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Background and aims: Obesity is a major health problem worldwide. Given the 
heterogeneous obesity phenotype, an optimal obesity stratification would improve 
clinical management. Since obesity has a strong genetic component, we aimed 
to develop a polygenic risk score (PRS) to stratify obesity according to the genetic 
background of the individuals.

Methods: A total of 231 single nucleotide polymorphisms (SNP) significantly associated 
to body mass index (BMI) from 21 genome-wide association studies were genotyped 
or imputed in 881 subjects from the Quebec Family Study (QFS). The population was 
randomly split into discovery (80%; n = 704) and validation (20%; n = 177) samples 
with similar obesity (BMI ≥ 30) prevalence (27.8% and 28.2%, respectively). Family-
based associations with obesity were tested for every SNP in the discovery sample and 
a weighed and continuous PRS231 was constructed. Generalized linear mixed effects 
models were used to test the association of PRS231 with obesity in the QFS discovery 
sample and validated in the QFS replication sample. Furthermore, the Fatty Acid Sensor 
(FAS) Study (n = 141; 27.7% obesity prevalence) was used as an independent sample to 
replicate the results.

Results: The linear trend test demonstrated a significant association of PRS231 with 
obesity in the QFS discovery sample (ORtrend = 1.19 [95% CI, 1.14-1.24]; P = 2.0x10-16). 
We also found that the obesity prevalence was significantly greater in the higher PRS231 

quintiles compared to the lowest quintile. Significant and consistent results were obtained 
in the QFS validation sample for both the linear trend test (ORtrend = 1.16 [95% CI, 1.07-
1.26]; P = 6.7x10-4), and obesity prevalence across quintiles. These results were partially 
replicated in the FAS sample (ORtrend = 1.12 [95% CI, 1.02-1.24]; P = 2.2x10-2). PRS231 

explained 7.5%, 3.2%, and 1.2% of BMI variance in QFS discovery, QFS validation, and 
FAS samples, respectively. 

Conclusions: These results revealed that genetic background in the form of a 231 BMI-
associated PRS has a significant impact on obesity, but a limited potential to accurately 
stratify it. Further studies are encouraged on larger populations.

Keywords: polygenic risk score, obesity, genetics, genome-wide association study, body mass index

Edited by: 
Steven H. Zeisel,  

University of North Carolina  
at Chapel Hill, United States

Reviewed by: 
Amel Lamri,  

McMaster University, Canada 
Grant William Montgomery,  

University of Queensland, Australia 
Katie A. Meyer,  

University of North Carolina at  
Chapel Hill, United States

*Correspondence:  
Marie-Claude Vohl 

Marie-Claude.Vohl@fsaa.ulaval.ca

Specialty section: 
This article was submitted to 

Nutrigenomics,  
a section of the journal  

Frontiers in Genetics

Received: 30 October 2018
Accepted: 18 September 2019

Published: 10 October 2019

Citation: 
de Toro-Martín J, Guénard F, 

Bouchard C, Tremblay A, Pérusse L 
and Vohl M-C (2019) The Challenge 

of Stratifying Obesity: Attempts in the 
Quebec Family Study.  
Front. Genet. 10:994.  

doi: 10.3389/fgene.2019.00994

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2019.00994
https://www.frontiersin.org/journals/genetics#editorial-board
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2019.00994&domain=pdf&date_stamp=2019-10-10
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/article/10.3389/fgene.2019.00994/full
https://www.frontiersin.org/article/10.3389/fgene.2019.00994/full
https://loop.frontiersin.org/people/567987
https://loop.frontiersin.org/people/811803
https://loop.frontiersin.org/people/209451
https://loop.frontiersin.org/people/240282
https://loop.frontiersin.org/people/24044
https://creativecommons.org/licenses/by/4.0/
mailto:Marie-Claude.Vohl@fsaa.ulaval.ca
https://doi.org/10.3389/fgene.2019.0099


Stratifying Obesity in the Quebec Family Studyde Toro-Martín et al.

2 October 2019 | Volume 10 | Article 994Frontiers in Genetics | www.frontiersin.org

INTRODUCTION

Obesity is a metabolic condition characterized by a large 
heterogeneity. Body mass index (BMI) has been widely used 
as a reference indicator to characterize the different degrees of 
obesity (Seidell and Flegal, 1997). Although other indicators, 
such as body fat percentage or waist-to-hip ratio, have been also 
employed (Ashwell et al., 1985; Lean et al., 1995), BMI remains the 
most commonly used in clinical practice. Different approaches 
have been explored to stratify obesity based on BMI classification 
(Li et al., 2010a; Peterson et al., 2011). Among others, an obesity 
background during childhood and a familial history of obesity 
remain as the lead traditional risk factors of obesity (Loos and 
Janssens, 2017). In this regard, the Quebec Family Study (QFS) 
has focused on traditional and nontraditional risk factors of 
obesity, adiposity, or body fat distribution and their genetic 
determinants (Chaput et al., 2014), leading to a body of evidence 
on the genetic and familial environmental background for the 
development of obesity (Robitaille et al., 2003; Do et al., 2008; 
Choquette et al., 2012).

Obesity is phenotypically and genetically highly complex 
(Ghosh and Bouchard, 2017) and, in spite of the growing evidence 
linking genetics to obesity, the use of genetic information to 
correctly classify obesity has led to heterogeneous results. 
Although many genetic variants have been repeatedly associated 
with obesity, such as those located within FTO or MC4R genes 
(Frayling et al., 2007; Loos et al., 2008; Rouskas et al., 2012), 
their ability to stratify obesity remains insufficient, as compared 
to traditional risk factors or familial resemblance (Loos and 
Janssens, 2017). In an effort to overcome this limitation, the 
use of a combination of obesity-associated SNPs has become a 
promising strategy. A number of studies have already tested the 
ability to stratify obesity based on a cumulative number of BMI-
associated SNPs combined into a single parameter, commonly 
called polygenic risk score (PRS) (Li et al., 2010a; Sandholt 
et  al., 2010; Speliotes et al., 2010; Peterson et al., 2011; Hung 
et al., 2015; Locke et al., 2015). By using this approach, obesity 
stratification results from a combination of SNPs, which offers a 
more integrated view of the genetic basis of obesity.

To expand our knowledge on the genetic basis of obesity, 
the ability of a PRS constructed with all the obesity-associated 
SNPs currently known was tested. The QFS, a study designed to 
investigate the genetic and environmental factors of obesity, was 
used to construct and test the PRS.

MATERIAL AND METHODS

Population
Cross-sectional data from 881 QFS participants were used in the 
present study. The QFS is a study conducted from 1979 to 2002 
in several phases, which focuses the genetic determinants of 
obesity and body fat distribution (Chaput et al., 2014). The 881 
participants of the present study were from 222 French-Canadian 
nuclear families from Quebec City and were recruited according 
to their obesity status (at least one parent and one offspring with a 
BMI of 32 kg/m2 or higher) (Chaput et al., 2014). The participants 

were randomly split into the QFS discovery (80%; 704 participants) 
and QFS validation (20%; 177 participants) samples.

The replication sample comprised 141 subjects from the 
Fatty Acid Sensor (FAS) Study, in which subjects from the 
Quebec City metropolitan area were originally recruited to 
identify determinants of the plasma triglyceride response to 
an n-3 fatty acid supplementation (registered at ClinicalTrials.
gov as NCT01343342). Trial details and participant selection 
criteria are extensively described in (Rudkowska et al., 2014). 
Briefly, participants of the FAS study were metabolically 
healthy subjects with a BMI between 25 and 40 kg/m2 
and not taking any medication to treat lipid disorders or 
fatty acid supplements for at least 6 months prior to the 
intervention. From a total of 254 subjects included in the 
study, 210 completed the intervention protocol, and those 
141 exhibiting the most extreme triglyceride response after 
the supplementation were selected to perform a genome wide 
association study (GWAS).

Experimental protocols of both QFS and FAS studies were 
approved by the ethic committee of the Laval University and 
were conducted in accordance with the Declaration of Helsinki. 
Participants of both studies provided written informed consent.

Genotyping and Imputing
A total of 231 single nucleotide polymorphisms (SNPs) previously 
associated with BMI were selected from the NHGRI-EBI GWAS 
catalog (33) by using “body mass index” as both search term and 
disease/trait filter on November 2015 (Table S1). Concretely, 163 
SNPs significantly associated (P < 5×10−8) with BMI and 68 SNPs 
showing suggestive evidence of association (P < 1×10−6) were 
selected from 16 previous GWAS and 6 GWAS meta-analysis. 
From the 231 selected SNPs, 96 were previously genotyped in 
the QFS sample using the Illumina 610-Quad chip containing 
620,901 markers, as described in detail elsewhere (Sung et al., 
2016). Imputation of remaining 135 SNPs was performed using 
MaCH software (Li et al., 2010b) and the CEU reference panel 
consisting of 120 haplotypes from HapMap Phase II data (release 
22, build 36), as previously described (Sung et al., 2016).

The 141 participants from the FAS study were genotyped 
using the Illumina HumanOmni-5-Quad Bead-Chip (Illumina, 
San Diego, CA), containing 4,301,331 markers, from which 
153 belonged to the 231 selected BMI-associated SNPs in the 
present study. The mean call rate across all samples was 99.84%. 
None of the 141 samples analyzed were excluded due to low 
signal intensity or low overall call rate (<95%). Inclusion criteria 
for BMI-associated SNPs were MAF > 1%, call rate > 95%, 
and HWE P > 2.6x10-4. Imputation of the remaining 78 SNPs 
was performed in the Michigan Imputation Server using the 
1000G Phase 3 (Version 5) as reference panel and Minimac3 as 
imputation software (Das et al., 2016). The mean imputation rate 
was 0.93 and none of the 78 imputed SNPs were excluded due to 
low imputation quality (r2 > 0.3) (Li et al., 2010b).

Sample quality, call rate, allele frequencies, and HWE tests 
were assessed using PLINK 1.9 (Chang et al., 2015). Linkage 
disequilibrium (LD) was not considered as an SNP filtering 
strategy in the present study in order to maximize the number 
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of available SNPs for PRS construction (Chatterjee et al., 2013; 
Khera et al., 2018). None of the SNPs were excluded based on 
HWE and MAF criteria, leaving the 231 directly genotyped or 
imputed BMI-associated SNPs for statistical analyses (Table S1). 
All of the 231 SNPs had a MAF > 1% in each the QFS discovery, 
QFS validation, and FAS replication samples.

Polygenic Risk Score
Family-based case-control associations with obesity defined as 
BMI ≥ 30 kg/m2 were tested for every SNP in the QFS discovery 
sample taking into account familiar relationships. An additive 
model of inheritance was used to test genetic associations. Results 

from single-SNP association tests with obesity status led to the 
construction of a weighted PRS by summing the number of 
alleles of all the 231 BMI-associated SNPs (PRS231) multiplied by 
their odds ratios (OR). The sum of weighed alleles resulted in a 
continuous score (Figure 1), whose ability to stratify obesity was 
subsequently tested. First, the power of PRS231 to stratify obesity 
was evaluated in the QFS discovery sample, and its utility was 
validated in the QFS validation sample. The ability of PRS231 was 
independently tested in the FAS replication sample. Furthermore, 
PRS231 was categorized into quintiles to examine its association 
with the prevalence of obesity. Finally, the proportion of BMI 
variance explained by PRS231 was quantified. All the analyses were 
carried out in QFS and replicated in the independent FAS study.

FIGURE 1 | Distribution of body mass index and polygenic risk score PRS231. (A) Density plot showing the distribution of body mass index (BMI, calculated as 
weight in kilograms divided by the square of height in meters, kg/m2) across QFS discovery (red), QFS validation (green) and FAS replication (blue) samples. The 
dispersion of BMI data was larger in both the QFS discovery (SD = 7.62) and QFS validation samples (SD = 7.46) than in the FAS replication sample (SD = 3.76). 
(B) Density distribution of polygenic risk score PRS231 values across all participants (with and without obesity) in the three study samples. Red, green and blue 
colors stand for QFS discovery, QFS validation and FAS replication samples, respectively. QFS and FAS stand for Quebec Family Study and Fatty Acid Sensor 
Study, respectively. 
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Statistical Analysis
Single-SNP association analyses with obesity were performed 
using a generalized linear mixed effects model integrating family 
data (Chen and Yang, 2010). A binary obesity variable (BMI > 
30 kg/m2) was used as outcome, and sex and age were included 
as covariates in the model. Furthermore, the association of 
PRS231 with obesity was evaluated by means of generalized linear 
(binomial with logit link function) and linear mixed models with 
flexible covariance structure to account for family relatedness 
(Ziyatdinov et al., 2018). All statistical procedures were carried 
out in R version 3.5.0 (R Core Team, 2018) (https://www.R-
project.org). GWAF package (Chen and Yang, 2010) was used 
to test single-SNP association analyses, and lme4qtl (Ziyatdinov 
et al., 2018) to test PRS231 association with obesity in QFS, given 
their ability to take into account family relatedness. Hmisc 
package was used to evaluated the performance of classification 
models (Harrell, 2018). 

Generalized Linear Mixed Model
The full generalized linear mixed model included obesity as a 
binary outcome and sex, age, and PRS231 as fixed effects. Family 
relatedness was included as random effect in the form of a kinship 
matrix. Results from the linear trend test (ORtrend) were used to 
analyze the association of the continuous PRS231 with obesity. The 
association of PRS231 with obesity was also tested among PRS231 
quintiles.

Evaluation of PRS231 Performance
Using the predicted probability of obesity from generalized linear 
mixed models, the association of PRS231 with obesity was tested as 
the area under a receiver operating characteristic curve (AUCROC). 
Results were adjusted for optimism (AUCadj) by bootstrapping 
(n = 1000), obtaining bias-corrected 95% confidence intervals 
of the difference (95%CIdiff) for further AUCadj comparison, 
ultimately used to determine the overall performance of the 
different models. The added value of different models was tested 
by calculating the differences between bootstrapped AUCadj, which 
was considered significant when 95%CIdiff did not contain zero. 
Two alternative methods to AUCROC of assessing improvement in 
model performance, the net reclassification index (NRI), and the 
integrated discrimination index (IDI) (Pencina et al., 2008) were 
also used to evaluate the net effect accomplished by adding a PRS 
to the model.

Linear Mixed Model
A linear mixed model with flexible covariance structure to account 
for family relatedness was fit to test the association between 
PRS231 and BMI. The full linear mixed model included BMI as 
a quantitative outcome and sex, age, and PRS231 as fixed effects. 
Family relatedness was included as random effect. Finally, results 
from the linear mixed model were used to calculate the proportion 
of BMI variance explained by PRS231 within each sample.

Power Calculations
Power calculations were performed using the package 
AVENGEME (Dudbridge, 2013; Palla and Dudbridge, 2015), 
which is able to calculate the power of a PRS, derived from a 

training sample, to correctly classify traits in a target sample. 
Herein, the QFS discovery sample was used as training sample, 
whereas QFS validation and FAS replication samples were used 
as target samples. Statistical power was then calculated based on 
the obesity prevalence in each sample, on the number of SNPs in 
the polygenic score, and on the proportion of variance explained 
by the polygenic score in the training sample. A significance level 
of 0.05 for association testing between the polygenic score and 
obesity prevalence in target samples was also used to calculate 
statistical power.

RESULTS

Patients
The main clinical characteristics of QFS and FAS participants 
are depicted in Table 1. The QFS cohort (n = 881) was randomly 
split into discovery (80%; n = 704) and validation (20%; n = 177) 
samples with similar obesity (BMI ≥ 30kg/m2) prevalence (27.8% 
and 28.2%, respectively). The replication sample was composed 
of participants from the FAS study (n = 144; 27.7% obesity 
prevalence). The distribution of BMI data within each sample 
was significantly different (Bartlett P value = 2.2x10-16). As shown 
in Figure 1, the dispersion of BMI data was larger in both QFS 
discovery (SD = 7.62) and QFS validation samples (SD = 7.46) than 
in the FAS replication sample (SD = 3.76). As shown in Table 1, 
higher proportions of women with obesity were found in both 
QFS discovery and FAS replication samples, but not in the QFS 
validation sample. No significant differences in age or height were 
found between participants with and without obesity among all 
samples (Table 1).

Impact of PRS231 on Obesity Prevalence
Single-SNP association tests based on generalized linear mixed 
models revealed that only 31 of 231 SNPs (Table S1) showed a 
significant association (P < 0.05) with obesity (Table S2). Among 
11 SNPs showing a higher frequency of rare alleles in participants 
without obesity, 7 mapped to the TMEM18 locus. On the other 
hand, for 20 SNPs the rare allele was significantly more prevalent 
in the group having a BMI greater than 30 kg/m2, with FTO 
being the most common locus. The statistical power to detect 
significant associations between the polygenic score and obesity 
prevalence was 0.79 in both QFS validation and FAS replication 
samples when using all the 231 SNPs, whereas it decreased to 0.52 
when using only the 31 significant SNPs. In view of that, all the 
231 SNPs were further used to build a weighed and continuous 
PRS (PRS231) to assess its association with obesity prevalence. We 
first tested the impact of PRS231 in the QFS discovery sample and 
results demonstrated a highly significant association with obesity 
(ORtrend = 1.24, 95%CI = 1.17-1.31, P = 1.03x10-13). As shown in 
Figure 2A, participants with obesity had higher PRS231 values 
than those without obesity. Likewise, significant and consistent 
results were obtained for the linear trend test in the QFS 
validation sample (ORtrend = 1.19, 95%CI = 1.06-1.33, P = 4.1x10-3) 
(Figure 2B). Finally, the significant association between PRS231 
and obesity was independently replicated in the FAS sample 
(ORtrend = 1.12, 95%CI = 1.01-1.25, P = 3.6x10-2) (Figure 2C).
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PRS231 and Obesity Prevalence
The ability of PRS231 to associate with obesity per se was higher 
in the QFS discovery sample (AUCadj = 0.704) than that observed 
in the QFS validation sample (AUCadj = 0.661) and in the FAS 
replication sample (AUCadj = 0.619) (Figure 3A). The addition of 
PRS231 into the full model including sex and age as fixed effects 
provided a significant increase in overall classification accuracy in 
both the QFS discovery (∆AUCadj = 0.141, 95%CIdiff = 0.09-0.19) and 
QFS replication samples (∆AUCadj = 0.127, 95%CIdiff = 0.04-0.22), 
but not in the FAS replication sample (∆AUCadj = 0.060, 95%CIdiff = 
-0.01-0.13) (Figure 3B). After the inclusion of PRS231 into the 
model, a significant improvement in the correct classification of 
individuals with obesity was found in the QFS discovery sample 
for both NRI (0.634; 95%CI = 0.477-0.791; P = 2.7x10-15) and IDI 
(0.129; 95%CI = 0.098-0.159; P = 3.4x10-17). Similar results were 
found in the QFS validation sample for both NRI (0.346; 95%CI = 
0.048-0.644; P = 2.3x10-2) and IDI (0.069; 95%CI = 0.024-0.114; 
P = 2.9x10-3). Although the inclusion of PRS231 did not increase 
the accuracy of the model in the FAS replication sample, the 
reclassification analysis also showed that both NRI (0.376; 95%CI = 
0.013-0.738; P = 4.2x10-2) and IDI (0.035; 95%CI = 0.002-0.069; 
P = 3.8x10-2) significantly increased after adding PRS231.

Impact of PRS231 Quintiles on the Obesity 
Prevalence
In order to stratify obesity according to genetic background, 
patients were categorized into PRS231 quintiles. Again, results 
showed that obesity prevalence was significantly higher among 
upper PRS231 quintiles, as compared to the lowest quintile, in the 
QFS discovery sample (Figure 4). In agreement with these results, 
participants in the third and fifth quintiles in the QFS validation 
sample also showed a significantly increased prevalence of 
obesity, as compared to the lowest quintile (Figure  4). Lastly, 
although participants from all quintiles in the FAS replication 
sample showed greater obesity prevalence, only those into the 
fourth quintile showed a significant increase (Figure 4).

Quantitative Impact of PRS231 on BMI
In order to estimate the BMI variance accounted for by PRS231, a 
linear mixed model with BMI as quantitative outcome and sex and 
age as covariates was used. With obesity defined as a binary outcome, 
significant effect of PRS231 on BMI was observed in the QFS discovery 
sample (β = 0.46; P = 6.9x10-13) (Figure 5A). A significant effect was 
also reported in the QFS replication sample, but to a lesser extent 
(β  = 0.33; P = 1.2x10-2) (Figure 5B). Finally, the effect of PRS231 
on BMI in the FAS replication sample was directionally consistent 
with that observed in both QFS samples, although not statistically 
significant, (β = 0.10; P = 0.18) (Figure 5C). PRS231 explained 7.5%, 
3.2% and 1.2% of BMI variance in QFS discovery, QFS validation, 
and FAS replication samples, respectively.

DISCUSSION

The cumulative genetic effect of previously identified BMI-
associated SNPs on obesity prevalence in the form of a polygenic TA
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FIGURE 2 | Polygenic risk score PRS231 was significantly associated with obesity. Fitted generalized linear mixed models with 95% confidence intervals (grey 
shade) for the likelihood of obesity, defined as a binary variable (body mass index ≥ 30kg/m2), by polygenic risk score PRS231. The final model included age, sex and 
polygenic risk score PRS231 as fixed effects, and family relatedness as random effect. Predicted probabilities of obesity between 0 and 1 are related to fixed effects 
and conditioned on random effect. From left to right: (A) QFS discovery, (B) QFS validation, and (C) FAS replication samples. Grey bars at the bottom of plots 
represent the distribution of PRS231 across subjects without obesity. Red, green and blue bars at the top of plots represent the distribution of PRS231 across subjects 
with obesity in the (A) QFS discovery, (B) QFS validation, and (C) FAS replication samples, respectively. QFS and FAS stand for Quebec Family Study and Fatty Acid 
Sensor Study, respectively.

FIGURE 3 | Polygenic risk score PRS231 significantly increased the ability to stratify obesity. (A) Graphical representation of the area under the ROC curve for obesity, 
defined as a binary variable (body mass index ≥ 30kg/m2), adjusted for bootstrapping (AUCadj, n=1000), for polygenic risk score PRS231 alone (“PRS231”) in the QFS 
discovery (red line), QFS validation (green line) and FAS replication (blue line) samples. (B) The increase in the ability to stratify obesity by PRS231 was calculated as 
the difference between AUCadj of the final models including sex and age as fixed effects before (“Model,” dashed lines) and after adding polygenic risk score PRS231 
(“Model+PRS231”, solid lines). QFS and FAS stand for Quebec Family Study and Fatty Acid Sensor Study, respectively.
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score was evaluated in the present study. A continuous and 
weighed PRS was constructed with 231 SNPs previously reported 
as BMI-associated at genome-wide level. The main results 
highlight the potential and limitations of using the genetic 
background in the stratification of obesity.

To our knowledge, this is one of the BMI-associated polygenic 
scores with a better ability (AUCadj = 0.704 in the QFS discovery 
sample) to stratify obesity per se (Loos and Janssens, 2017). 
Nevertheless, although the evidence of association observed in 
the QFS discovery sample between PRS231 and obesity prevalence 
was supported by significant results in the QFS validation sample, 
these results were only partially replicated in the independent 
FAS study. According to Dudbridge, a larger training sample size 
would have been needed with such limited QFS and FAS target 
samples (Dudbridge, 2013). However, although the size of the 
discovery sample is more critical than that of target samples in a 
polygenic score analysis (Dudbridge, 2013), we acknowledge that 
this study lacks of sufficient statistical power to address clinical 

questions in a confident manner and that a number of reported 
associations may be spurious. In order to maximize statistical 
power to overcome this issue (Dudbridge, 2013) and taking into 
account recent evidence suggesting that heritability of complex 
traits comes from large numbers of commons SNPs (Chatterjee 
et al., 2013; Khera et al., 2018), the polygenic score was constructed 
herein with all the 231 available obesity-associated SNPs and not 
only with the 31 significantly associated SNPs. In this regard, 
the use of larger numbers of GWAS markers, combined with 
adequate sample sizes, represent a promising strategy when 
approaching the development of genetic tools focused on disease 
stratification (Wray et al., 2013). Although it would be preferable 
that SNP weights had been derived from independent datasets, the 
heterogeneity in effect size calculations among studies, together 
with the specific family-based data used in the present study, led 
us to derive our own SNP weights in the QFS discovery sample.

The QFS cohort involves participants from 222 French-
Canadian families from Quebec City, making up a largely 

FIGURE 4 | Obesity prevalence consistently increased across polygenic risk score PRS231 quintiles. Forest plot for obesity prevalence, defined as a binary variable 
(body mass index ≥ 30kg/m2), across quintiles in the three study samples. From up to bottom: QFS discovery (red), QFS validation (green) and FAS replication 
(green) samples. Odds ratio (OR) and 95% confidence intervals (95%CI) are calculated for quintiles Q2, Q3, Q4, and Q5 compared to the lowest quintile Q1. Cut-
off stands for body mass index (BMI) cut-off points of each quintile. P values were obtained by means of generalized linear mixed models (binomial with logit link 
function) models including age, sex, and PRS231 quintiles as fixed effects and family relatedness as random effect, with flexible covariance structure to account for 
family relatedness. QFS and FAS stand for Quebec Family Study and Fatty Acid Sensor Study, respectively.
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homogeneous ancestry population. Family relatedness was 
handled by using generalized linear mixed models, a statistical 
method successfully applied in the past when testing genetic 
associations in samples with family or cryptic relatedness 
among individuals (Choquette et al., 2012; Plourde et al., 2013; 
Rudkowska et al., 2015; Chen et al., 2016). A recent study 
comparing distributions of polygenic scores of type 2 diabetes 
and cardiovascular disease within populations with different 
ancestries has shown that the risk level estimated for one 
population can considerably differ from the level in another 
(Reisberg et al., 2017). Accordingly, another study focused on 
the contribution of polygenic risk to obesity reported different 
effects of the genetic score on BMI across different ethnics and 
birth cohorts (Walter et al., 2016). Herein, the cumulative effect 
of 231 SNPs resulted in a difference of more than 6.5 BMI units 
(31.5 vs 25 kg/m2) between subjects in the fifth and first PRS231 
quintiles in the QFS discovery sample, and 4.5 BMI units (30.0 
vs 25.5 kg/m2) in the QFS discovery sample. Although main 
results were consistent across quintiles in the independent 
and more heterogenous FAS study, we acknowledge that the 
ethnic homogeneity of QFS may represent a limitation to the 
generalizability of the results, and larger studies are still required 
for accurately testing the clinical utility of a polygenic score to 
stratify obesity. 

On the other hand, compared to previous GWAS results, 
where reported single-SNP associations with obesity explained 
less than 1% of BMI variance (Frayling et al., 2007; Loos et al., 
2008), polygenic scores are able to progressively increase the 

proportion of variance accounted for by using cumulative series 
of BMI-associated SNPs (Speliotes et al., 2010; Hung et al., 2015; 
Locke et al., 2015). In this regard, PRS231 is to date the polygenic 
score involving the largest number of BMI-associated SNPs and 
had a cumulative impact on BMI accounting for 7.5% and 3.2% 
of phenotypic variance in both QFS discovery and replication 
samples, respectively. Although the proportion of the phenotypic 
variance attributable to genetic variance is one of the largest 
among previous obesity polygenic scores (Loos and Janssens, 
2017), this is certainly not a large proportion of phenotypic 
variance if we consider that more than 90% of the variance is 
still unaccounted for. This issue, together with an insufficient 
statistical power driven by limited sample sizes, represent the 
main weaknesses of using polygenic scores to stratify complex 
phenotypes such as obesity.

A recent study in the QFS cohort, where a PRS with 97 
BMI-associated SNPs was also developed, showed that eating 
behavior played an important role in the genetic susceptibility 
to obesity (Jacob et al., 2018). Similarly, other studies have 
reported a significant impact of satiety mechanisms (Llewellyn 
et al., 2014) or fat and energy intake (Celis-Morales et al., 2017) 
on the genetic susceptibility to obesity assessed from genetic 
scores (28 and 93 BMI-associated SNPs, respectively). In 
agreement, previous studies suggesting a great impact of genetic 
background in body weight loss after bariatric surgery (Rinella 
et al., 2013; Moore et al., 2014; de Toro-Martín et al., 2018) also 
point to the need of focusing on the interaction between genetic 
background with other factors influencing weight loss outcomes. 

FIGURE 5 | Polygenic risk score PRS231 had a significant impact on body mass index. Scatter plots showing fitted linear mixed models including age, sex, and 
polygenic risk score PRS231 as fixed effects and family relatedness as random effect, with flexible covariance structure to account for family relatedness. The 
association between PRS231 and body mass index (BMI), measured as a continuous variable, with 95% confidence intervals (grey shade) is shown in (A) QFS 
discovery, (B) QFS validation, and (C) FAS replication samples. Density distributions of PRS231 and BMI are shown at the top and right of plots, respectively. Grey 
color represents subjects without obesity. Red, green and blue colors represent subjects with obesity in the (A) QFS discovery, (B) QFS validation, and (C) FAS 
replication samples, respectively. QFS and FAS stand for Quebec Family Study and Fatty Acid Sensor Study, respectively.
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Future research in the field is expected to boost the accuracy 
and reliability of PRSs in anticipating the onset of metabolic 
diseases, such as obesity, leading to an early management of such 
disorders (Khera et al., 2019). Altogether, these results highlight 
the relevance of accurately identifying all the factors involved in 
obesity development and body weight management, as well as 
their interaction with the genetic background, for a better disease 
stratification. Deepen on these factors and on their relationship 
with each other will help on the accurate identification of 
obesity-prone individuals, who may benefit more from precision 
nutrition or lifestyle interventions.

In conclusion, in the present study, a generalized linear mixed 
model was fit in order to stratify obesity prevalence by means of 
a polygenic score. Main results revealed that genetic background 
in the form of a 231 BMI-associated PRS has a cumulative impact 
on obesity, but a limited potential to accurately stratify it. These 
results should be then taken with caution, as the ability of this 
polygenic score in classifying obesity status is not accurate enough 
at the individual patient level. Further studies are encouraged on 
larger samples with more comprehensive genetic scores.
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