUSCO, 
v3) (Simao et al., 2015), which quantitatively assesses genome 
completeness using evolutionarily highly conserved 2,586 single-
copy vertebrate genes. We also assessed the percentage of reads 
covered in our genome assembly by mapping the high-quality 
Illumina reads for short insert size libraries onto the de novo 
genome assembly using bwa (Li and Durbin, 2010) with default 
parameters.

Repeat Annotation
We analyzed the repetitive sequences in T. siluroides genome with 
a combination of de novo and homology-based methods. First, 
we constructed a de novo repeat library using the RepeatModeller 
(v. 1.05) (Tarailo-Graovac and Chen, 2009) and LTR FINDER 
(Xu and Wang, 2007) with default parameters. Then, we mapped 
our assembled genome sequences against the constructed de 
novo repeat libraries and the RepBase (v. 21.01) (Jurka et al., 
2005) to detect the novel and known transposable elements using 
the RepeatMasker (v. 4.06) (Tarailo-Graovac and Chen, 2009). 
Meantime, we employed the Tandem Repeat Finder (v. 4.04) 
(Benson, 1999) to predict the tandem repeats. Finally, we used 
the RepeatProteinMask software (v. 4.0.6) (Tarailo-Graovac and 
Chen, 2009) to annotate transposable element relevant proteins 
in our genome assembly.

Gene Annotation
To annotate the structures and functions of putative genes in T. 
siluroides genome assembly, we used both ab initio prediction and 
homology-based prediction methods. For ab initio prediction, we 
used Augustus (Stanke et al., 2006), GenScan (Burge and Karlin, 
1997), and glimmerHMM (Majoros et al., 2004) programs to 
analyze the repeat-masked T. siluroides genome assembly. For 
homology-based prediction, homologous protein sequences of 
cave fish (Astyanax mexicanus) (McGaugh et al., 2014), zebrafish 
(Danio rerio, GRCz10) (Howe et al., 2013), medaka (Oryzias 
latipes) (Kasahara et al., 2007), and Japanese puffer (Fugu 
rubripes) (Aparicio et al., 2002) were obtained from Ensembl 
(release 89) (Cunningham et al., 2015) and aligned to the repeat-
masked T. siluroides genome using TblastN (version 2.2.26) 
with an E value cutoff of 1e−5. Then, the aligned sequences and 
corresponding query protein were filtered and passed to Genewise 
(version 2.4.1) (Birney et al., 2004) to predict the potential gene 
structures on all alignments. Finally, the above two gene sets were 
integrated to yield a comprehensive and nonredundant gene set 
using EVidenceModeler (EVM, version 1.1.1) (Haas et al., 2008).

Then, gene functional annotations were performed by aligning 
translated gene coding sequences to known databases, including 
SwissProt and TrEMBL, Gene Ontology (GO), InterProScan, 
and Kyoto Encyclopedia of Genes and Genomes (KEGG), using 
BLASTP (version 2.2.26) with an E value of 1e−5.

In addition, we also identified noncoding RNA genes in the 
T. siluroides genome. We used blast to search rRNA against the 
rRNA database and tRNAscan-SE (Lowe and Eddy, 1997) to 
search tRNA in the genome sequences. We also used blast to 
search miRNA and snRNA genes via the Rfam database (Gardner 
et al., 2011).

Phylogenetic Analysis
Protein sequences of 11 ray-finned fishes (D. rerio, Gasterosteus 
aculeatus, Lepisosteus oculatus, Oreochromis niloticus, 
O. latipes, Takifugu rubripes, Xiphophorus maculatus, A. 
mexicanus, Gadus morhua, Poecilia formosa, and Tetraodon 
nigroviridis) were downloaded from the Ensembl database 
(Release 90), and the protein sequences of Hippocampus comes 
(Lin et al., 2016) and Boleophthalmus pectinirostris (You et al., 
2014) were acquired from the authors. The longest coding 
sequence was chosen to represent each gene. We first performed 
all-against-all comparison of all proteins using BLASTP (version 
2.2.26) with a cutoff of E value <1e−5 to both genes and then 
clustered the genes into gene families using solar and hcluster_sg 
in TreeFam (Li et al., 2006). Subsequently, we extracted the one-
to-one orthologous genes from the aforementioned 14 species. 
The protein sequences of these orthologous genes were aligned 
using MUSCLE (Edgar, 2004) with the default parameters. We 
then converted the protein alignments to their corresponding 
coding sequences (CDSs) using an in-house perl script. All 
these aligned nucleotide sequences were then concatenated into 
a supergene. Next, the 4D sites (fourfold degenerate sites) were 
extracted from the supergenes to construct a phylogenetic tree 
using RAxML (Stamatakis, 2014) with the GTR+G+I model.

RESULTS AND DISCUSSION

In total, we generated about 252.90 Gb of raw Illumina reads, 
including 43.96, 40.33, 43.64, 42.74, 27.84, 27.81, and 26.58 Gb of 
reads from the 170-, 220-, 320-, 600-, 2k-, 5k-, and 10-kb libraries, 
respectively (Table S1). We also generated about 31.60 Gb of 
raw PacBio long data with an average read length of 10,563 bp 
(Table S2). After removal of low-quality and redundant reads, 
163.37 Gb of clean Illumina reads and 31.26 Gb of clean PacBio 
reads were obtained for genome assembly (Tables S1 and S2). 
The genome size estimated by k-mer analysis was approximately 
638 Mb, with the main peak at a depth of 183× (Figure S1 and 
Table S3). The small peak at a depth of 92 indicated that the 
genome heterozygosity of T. siluroides was low (0.29%).

We assembled the genome with the hybrid method of Illumina 
short reads and PacBio Sequel long reads using the programs 
Platanus (Kajitani et al., 2014) and DBG2OLC (Ye et al., 2016). 
The final de novo assembly for the T. siluroides has a total length 
of 583.47 Mb, representing 91.44% of the estimated genome size, 
with contig N50 length of 2.87 Mb and the longest contig length 
14.65 Mb (Table 1), which makes it one of the most high-quality 
genome assemblies currently available.

To construct a chromosome-scale reference genome 
assembly of the Tibetan loach, chromatin contact maps were 
produced by Frasergen Information Co. Ltd. (Wuhan, China) 
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(Figure 2). We sequenced a total of 65.39 Gb of HiSeq data 
and obtained 27.7 Gb valid data (43.95%) that could be 
used to anchor the contigs into chromosomes. The contig 
clustering allowed the placement of 856 contigs into 25 
scaffolds (chromosomes) with lengths ranging from 16.67 to 
34.49 Mb (Table S4). While only 81.99% of the contigs were 
anchored to chromosomes, this corresponds to 99.31% of the 
total length of primary hybrid genome assembly. This genome 
scaffolding step improved substantially the primary assembly 
contiguity, raising the N50 approximately 8.3-fold from 
2.7 Mb to 22.3 Mb (Table 2).

The completeness of our de novo genome assembly was 
assessed by BUSCO, which showed that 98.4% of the 2,586 highly 

conserved single-copy genes can be detected in the T. siluroides 
genome, with 95.5% and 2.9% identified as complete and 
fragmented, respectively (Table S5). We also found that 98.36% 
of the high-quality Illumina reads can be mapped onto the de 
novo genome assembly (Table S6). These results suggested that 
the quality of our de novo assembled genome was high for both 
completeness and base level accuracy.

A total of 193 Mb of nonredundant repetitive sequences are 
identified in T. siluroides genome, which account for 33.08% of 
the whole genome. The percentage of repetitive sequences is 
similar to other fish species (Chalopin et al., 2015). The most 
predominant repeat is the DNA transposons, which account for 
12.58% (73.38 Mb in total) of the genome (Table S7, Table S8, 
Figure S2, and Figure S3). The fraction of DNA transposons in 
T. siluroides genome is in good agreement with those in other fish 
species, which indicated that the fraction of DNA transposons in 
fish genomes (10%) is significantly higher than those in mammals 
(3%) (Chalopin et al., 2015).

After the characterization of repetitive sequences in the T. 
siluroides genome assembly, gene annotation was performed by 
using both ab initio prediction and homology-based prediction 
methods. In total, 25,406 protein-coding genes were identified 
(Table S9, Figure S4, and Figure S5). Approximately 92.59% 
of the predicted genes were successfully annotated using five 
protein databases: InterPro (83.40%), GO (67.67%), KEGG 
(69.67%), Swiss-Prot (85.84%), and TrEMBL (92.38%) (Table 
S10). Finally, we identified noncoding RNA genes in the T. 
siluroides genome and found that a total of 6,822 microRNAs 
(miRNA), 6,513 transfer RNA (tRNA), 8,053 ribosomal RNA 
(rRNA), and 12,655 snRNA genes could be detected in the T. 
siluroides genome (Table S11).

We further obtained the gene families for 14 fish species and 
then classified these gene families for a subset of five species 
(D. rerio, H. comes, T. rubripes, X. maculatus, and T. siluroides) 
(Figure 3A). In brief, the 25,406 protein-coding genes in 
T. siluroides comprised 2,104 single-copy orthologs, 14,222 
multiple-copy orthologs, 1,003 unique paralogs, 6,122 other 
orthologs, and 1,955 unclustered genes (Figure S6). Furthermore, 
9,225 gene families were identified in the T. siluroides genome, 
and 300 of these were found to be unique in T. siluroides genome 
(Table S12). We found that the T. siluroides species-specific gene 
families were mainly enriched in the following GO categories, 
including immune response, energy metabolism, and hormone 
activity, implying that species-specific genes may play important 
roles in T. siluroides adaptation to the extreme environments on 
the Tibetan Plateau. Based on the TreeFam gene clusters and 
MUSCLE multiple alignment, 1,087 one-to-one orthologs were 
identified from the 14 fish genomes. Phylogenetic analysis from 
these orthologs supported the placement of T. siluroides close to 
zebrafish (Figure 3B).

CONCLUSION

We report the high-quality whole genome sequencing, assembly, 
and annotation of the Tibetan loach (T. siluroides). The high-
quality genome assembly will provide a valuable resource for 

TABLE 2 | Chromosome metrics before and after Hi-C scaffolding.

Terms Contig (original) Scaffold
(Hi-C)

Number 1,004 856
N50 2,872,994 22,312,937
Total length 582,350,959 578,738,912

TABLE 1 | Summary of genome assembly of T. siluroides.

Terms Size (bp) Number

N90 452,639 251
N80 881,594 163
N70 1,446,248 112
N60 2,005,727 77
N50 2,872,994 53
Max length 14,649,642 —
Total length 583,471,586 —
Total number — 1,004
Total number (≥1 kb) — 1,004
Total number (≥5 kb) 1,001

FIGURE 2 | Hi-C interaction heat map showing the clustering of the primary 
hybrid contigs into 25 sets of chromosome-scale superscaffolds.
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FIGURE 3 | Genome evolution. (A) A Venn diagram of the orthologous gene families shared among five ray-finned fish genomes (Danio rerio, Hippocampus comes, 
Takifugu rubripes, Triplophysa siluroides, Xiphophorus maculatus). (B) Phylogeny of the 14 ray-finned fishes with the spotted gar as the outgroup. The bootstrap 
support value for the topology is 100.
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studying the genetic mechanisms of adaptation to the Tibetan 
Plateau in fishes.
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