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Ethanol tolerance, a polygenic trait of the yeast Saccharomyces cerevisiae, is the primary 
factor determining industrial bioethanol productivity. Until now, genomic elements affecting 
ethanol tolerance have been mapped only at low resolution, hindering their identification. 
Here, we explore the genetic architecture of ethanol tolerance, in the F6 generation of an 
Advanced Intercrossed Line (AIL) mapping population between two phylogenetically distinct, 
but phenotypically similar, S. cerevisiae strains (a common laboratory strain and a wild strain 
isolated from nature). Under ethanol stress, 51 quantitative trait loci (QTLs) affecting growth 
and 96 QTLs affecting survival, most of them novel, were identified, with high resolution, in 
some cases to single genes, using a High-Resolution Mapping Package of methodologies 
that provided high power and high resolution. We confirmed our results experimentally 
by showing the effects of the novel mapped genes: MOG1, MGS1, and YJR154W. The 
mapped QTLs explained 34% of phenotypic variation for growth and 72% for survival. High 
statistical power provided by our analysis allowed detection of many loci with small, but 
mappable effects, uncovering a novel “quasi-infinitesimal” genetic architecture. These results 
are striking demonstration of tremendous amounts of hidden genetic variation exposed in 
crosses between phylogenetically separated strains with similar phenotypes; as opposed to 
the more common design where strains with distinct phenotypes are crossed. Our findings 
suggest that ethanol tolerance is under natural evolutionary fitness-selection for an optimum 
phenotype that would tend to eliminate alleles of large effect. The study provides a platform 
for development of superior ethanol-tolerant strains using genome editing or selection.
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INTRODUCTION

The yeast Saccharomyces cerevisiae has long been studied as a model organism for eukaryotic 
molecular and cellular biology. S. cerevisiae’s genome was the first eukaryote genome completely 
sequenced, with haploid genome of 12,068 kb and 5,885 potential protein encoding genes in 16 
chromosomes (Goffeau et al., 1996).

Ethanol, the most consumed biofuel worldwide, is the main fermentation end product of S. cerevisiae. 
Yeast naturally produces ethanol during anaerobic fermentation of sugar. Ethanol toxicity may inhibit cell 
division and viability, reduce metabolic activity, harm cell transport and change composition, structure, 
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and function of cellular membranes, proteins, and morphology 
(van Voorst et al., 2006; Ding et al., 2009; Liu and Qureshi, 2009; 
Avrahami-Moyal et al., 2012). High ethanol concentration 
endangers the survival of the cells, while under moderate ethanol 
levels, cells survive but may have very reduced growing ability and 
fermentation rate. Thus, both aspects of ethanol tolerance, growth, 
and survival are key factors in ethanol production (Amorim et 
al., 2011). Hence, uncovering the genetic basis and molecular 
mechanisms of ethanol tolerance in yeast is necessary to improve 
the efficiency of biofuel producing strains. However, ethanol 
tolerance of yeast is a polygenic and complex quantitative trait, and 
analysis of such traits is a major challenge in genetics (Swinnen et 
al., 2012b). One of the greatest challenges is the identification of 
minor quantitative trait loci (QTLs), while QTLs of large effect are 
more easily found (Brem et al., 2005; Demogines et al., 2008; Sinha 
et al., 2008; Ehrenreich et al., 2010; Parts et al., 2011; Swinnen et al., 
2012b). A previous ethanol tolerance mapping study by Hu et al., 
2007, based on the F2 of a cross between two strains that diverged 
widely in ethanol tolerance, uncovered two QTLs of large and 
three QTLs of moderate effect on ethanol tolerance, as measured 
by survival. Another study, of similar design, in which a large-scale 
QTL mapping experiment was carried out, detected one QTL of 
large effect for ethanol tolerance as measured by growth (Cubillos 
et al., 2011).

In the last decade, S. cerevisiae has become a powerful model 
organism for quantitative genetics, thanks to recently developed 
technologies to cross strains and generate large numbers of 
segregants (Bahalul et al., 2010; Liti and Louis, 2012; Fay, 2013). 
Recently, genome-wide QTL mapping by selective DNA pooling, 
(SDP, also termed “Bulk Segregant Analysis”, BSA), was carried out 
in yeast. For purposes of estimating population allele frequencies 
and for QTL mapping, genotyping pools is much more cost effective 
than genotyping individuals and allows much larger samples. 
Larger samples result in smaller sampling variance and therefore 
improve the accuracy of allele frequency estimates (Schlotterer 
et al., 2014) and increase power to reveal loci with small effects 
(Korol et al., 2007; Ehrenreich et al., 2010; Duitama et al., 2014). 
Previous yeast studies used BSA of F2 segregants with sequencing 
of DNA pools, to identify novel genes related to ethanol tolerance 
(Swinnen et al., 2012a; Pais et al., 2013; Wilkening et al., 2014). 
Several QTL spanning more than one gene were found, and further 
investigations specifically identified six genes related to the trait.

The Advanced Intercrossed Line (AIL) design is based on 
crossing two or more genetically distinct pure lines, followed by 
several generations of intercrossing (Darvasi and Soller, 1995). 
Recombinations accumulated over the intercross generations 
produce mosaic genomes composed of a mix of very small 
segments of founder genomes. This breaks up long-distance 
linkage disequilibrium (LD); possibly also breaking up balanced 
linkage blocks, keeping appreciable LD only between very 
close sites (Supplementary Figure 1), thus increasing mapping 
resolution (Darvasi and Soller, 1995). Parts et al., 2011, using a 
yeast two-parent AIL, were able to map 21 heat tolerance QTLs. 
This was far more than the number of QTLs ordinarily obtained 
by an F2 linkage analysis. A four-parent AIL design with the 
potential for four participating alleles (Cubillos et al., 2013), 
mapped 34–39 heat tolerance QTLs.

QTL mapping for ethanol tolerance has generally involved 
industrial strains selected to differ widely in this trait (Swinnen 
et al., 2012a; Pais et al., 2013). However, wild populations of many 
domesticated plants are rich sources of genetic variants affecting 
a wide variety of quantitative traits of agro-economic importance 
(Luikart et al., 2012). One of the aims of the present study was 
to examine this in yeast. To this end, we implemented genome-
wide SDP mapping for QTL affecting ethanol tolerance in an 
AIL population based on a cross between the standard haploid 
laboratory strain S288c, and YE-531, a haploid strain isolated 
from nature (Supplementary Figure 1). The two strains belong to 
different lineages but are of similar phenotype for ethanol tolerance. 
Genome-wide AIL QTL mapping has not been previously 
conducted for ethanol tolerance. We studied growth and survival in 
the presence of alcohol as two distinct traits, as both are important 
for commercial purposes. By applying a multi-component package 
of experimental and statistical procedures, numerous QTLs were 
identified, spanning narrower regions than previously reported by 
non-AIL studies; in some cases down to single genes. The parental 
strains, although of similar tolerance phenotype, were found to 
contain a very large amount of genetic variation in the form of 
numerous balanced QTLs of small but mappable effect.

RESULTS

Phylogenetically Distinct Parental Strains 
With Similar Phenotypic Performance
An AIL population was produced by crossing a haploid laboratory 
strain, S288c, of known genome sequence, with a heterothallic 
haploid strain, YE-531, isolated from nature (Ezov et al., 2006). We 
choose a standard laboratory strain, and a strain from the wild, 
to explore usefulness of wild yeast as source of positive alleles 
for traits of economic or biological importance. The two haploid 
strains had similar mean phenotypic values (Supplementary 
Figure 2). Population sizes were >105 during the intercross phase. 
During the interval between sexual generations, there would 
have been opportunity for one to three generations of vegetative 
reproduction. Consequently, some differential clonal reproduction 
may have occurred in the intervals between sexual generations.

We obtained the genome of YE-531 by de novo sequencing. 
Then we used the full genomes of the two founders and 13 
publicly available S. cerevisiae genomes of different lineages 
(Liti et al., 2009; Schacherer et al., 2009; Maclean et al., 2017) 
to determine phylogenetic relationships. Figure 1 shows clearly 
that YE-531 is distinct from S288c, as well as from the other wild 
and commercial yeast strains, while one wild strain, EC9-8a, 
is phylogenetically close to YE-531. This is reassuring, as both 
strains were isolated from “Evolution Canyon”, Mt. Carmel, Israel 
(Ezov et al., 2006; Chang and Leu, 2011).

Forming the Pools for SDP Mapping
For purpose of QTL mapping by SDP, a two-stage selection 
scheme was used as shown in Figure 2, to construct the ethanol-
tolerant selected tail pools for growth and survival. In the first 
stage, a level of ethanol stress that was survived by 35% of the 
population was used to select ethanol tolerant colonies. This 
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stage was common to both traits. In the second stage, 300 
colonies were tested separately for growth and for survival, and 
30% (90 colonies out of 300) were chosen for each trait. This 
retains essentially all of the mapping information of the entire 
mapping population of 300 individual colonies (Darvasi and 
Soller, 1992). Unselected aliquots from the AIL-F6 population 
served as controls. To determine marker allele frequencies in the 
pools and controls we performed whole genome sequencing.

Allele Frequency Variation in F6 Is Higher 
Than Expected
Although the markers in the F1 are expected to have allele 
frequency 0.5, some variation in marker frequency is anticipated 

in the F6 due to sampling. Surprisingly, there was very wide 
variation in marker allele frequencies in the F6 population 
(Supplementary Table 2).

Given the very large population sizes used in producing the 
successive generations, the observed variation in marker allele 
frequencies at the F6 generation is considerably larger than would 
be expected by cumulative binomial sampling. Even for effective 
population size of only 1,000, binomial sampling would generate a 
frequency standard deviation of no more than 0.02 per generation, 
or 0.06 across six generations. Thus, the remainder may have been 
generated by clonal reproduction and general fitness selection during 
the recuperation stages of the six AIL generations. As noted, S288c 
and YE-531 represent different lineages (Figure 1). Thus, considerable 
selection is expected as the two genomes adjust to the mutually novel 

FIGURE 1 | Phylogenetic analysis, based on whole genome sequences, of the AIL parental lines in relation to known S. cerevisiae strains representing different 
lineages and groups. The genome of YE-531 was generated by de novo sequencing. Colored text, genome name of the strain; green circle, lineages (Liti et al., 
2009; Schacherer et al., 2009; Maclean et al., 2017); Bolded and enlarged, AIL parental lines. Bootstrap values are presented on the branches in black. The branch 
length units are the number of changes in the sequence divided by the sequence length in bp. The full sequence identifiers of the genome sequences we used for 
the tree building and the strains description are summarized in Supplementary Table 1.
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genetic background generated by the cross. A further selection may 
be imposed by the Ether–zymolyase ascospore isolation procedure 
(see Materials and Methods) (Bahalul et al., 2010). The selective forces, 
whatever their nature, appear to have affected alleles originating from 
both parental lines more or less equally. In the F6 general population, 
the major allele originated from YE-531 in 47.2% of markers, and 
in the remaining 52.8% from S288c (Supplementary Table 2). The 
small excess of S288c alleles may be due to greater adaptation of the 
laboratory strain S288c to laboratory conditions. Interestingly, there 
were no single nucleotide polymorphism (SNPs) at which the YE-531 
allele was lost or fixed in the F6.

QTL Mapping by SDP
Following frequency smoothing for location by locally weighted 
scatterplot smoothing (LOESS) (Chambers and Hastie, 1992), 
mapping QTLs by means of SDP was based on the difference 
(D-value) of YE-531 marker allele frequency between the 
selected and control groups. We note that LOESS does not induce 
dependency between independent markers; rather, it removes noise, 
so it will improve correlation estimates between linked markers. 
Comparison of the two traits reveals some regional overlaps of the 
D-values, along with regions where D-values of the two traits differ 
(Supplementary Figure 3).

The 90 individuals selected in each growth or survival pool 
were randomly assigned to three independent replicate subpools 
of 30 diploid individuals (60 chromosomes) each. Averaged across 
all markers, the variance estimates after LOESS were 0.0010, 
0.0034, and 0.0044 among replicates of the control, growth, and 
survival pools, respectively. These observed values are plausible 
(Supplementary text) and are based on many thousands of data 
points each. Based on these estimates, empirical average standard 
errors of the differences between selected and control pools were 
0.038 and 0.042 for growth and survival, respectively.

Using D-values of individual markers after LOESS smoothing 
for location (Supplementary Table 3), and the empirical SE 
adjusted for allele frequency, Comparison-Wise Error Rate 

(CWER) P-values were obtained for each of the 35,000+ markers 
for each trait (Supplementary Data Sheet 1, 2). Supplementary 
Table  4 shows the distribution of P-values for growth and 
survival. For both traits there was a large excess of P-values in 
the lowest P-value bin (P ≤ 0.10), compared to the proportion 
of 0.10 expected for this and all bins under the null hypothesis. 
This indicates the presence of a large number of rejected null 
hypotheses, i.e., of true marker–QTL associations. Based on the 
iterative procedure of Mosig et al. (2001), we estimated the number 
of true null hypotheses as n2 = 26,278 and 22,912 for growth and 
survival, respectively. Then, subtracting n2 from the total number 
of markers gave the estimates of rejected null hypothesis, n1, as 
8,856 and 12,107 for growth and survival, respectively (Table 1). 
This is also illustrated by the Schweder-Spjotvoll plot (Spjotvoll, 
1982) (Supplementary Figure 4; Supplementary text). Thus, it 
is estimated that 25% (8,856/35,134) and 35% (12,107/35,019) of 
the markers are linked to a causative mutation affecting growth 
or survival under ethanol stress, respectively.

Based on these n2 estimates, the power of the test (Mosig et al., 
2001) and the number of markers reaching significance levels 
according to trait for various levels of FDR, are presented in 
Table 1. To declare significance we chose an FDR threshold of 0.2. 
Although this eliminates many markers that have high likelihood 
of representing true effects (see Power according to FDR in 
Table 1), it does not result in a corresponding loss of declared 
QTLs. This is because most of the excluded markers represent 
singleton tests that reach high significance by technical error 
of one sort or other; or represent additional markers associated 
with the same QTLs, that reached slightly lower D-values than 
the top markers in the QTL due to sampling or distance from the 
causative mutation.

Mapping of Multiple Genetic Loci With 
High Resolution
A chromosomal region with SNPs having FDR ≤0.2 was declared 
as a QTL with a 1 log-drop procedure defining boundaries as 

FIGURE 2 | AIL and tail selection. (A) F1 offspring were intercrossed for five generations to create F6. (B) First stage: Mass-selection for survival under moderate 
(15% V/V) ethanol stress (35% survivors) to create initial phenotypic upper tail group common to both traits. (C) Random sampling of 300 segregants from the initial 
upper tail group. (D) Individual phenotypic evaluation of these 300 segregants separately for growth and for survival, under ethanol stress, to construct two final 
selected pools containing the highest 90 segregants each for growth and survival in the presence of ethanol. The entire F6 population was used as a control for 
both traits. For statistical purposes, each pool and control group was randomly divided into three subgroups. Cell colors represent variation in ethanol tolerance in 
the population. Darker cells indicate higher ethanol tolerance.
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in Lipkin et al., 2016 (Figure 3). On this criterion, 51 growth 
and 96 survival QTLs were identified. Twenty-one of the QTLs 
overlapped between the two traits (Supplementary Data 
Sheet  3). Supplementary Table 5 shows the distribution of 
the QTLs and the number of positive (increasing tolerance) 
and negative (decreasing tolerance) alleles for each parent, by 
chromosome location. QTLs were found on most chromosome; 
and for any single parent, positive and negative alleles were 
interspersed. The null hypothesis is that the only genes affecting 
ethanol tolerance are those that are responsible for the small 
observed difference in resistance between the more resistant and 
more susceptible parents. Clearly the two parental lines differ at 

many more loci than needed for this. Furthermore, on the null 
hypothesis, we would not observe transgressive variation in 
the F6. But such variation is clearly observed (Supplementary 
Figure 5). Thus, the two parental lines contain a very large 
amount of genetic variation that is not apparent when their mean 
values are compared, but which comes to expression in the cross 
(Supplementary Figure 5).

Mapping resolution based on the 1 log-drop boundaries was 
very high, yielding QTLs smaller than commonly found. Size of 
the QTLs averaged 11.2 kb (0.02–69.2 kb) for growth and 12.8 kb 
(0.001–54.8  kb) for survival (Supplementary Data Sheet 3). The 
distance between QTLs on the same chromosome averaged 350.0 

TABLE 1 | Critical CWER P-value thresholds for declaring marker significance, number of declared significant markers, and power according to FDR1.

FDR Growth Survival

Critical P Significant
markers 

Power3 Critical P Significant
markers

Power3

≤0.001 2.0E-05 37 0.004 4.8E-05 19 0.002
≤0.010 3.4E-04 94 0.011 8.2E-04 547 0.045
≤0.050 3.3E-03 383 0.041 6.4E-03 1,875 0.147
≤0.100 9.6E-03 1,650 0.168 1.6E-02 3,700 0.275
≤0.200 3.4E-02 3,043 0.275 4.6E-02 7,498 0.495
n1 – 8,856 – – 12,107 –
n2 – 26,278 – – 22,912 –
Total – 35,134 – – 35,019 –

1In calculating power, the numbers of significant markers were reduced by 20% to take FDR into account.
2n1, estimated number of rejected null hypothesis; n2, estimated number of true null hypotheses.
3The power is (the number of markers significant in this P-value range after accounting for false discoveries)/n1.

FIGURE 3 | Declaring QTLs on chromosome 11. -Log10P values of SNPs after LOESS smoothing of allele frequency by location and SD adjustment by allele 
frequency were plotted against the marker position. Significant regions are those above FDR 0.2 and after log-drop procedure as in Lipkin et al., 2016. Blue 
diamond, smoothed SNP -log P-value; red line, 0.2 FDR; Green diamond, QTL after log-drop procedure. (A) Growth. The position of five declared QTLs is marked 
by gold circles on the X axis. the gap around location 210 is a result of lack of SNPs at that region, due to data filtered out for technical reasons. (B) Survival. The 
position of eight declared QTLs marked by gold circles. (C) Log drop boundaries on chromosome 11. QTL unique to growth or survival can be seen (e.g., Survival 
401-419 kb; red arrow on B).
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kb (29.0–1,359.7 kb) and 186.2 kb (3.3–917.2 kb) for growth and 
survival, respectively. Thus, QTLs as close as 3.3 kb were distinguished. 
Supplementary Table 6 shows the overall distribution of significant 
mapping-SNPs; indels among QTLs, ORFs, and regulatory sites; and 
distribution of significant SNPs according to effect on amino acid 
composition: synonymous and nonsynonymous substitutions, and 
regulatory sequences. The proportion of significant indels relative 
to significant SNPs among open reading frames (ORFs) (0.034) 
is much less than among QTLs overall (0.100). Of the SNPs in 
(ORFs), 64.5% resulted in synonymous substitutions, 35.5% in non-
synonymous substitutions.

Three of the survival QTLs and two of the growth QTLs did 
not include any ORF. These QTLs were quite small. For the two 
growth QTLs: QTL8 = 1,439 bp, QTL9 = 704 bp; for the three 
survival QTLs: QTL21 = 753, QTL30 = 967, QTL47 = 1,868. 
(Supplementary Data Sheet 3). All QTLs with no ORFs included 

SNPs located in various feature types (Supplementary Data 
Sheet  4). For both survival and growth, 10% of QTLs included 
only a single gene (10 and 5 QTLs respectively) (see an example in 
Figure 4), while 25% of survival and 33% of growth QTLs included 
more than six genes (Supplementary Table 7).

Since genotyping was by deep sequencing, the actual sequence 
of most polymorphisms is known. Therefore, we were able to 
propose candidate causative mutations. Lists of 3,943 and 7,936 
mutations in QTLs for growth and survival, respectively, and 
alternative predicted proteins are given in Supplementary Data 
Sheet 4. Among the mutations found, some involved amino acid 
changes that are likely to alter protein activity. For example, RNR2 
(in Growth QTL 22) and MMP1 (in survival QTL 64) were mapped 
to level of a single gene (Figure 5). For RNR2 the known protein 
structure PDB: 1SMQ (Sommerhalter et al., 2004) was used. One 
mutation in RNR2 (chr10: 392,498; Supplementary Data Sheet 4), 

FIGURE 4 | Example for mapping resolution to a single gene level. Shown are QTLs of survival trait on chromosome 11. Blue dots, smoothed SNP -log P values; 
red line, 0.2 FDR; Green dots, QTL log-drop boundaries; red circle, centromere. (A) Smoothed P-values. (B) Zoom-in on a small QTL containing part of DYN1 gene. 
(C) Non-synonymous mutations in DYN1. Blue line, DYN1 ORF; Orange circles, serial number by location of non-synonymous mutations. Mutation positions and 
alternative amino acids are summarized in the table.
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located on the protein surface in a non-conserved region, caused 
an alteration of Threonine to Lysine. This mutation has high 
probability of affecting protein-protein interaction, as predicted 
by optimal docking area (ODA) (Fernandez-Recio et  al., 2005). 
A second mutation in this protein (chr10: 393,112; Supplementary 
Data Sheet 4), located in a highly conserved region, caused 
an alteration of Serine to Alanine. A destabilizing effect of this 
mutation on the protein was predicted by DUET (Pires et al., 2014). 
For MMP1 protein, as there was no known structure, we predicted 
it by several models. The percentage identity of the sequence in the 
structurally aligned region (Zhang, 2008; Roy et  al., 2010; Yang 
et al., 2015) of the five most confidently predicted models was high 
and all gave similar predictions. A candidate causative mutation in 
MMP1 (chr 12: 18,377; Supplementary Data Sheet 4), located in 
an alpha helix conserved region, caused an alteration of Alanine to 

Valine. A destabilizing effect of this mutation on the protein was 
predicted by DUET (Pires et al., 2014).

Many QTLs of Small Effect Contribute to 
Phenotypic Variation
Allele effects averaged 0.018 (0.012–0.044) optical density (OD) 
units for growth and 0.357 (0.207–0.794) survival score units 
for survival (Supplementary Table 8). Figure 6 shows the 
distribution of QTL-effects for growth and survival. For both 
traits, the distribution observed, namely, complete absence of 
QTLs of large effect (i.e., QTL individually explaining >5% of 
phenotypic variance); very small number of QTLs of moderate 
effect (i.e., QTL individually explaining 2% to 5% of phenotypic 
variance); and the remainder made up of QTLs of small effect 

FIGURE 5 | Examples of strong candidate mutations located in a QTL, presented in three-dimensional (3D) protein structures. Color scale represents amino acid 
conservation scores as defined by ConSurf software (Ashkenazy et al., 2010; Celniker et al., 2013): (Blue- conserved, Red- variable). (A) A candidate causative 
mutation in MMP1 mapped to survival QTL 63. The mutation site at the red arrow (chr 12: 18,377; Supplementary Data Sheet 4), is located in an alpha helix 
conserved region. The substitution of GCC for GTC caused an alteration of Alanine to Valine. A destabilizing effect of this mutation on the protein, was predicted 
by DUET in five predicted models (Pires et al., 2014). (B) Two candidate causative mutations in RNR2 (PDB: 1SMQ), mapped to growth QTL 22. The mutation site 
shown by red arrow 1 (chr10: 392,498; Supplementary Data Sheet 4) is located on the protein surface in a non-conserved region. The substitution of ACA for 
AAA caused an alteration of Threonine to Lysine. This mutation has high probability of affecting protein-protein interaction, as predicted by ODA (Fernandez-Recio et 
al., 2005). The mutation shown by red arrow 2 (chr10: 393,112; Supplementary Data Sheet 4) is located in a highly conserved region. The substitution of TCC for 
GCC caused an alteration of Serine to Alanine. A destabilizing effect of this mutation on the protein was predicted by DUET (Pires et al., 2014).

FIGURE 6 | Distribution of QTL allele effects for survival and growth. The average effects for the three top markers in each QTL was used to estimate the QTL effect 
(the X axis). The distributions differ in detail, but both show complete absence of QTL of large effect, very low frequency of QTL of moderate effects, and a very large 
number of QTL of small effect. Thus, distributions differ from the infinitesimal model, in that the almost all variation is in QTL of small, but mappable effect; but also 
differ from typical QTL model in the complete absence of QTL of large effect, and paucity of QTL of moderate effect. (A) Survival. (B) Growth.
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(individually explaining <2% of phenotypic variance), is rather 
atypical for quantitative trait. Mean and range of contribution 
of individual QTL to the phenotypic variance were essentially 
the same for the two traits, namely, 0.7% (0.3–3.1%) for growth 
and 0.7% (0.3–3.3%) for survival. The total QTL-contribution to 
the phenotypic variance was, 34.7% and 72.0% for growth and 
survival, respectively. The total QTL-contribution to the genetic 
variance may be considerably greater. If, for example, heritability 
of the traits is 0.5, then the mapped QTLs would account for 69% 
(34.7/50.0) of genetic variation for growth and essentially all 
genetic variation for survival.

Reciprocal Hemizygosity Analysis Strongly 
Supports the Mapping Results
For validation we investigated a few of the most likely candidate 
genes (mapped down to a single gene or due to their biological 
function) that were also located in genomic sites enabling simple 
gene manipulation. Based on mapping, we hypothesized that a 
candidate mutation generating a phenotypic difference between 
a tail and F6 control (i.e., on F6 genetic background) should 
also cause a difference in the same direction, between the two 
alleles in an F1 background on a reciprocal hemizygosity analysis 
(RHA) test (Steinmetz et al., 2002).

Four of the 10 gene × trait combinations differed significantly 
in the RHA (Supplementary Figures 6, 7; Supplementary Table 9). 
Of the six remaining RHA, one (NTH2 × survival) gave exactly 
equal results, while five differed in the expected direction, but 
did not reach statistical significance. This may simply be a matter 
of Type II error.

All nine differing RHA comparisons had the same direction 
as the QTL mapping (Supplementary Table 9). Thus, applying a 
sign test, the null hypothesis that the favorable alleles identified 
by QTL mapping and the favorable alleles identified by RHA 
are independent is falsified at P < 0.0002. Hence, at least some 
and most likely all of the RHA comparisons which did not reach 
significance can be taken to represent Type II errors, so that 
overall support of the QTL results by the RHA is very strong.

The effect of ADH2 was validated by RHA for growth, while 
the positive allele was contributed from YE-531 (Supplementary 
Table 9). Since ADH2 is an alcohol dehydrogenase which oxidizes 
ethanol to acetaldehyde (de Smidt et al., 2012), the identified 
positive allele is expected to reduce ethanol production. Indeed, we 
showed greater ethanol production of the YE-531-allele’s deletion 
strain in the F1 background, relative to its reciprocal deletion in 
the F1 (Supplementary Figure 8). By knocking out both copies 
of the ADH2 allele, ethanol production was greater than in the 
F1 and reciprocal deletions. Importantly, initial glucose levels 
were equal for all samples (6.68%(w/v)). At the end (after 17 h of 
incubation), for all samples, glucose was not completely utilized 
so that glucose levels were not a limiting factor.

DISCUSSION

QTL Mapping: Methodologies
The key to unlocking the full potential of the yeast model for 
genetic analysis of quantitative traits was the development in 

our laboratory (Bahalul et al., 2010) and elsewhere (Parts et al., 
2011) of improved ascospore isolation procedures that increased 
the number of segregants that could be obtained in a yeast 
cross by orders of magnitude. Based on this, the present study 
was able to map to high resolution numerous QTL of relatively 
small individual effect. This was achieved by combining various 
advanced mapping designs, high-throughput sequencing 
methods, and statistical procedures—some well-known, others 
relatively recent into a “High Resolution Mapping Package” 
(HRMP). The HRMP includes AIL design to increase mapping 
resolution (Darvasi and Soller, 1995); two-stage individual 
phenotyping to increase trait heritability; genotyping by high-
throughput sequencing so that most causative mutations are 
included in the analyzed markers; use of selective DNA pooling 
to enable low cost “genotyping by deep sequencing” of many 
individuals; LOESS smoothing of allele frequencies to reduce 
error variation (Chambers and Hastie, 1992); Log Drop analysis 
to define QTL boundaries (Lipkin et al., 2016); and setting 
significance thresholds by use of FDR rather than Bonferroni 
criteria. Foremost among these was the use of an AIL design, 
used here for the first time for mapping QTLs affecting ethanol 
tolerance. Multiple recombination events accumulated across the 
six AIL generations resulted in a fine-grained mosaic genome. 
This was demonstrated by genome sequencing of a single F6 
segregant, revealing narrow haplotype blocks, with a median 
length of 16.1 kb (Supplementary Figure 9; Supplementary 
Table 10; Supplementary text). In a comparable study, Cubillos 
et al., 2013, using a four-parent AIL F12, found median haplotype 
block length of 23 kb across many individual genomes. The 
observed difference can be attributed to any number of biological 
or technical details that differ across the two experiments, e.g., 
difference in recombination rate of the founder strains and 
in the method used for AIL creation. Reflecting the narrow 
haplotype blocks, we obtained median QTL-length of 9.4 kb 
and 10.3 kb for growth and survival QTLs, respectively. This is 
directly comparable to 6.4 kb median QTLs length previously 
achieved by a 2-parent 12-generation AIL (Parts et al., 2011), 
as increasing the number of generations would decrease QTLs 
width proportionately.

Genotyping by deep sequencing ensured that causative 
mutations are included among the tested markers (except for 
sites with low sequencing reliability such as repetitive elements), 
minimizing occasional loss of power of closely linked markers 
due to hotspots of recombination or sampling variation in 
proportion of recombination between marker and causative 
mutation (Soller et al., 1976). Sequencing pools allowed deep 
sequencing at exceptionally high coverage (about 1,000-fold), 
of larger samples than feasible by individual genotyping, thus 
increasing statistical power. The two-stage combination of mass 
selection followed by replicated phenotyping of individual 
segregants prior to pooling made optimum use of the ability of 
yeast to increase selection intensity by testing a very large number 
of segregants and improved selection accuracy by replicated 
phenotyping of vegetatively produced daughter colonies (Soller 
and Beckmann, 1990). In this way, both the genetic difference 
between the tails and the statistical power of the experiment 
were increased. The 90 segregants that were genotyped for each 
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trait represent selected 10% of the starting population; thus they 
represent mapping power of a much larger number of segregants 
(Darvasi and Soller, 1992).

Local smoothing by LOESS (Chambers and Hastie, 1992) 
eliminates outlier marker frequencies that do not fit the 
frequency of their close environment and reduces sample noise 
(Supplementary Figure 10). In this way, LOESS reduced error 
variation of frequency and variance estimates of each SNP. 
Smoothing also enabled use of the convenient log-drop method 
for setting boundaries of QTLs (Lipkin et al., 2016).

Finally, the use of FDR criterion to set critical thresholds 
for significance greatly reduced Type II error while controlling 
Type I error, in this way enabling many more true effects to be 
uncovered compared to use of a Bonferroni criterion (Benjamini 
and Yekutieli, 2005).

Numerous Mapped QTLs of Small Effect 
Made a Substantial Contribution to the 
Phenotypic Variation
Using the above package of methodologies to map QTLs 
affecting yeast performance under ethanol stress, we found 51 
QTLs affecting growth and 96 QTLs affecting survival. Of these, 
21 affected both traits. The extent to which tolerance QTL are 
specific to a single trait, or are general to a number of traits, is 
of course of great practical and scientific interest. We expect to 
have at least some overlapped QTLs since both of the traits are 
aspects of ethanol tolerance and of general resilience in the face 
of stress. In addition, overlapping QTLs may be due to the initial 
survival-selection of the segregants. Finally, it should be noted 
that statistical power of the experiment, although high, was not 
complete. Consequently, some QTLs that appear to affect only 
one of the traits, e.g., survival, may actually affect both, but due 
to sampling variation, only the effect on one of the traits was 
statistically significant and was not counted as an overlapping 
QTL. Disentangling all of these possibilities is not within the 
scope of this paper. Thus, there were a total of 126 QTLs affecting 
the two tolerance traits. This is by far the largest number of QTLs 
identified in any single QTL mapping study in yeast for any trait. 
Compare, for example to the studies by Ehrenreich et al., 2010 
and Bloom et al., 2013, using SDP in a large mapping population 
generated by a cross between a laboratory strain and a wine strain. 
The former mapped 17 chemical resistance traits; maximum 
number of QTL for a single trait was 27, median 12. The latter 
mapped 46 quantitative traits in the same population; maximum 
number of QTL for a single trait was 29, median 12. In addition, 
our results are more than an order of magnitude greater than 
found in previous QTL mapping studies for ethanol tolerance: 
Swinnen et al., 2012a, identified three QTLs; Ehrenreich et al., 
2010, 2; Hu et al., 2007, 5; and Pais et al., 2013, 19, of which 
11 QTLs were identified in one population, and eight QTLs 
in a second population. We attribute the much larger number 
identified in the present study to a number of factors: (1)  The 
nature of the cross which apparently captured a large part of the 
natural genetic variation in the trait, (2) high statistical power 
that allowed mapping the many dozens of QTLs of small effect 
segregating in the population, and (3) the use of an FDR criterion 

to set critical thresholds for significance, which reduced the very 
high Type II errors that obtain when a Bonferroni criterion is 
used. Given the complexity of the trait, these large numbers of 
QTLs are biologically plausible, and accord with estimates of 
hundreds of QTLs affecting height in humans (Visscher, 2008; 
Manolio et al., 2009; Visscher et al., 2012; Wood et al., 2014), and 
dozens of genes affecting bristle number in Drosophila (Mackay 
and Lyman, 2005) and flowering time in maize (Buckler et al., 
2009). Buckler et al., 2009 noted that they uncovered numerous 
QTL of small effect but not even a single QTL of large effect. This 
is similar to our mapping results (Figure 6).

QTL effects averaged 0.018 OD units for growth and 0.357 
survival-score units for survival. It is convenient to express these 
effects in units of the phenotypic standard deviation (standard 
deviation units, s.d.u.), so that they can be compared across 
traits (SD = 0.148 OD units for growth; 2.75 survival units for 
survival). Expressed in this way, QTL effects for the two traits 
were virtually identical: average effect = 0.121 s.d.u. for growth 
(range 0.081 to 0.295), and 0.129 s.d.u. for survival (range 
0.075–0.288). These values are small, but not negligible. To put 
them in perspective, average QTL effect was 2.6% of the mean 
for growth) (0.698 OD units), and 4.5% of the mean for survival 
(survival-score units). Thus, the cumulative effect of 50 QTLs for 
growth or 25 QTLs for survival would double the mean growth 
and survival scores, respectively. On average, the identified QTLs 
individually explain about 0.7% each, of phenotypic variation. 
Taken together, they account for a substantial fraction of the 
phenotypic variation, 34.7% and 72.0% for growth and survival, 
respectively. The proportion of genetic variation explained would 
be even greater, depending on the heritability of the trait. Taking 
heritability = 0.50, for example, the mapped QTL explains almost 
70% of genetic variation in growth and essentially all of the 
genetic variation in survival.

The Distribution of QTL Effects for Both 
Traits Represent the “Quasi-Infinitesimal” 
Genetic Architecture of Ethanol Tolerance
A number of very large-scale QTL mapping experiments 
explored the architecture of complex quantitative traits, using 
yeast as a model system. Each study involved numerous traits, 
mainly ability of yeast to grow under various adverse conditions 
(e.g., high temperature; toxins) (Cubillos et al., 2011; Bloom 
et al., 2013; Hallin et al., 2016). Generally, less than 20 QTLs 
were detected for any given trait, while all QTLs taken together 
explained 10–80% of the trait phenotypic variance. The results 
of the present study differed from the model studies in the much 
greater number of QTLs uncovered, and in the absence of QTLs 
of large effect (i.e., QTLs accounting individually for more than 
5% of phenotypic variation) and very small number of QTLs 
of moderate effects (i.e., accounting individually for 2–5% of 
phenotypic variation). Thus, almost all genetic variation is due 
to the very large number of QTLs of small effect. We can term 
this a “quasi-infinitesimal” model, in which genetic architecture 
consists of a large number of loci of small effect, but the effects 
are detectable effect under appropriate circumstances and are 
individually due to single causative mutations. We can contrast 
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this to a full infinitesimal model where the mapped effects are 
due to cumulated effect of multiple causative mutations of almost 
infinitesimal effect (Soller et al., 1979; Visscher and Haley, 1996). 
Whether the observed results of our study represent a quasi or 
full infinitesimal model cannot be resolved by the data presented 
here alone. On average, the QTL regions for growth and survival 
included median 65–68 polymorphic sites per QTL, of which 
17% (about 10) are predicted to change protein sequence and 
therefore have the potential to affect phenotype. However, we 
believe that the large number of QTL in yeast that has identified 
the causative mutation (Winzeler et al., 1998; Deutschbauer 
and Davis, 2005; Gerke et al., 2009), including the results of the 
present study, mitigates against a true infinitesimal model.

Generally, the model studies uncovered a much higher 
proportion of loci of moderate to large effect compared to 
the present study. This may represent a real difference in the 
genetic architecture of ethanol tolerance in the wild, which 
is under strong natural fitness-selection for an optimum that 
would tend to eliminate alleles of large effect, and the genetic 
architecture of the model traits studied by Cubillos et al., 2011, 
Bloom et al., 2013, and Hallin et al., 2016, which for the most 
part are laboratory artificial traits and not related to natural 
evolutionary fitness.

Interestingly, previous mapping studies by Hu et al., 2007 and 
Cubillos et al., 2011, each based on F2 of a cross between two 
yeast strains that differed greatly in ethanol tolerance, uncovered 
five and one QTLs affecting ethanol tolerance, respectively. In 
Hu et al., 2007, one QTL was of large effect accounting for 25% 
of phenotypic variance in the F2. and four, of moderate effect 
accounting for 3% to 9% of F2 phenotypic variance. In that 
study, the methodology for scoring survival was similar to the 
methodology in the present study. In Cubillos et al., 2011, the 
QTL were mapped by measuring growth under 7% ethanol. A 
single QTL of large effect, accounting for 36.5% of phenotypic 
variance in the F2, was identified. Thus, in both studies the overall 
distribution of effects was the complete opposite to that found in 
the present study. This can be attributed to the different biology 
and ecological genetics of the strains involved. In the present 
study, two parental stains of moderate tolerance, the standard 
laboratory strain and a strain isolated from nature, that differ only 
slightly in ethanol tolerance were used (Supplementary Figure 2). 
In the cited studies, two widely differing strains at opposite ends 
of the tolerance spectrum were used. Within this context, it is 
encouraging to note that a number of candidate genes within 
the mapped QTLs of Hu et al., 2007, were found in the ethanol 
tolerance QTLs of this study: MSK1 and APJ1 were found in 
growth QTLs; PIC2, GIP2, and SSA4 were found in survival 
QTLs; PFK26 was found in QTLs of both traits (Supplementary 
Data Sheet 4). We also identified the DNA binding site for the 
product of SWI4 gene, which was a candidate in Hu et al., 2007. 
APJ1 was also found among six genes previously mapped and 
validated by RHA (Swinnen et al., 2012a; Pais et al., 2013).

Several of the genes mapped in our study share biological 
pathways that were linked to ethanol tolerance trait by an 
experimental evolution study (Voordeckers et al., 2015). Of 
these, SIC1, CDC53, and HOS3 are involved in cell interphase; 
MDS3 and PKC1 participate in pathways related to cell cycle; and 

CSE1 and VPS70 have a role in protein transport. These findings 
strengthen the reliability of the mapping results. In addition, 
many of the candidate mapped genes identified in the present 
study were previously linked to ethanol tolerance by biological 
interaction analyses, gene knockout studies, and other non-
mapping studies.

Biological Context of Identified QTLs
The high resolution in the present study helps to directly identify 
candidate causative genes; as among the many mapped QTLs, 
10% contained only one gene. Figure 4 shows an example for 
mapping resolution to a single gene level, for the DYN1 gene that 
functions in membrane trafficking, and spindle position required 
for cell segregation in yeast (Eshel et al., 1993).

In addition, some of the QTLs include mutations that are 
likely to have a direct phenotypic effect. Such mutations are those 
that involve early stop codons, mutations in conserved regions, 
frameshift mutations, and more (Supplementary Data Sheet 4). 
Indeed, in the growth and survival QTLs, 2 and 10 mutations, 
respectively, involved substitution of an amino acid by an early 
stop codon; while in 4 and 11 mutations, respectively, a stop 
codon was changed to an amino acid (in respect to the sequence of 
S288c). Several mapped mutations were predicted to have a strong 
effect on protein structure and function of two genes (MMP1 and 
RNR2) mapped to a level of a single gene (Figure 5). For MMP1, 
an S-methylmethionine permease (membrane transport protein) 
(Rouillon et al., 1999), a non-silent mutation substitution located 
in an alpha helix-conserved region, was predicted to reduce the 
stability of the protein. Since membrane function and structure 
interference under ethanol stress is well known (Sikkema et al., 
1995), the predicted effect of MMP1 on ethanol tolerance is not 
surprising. RNR2, the second investigated gene is a ribonucleotide 
reductase which is regulated by DNA replication and DNA damage 
checkpoint pathways (Elledge and Davis, 1987). Here, two non-
silent mutations were mapped: one located on the surface of the 
protein in a site predicted to affect protein-protein interactions 
and the other located in a highly conserved region and predicted 
to reduce the stability of the protein.

The mapped genes: ADH2, MOG1, MGS1, and YJR154W, 
were validated by RHA. ADH2 is an alcohol dehydrogenase 
whose primary function is to oxidize ethanol to acetaldehyde 
(de Smidt et al., 2012). MOG1 is involved in nuclear transport 
mechanism (Oki and Nishimoto, 1998), known to protect the 
cell from stress induced damage (Saavedra et al., 1996; Takemura 
et al., 2004). MGS1 is related to DNA replication stress (Tkach 
et al., 2012). YJR154W is uncharacterized.

For ADH2, the positive allele was contributed from YE-531 
(Supplementary Table 9). However, since ADH2 is an alcohol 
dehydrogenase, the same allele is expected to reduce ethanol 
production. We validated that expectation, showing increased 
production of ethanol by the YE-531-allele deletion strain in 
the F1 background, relative to its reciprocal deletion and the F1 
(Supplementary Figure 8). Also, by knockout of both copies 
of ADH2 alleles in the F1 background gave highest ethanol 
production relative to the other tested lines, as also shown by 
previous studies (Ida et al., 2012; Ye et al., 2016).
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QTL Mapping and Genetic Improvement of 
Ethanol Tolerance
We uncovered over 100 QTLs affecting ethanol tolerance. As 
the QTL mapping association tests were single marker tests 
in a segregating population, the QTL effects as measured in 
this population must be additive, at least in part, i.e., do not 
depend for their expression on genetic interactions or genetic 
background. This means that the overall mean phenotypic value 
of a line is given by the sum of the positive and negative effects 
across all QTL. Consequently, the phenotypic value of the line 
will depend on the balance of positive and negative alleles at 
the QTLs affecting the trait value. Thus, two lines can have very 
similar mean phenotypic values yet differ greatly in detailed 
genetic composition. This is nicely illustrated in the results of the 
present study. The distribution of positive alleles for each parent 
across the genome was almost equal but differed in the specific 
set of QTLs providing the positive and negative alleles. Thus, 
our study revealed that although the two parental strains have 
similar mean phenotypic values (Supplementary Figure 2), they 
contain an enormous amount of genetic variation that is hidden 
from view when parental phenotypes are compared.

Crossing two parent lines of this nature to create a so-called 
“synthetic” population, with independent assortment and 
recombination, releases this genetic variation for selection 
(Supplementary Figure 5). Segregants of the following 
generations that have a higher proportion of positive (or negative) 
alleles than either of the parent lines, manifest as “transgressive 
variation”, exceeding both high (or low) parent lines in trait value. 
Of greater importance, recurrent selection for high trait value 
in the synthetic population will lead to ever higher frequency 
of positive alleles, generating genotypes and performance levels 
that were never previously present in the species. Indeed, modern 
highly selected farm animals achieve genetic performance levels 
that were never found in the original parental populations prior 
to selection. It is not far-fetched to expect that the same will hold 
true for ethanol tolerance or other performance traits in industrial 
yeasts, conditional on avoidance of inbreeding (Hill, 2016).

QTL Mapping for Marker or Gene Assisted 
Selection
Selection based on phenotypes as described above requires massive 
investment in evaluating phenotypes. QTL mapping can substitute 
for at least part of this effort, by providing markers that quickly, 
cheaply, and reliably identify the individuals carrying the most 
positive alleles for the target trait, a process termed “Marker Assisted” 
or “Gene Assisted” selection (MAS/GAS). MAS/GAS is particularly 
important when phenotyping costs are high or heritability of the 
trait is low, so that simple phenotypic selection is inefficient.

Genetic improvement can be attained by introgressing the 
positive alleles of the mapped QTLs from one parent to the 
other. In the past, this could only be done by laborious and time 
consuming multiple marker crossing and selection introgression 
designs that are limited to a small number of genes at any one time 
(Koudande et al., 2000). In budding yeast, direct introduction of 
positive alleles from one parent line to another, can be achieved 
by genome engineering, using homologous recombination or 

CRISP/Cas9 methodologies. It has been suggested that any 
single genetic modification is not likely to improve yeast strains 
for ethanol tolerance and high production, since these are 
complex polygenic quantitative traits affected by numerous loci 
of small effect (Stanley et al., 2010; Swinnen et al., 2012a; Lam 
et al., 2014). While this is undoubtedly true for a single locus, the 
stacked effects of numerous loci of small effect can add up to a 
large total effect on line performance.

Finally, identifying causative QTG and Quantitative Trait 
Nucleotides (QTN) underlying genetic variation at a QTL, may 
also identify the causative pathway in which the QTG is operative. 
This may open further opportunities for improvement by reverse 
engineering of other genes in that pathway.

MATERIALS AND METHODS

Intercross
The haploid laboratory strain S288c, and a haploid strain YE-531 
isolated from nature (Ezov et al., 2006), were crossed to create 
an F1. The cross population was intercrossed for five more 
generations to create the F6 AIL population, using the Ether-
zymolyase (EZ) ascospore isolation procedure (Bahalul et al., 
2010). This procedure combines two conventional protocols, 
enabling a major increase in the efficiency of ascospore isolation. 
Live count by plating was carried out to determine the effective 
number of segregants, which was >105 each generation. This 
amount greatly exceeds the 100 individuals per AIL generation, 
recommended to minimize sampling effects on recombination 
proportions across the genome (Darvasi and Soller, 1995).

Pool Construction
Three independent aliquots from the unselected AIL F6 
population (more than 3.5 × 105 segregants/ml) served as the 
control group. We studied survival under high ethanol stress 
and growth under moderate ethanol stress as two distinct traits. 
To establish the tolerant tail pools for the two traits, a two-stage 
selection was employed in the F6 generation (Figure 2). The first 
stage consisted of mass-selection at an ethanol concentration 
that provided 35% survival (based on CFU of the unselected and 
challenged populations). This level of survival was chosen as one 
that would provide significant selection for ethanol tolerance 
while maintaining genetic variation in the selected group. The 
35% survival target was obtained by exposure to 15% (V/V) 
ethanol stress for 5 h. At the end, 300 segregants were randomly 
sampled among the thousands of survivors.

In the second stage, the selected 300 segregants were 
individually evaluated for growth and for survival under ethanol 
stress (Supplementary Data Sheet 5). Anaerobic conditions 
were obtained using a polyester-based microplate film, designed 
to minimize evaporation (USA Scientific). Each segregant was 
evaluated in four replicates for each trait as follows. Two aliquots 
were sampled of each segregant culture. An equal number of 
cells, relying on OD measurement, was taken from each aliquot, 
to which we added media with ethanol. Then we divided each 
media-ethanol aliquot into two, giving a total of four replicates.
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For identification of the segregants to make up the selected 
growth upper tail, 1 ml final volume of 0.2 OD cell culture 
suspended in YPD liquid media mixed with ethanol, was 
transferred from each replicate into one well of a 24 multiwell 
plate. The ability of the replicate to grow under stress of 
9.5% (V/V) ethanol for 22 h was tested by final OD600 nm 
measurement. Average and standard deviation of final OD600 
nm values of the four replicates were calculated for each tested 
segregant (Supplementary Figure 5A).

To test for ethanol degrading ability, the ethanol concentration 
of these cultures was determined by Headspace GC-FID (Gas 
Chromatography with Flame Ionization Detector), before 
and after overnight growth for 22 h. Ten segregants suspected 
of having ethanol degrading activity were excluded. Of the 
remaining 290 segregants, the top 90 showing the highest OD 
values were chosen to form the upper tail.

For the creation of the survival upper tail group, the ability 
to survive in 19% (V/V) ethanol solution for 5 h was tested by 
a spot assay. Namely, for each replicate, 1 ml final volume of 1 
OD cell culture suspended in YPD liquid media mixed with 
ethanol, was transferred into one well of a 24 multiwell plate. A 
spot assay at 1- to 100,000-fold dilution was used (in YPD plates, 
with no ethanol) to evaluate cell survival ability. The survival-
ability test was designed to test the ability to survive for a short 
time (5 h) under high ethanol stress. Survival score was assigned 
depending on dilutions showing survival in the spot assay, and 
selection was based on total score across all four repeats (0–14; 
0–no survival ability, 14–high survival ability) (Supplementary 
Figure 5B).

The 300 segregants selected in the first stage were ranked on 
basis of OD in the growth test and survival score in the survival 
test, and the top 90 (30%) most tolerant segregants for each trait 
were chosen for the upper tail. For the statistical analysis (below), 
for each of the two traits, the 90 selected segregants were divided 
at random into three independent groups of 30 segregants each.

Importantly, although only 90 segregants were eventually 
taken for genotyping and mapping; selection proportions in the 
tails were 35% and 30% in the first and the second stage; together 
10.5%. However, as the design used here was a 1-tail design 
(unlike Darvasi and Soller, 1994, 2-tails design), average selection 
was equivalent to 21%. Thus, on principles of SDP, these 90 tail 
segregants are equivalent to a mapping population of about 429 
unselected F6 segregants, with respect to mapping power for a 
trait where both tails are included in the analysis.

Preparation of DNA Samples
Genomic DNA from founder strains and pools was extracted 
with MasterPure yeast DNA purification kit (Epicenter, Madison, 
WI), according to the manufacturer’s instructions (see more 
details in Supplementary text).

Genotyping by Whole-Genome Deep 
Sequence Pool Analysis
Sequencing by Illumina HiSeq 2500 technology was performed 
with paired ends of 100 bp fragments for parental strains and 

pools. Genome coverage (the number of unique mapped reads 
multiplied by the read length, divided by the genome size), was 
around 1,000 for all pools (Supplementary Table 11). DNA 
reads were aligned to S288c reference genome sequence, version 
R64-1-1 downloaded from the Saccharomyces Genome Database 
(Cherry et al., 2012), and to a YE-531 reference genome that we 
generated by: 1) Initial assembly of YE-531 High Throughput 
Sequencing data using Edena assembler (Hernandez et al., 2008); 
and 2) Extending the contigs using AlignGraph (Bao et al., 2014) 
and the S288c genome. Sequence quality score >20 per base was 
confirmed using FastQC (Koudande et al., 2000).

Sequence alignment was done with BWA-mem algorithm, 
version 0.7.10 (Li and Durbin, 2009). Only unique mappings 
were used in the analysis. PCR duplicates were marked by Picard-
Tools 1.123. Alignment manipulations, variant calling and allele 
frequency estimations were done by GATK best practice v.3.3-0 
(McKenna et al., 2010). Suggested protocol with the default 
parameters was used. In addition to variant calling with GATK, 
we used MUMmer 3 package (Kurtz et al., 2004) variant calling 
to compare between S288c and YE-531 assemblies.

To confirm the allele frequencies obtained by deep 
sequencing, we individually genotyped two of the SNPs in 
individuals from the control and the tolerant groups, using High 
Resolution Melting (HRM) analysis (Supplementary Figure 11; 
Supplementary text).

Quality Control
For QTL definition we used only SNPs agreed between GATK 
and MUMmer among all of the SNPs that were found through 
sequencing. Allele frequency of each variant was estimated in 
F6 population pool samples twice, based on S288c and YE-531 
reference genomes separately. Variants that had different 
frequency estimates as obtained by the two reference genomes 
were removed from the analysis.

Since YE-531 is haploid, we expect that any allele that differs 
from S288c will have YE-531 frequency of 1 in pure YE-531 
samples. Therefore, we removed markers with YE-531 frequency 
<1 in pure YE-531 samples, as they might reflect technical errors. 
In addition, markers having MAF <0.05 in pool samples were 
also removed from the analysis. After filtering, 35,134 SNPs for 
growth and 35,019 for survival (out of about 80, 000 SNPs) were 
used for mapping QTLs.

Frequency and Variance Estimates
Allele frequency estimates were smoothed along each 
chromosome by location, using LOESS local regression with 
span (i.e. window) = 80 SNPs and degree = 2. We used the 
LOESS implementation in R that is based on cloess (Chambers 
and Hastie, 1992). The smoothed allele frequencies were used 
to calculate D-values (the frequency difference between the 
tail groups and the AIL F6 control groups). Then, SD among 
replicates was smoothed by allele frequency with span (bin size) = 
10% of the SNPs and degree = 2 as adapted from Lipkin et al., 
2016. Finally, variance among replicates was calculated as the 
square of the smoothed-SD.
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Statistical Analysis
Notation
Basically, we used a simple single-marker test for marker-
trait association. That is, each marker, denoted Mi, was tested 
individually for association with growth, and separately for 
association with survival. Simply put, if frequency in the 
growth or survival pools of alternative alleles at a given marker 
differ more widely from their frequency in the control pools 
than expected by chance, we attribute this to association of the 
alleles at the marker with the tested trait. Thus, taking growth 
for example as the target trait, the following steps were taken for 
testing Mi for association with growth.

(i) Estimate frequency of the alternative alleles of the target 
marker Mi in the growth pools (denoted, piG) and in the 
control pools (piC). (Since frequency of the S288c allele in 
a pool = 1-frequency of the YE-531 allele in that pool, either 
allele can be used as the basis for statistical tests. In the present 
study, all further calculations were based arbitrarily on the 
frequency of the YE-531 allele of the marker).

(ii) Calculate the observed difference, denoted Di = piG − piC, in 
marker allele frequency between the pools of the target trait 
(in our case the growth pools) and the control pools.

(iii) Obtain the expected difference (termed the “standard error” 
of Di), denoted SE(Di) under the null hypothesis H0: marker 
is not associated with trait value (see later for how SE(Di) was 
obtained).

(iv) Calculate Zi = Di/SE(Di). If Di is much greater than SE(Di), 
such that Zi >1.645, we conclude that Di was not generated 
under the null hypothesis. i.e., the null hypothesis is falsified, 
and the alternative H1: there is an association between marker 
and trait, is accepted; with possibility of error (i.e., falsifying 
H0 when H0 is true) = 0.05. This is termed a CWER, as it 
is error rate for a single comparison. If one tested many 
markers all located on a single chromosome, then we could 
have “chromosome-wise error rate”, which would be the error 
rate of having even one of the markers on the chromosome 
falsely associated with trait value. Similarly, there could be an 
“experiment-wise error rate”.
The critical value of Zi = 1.645 for Zi to represent a CWER 

of P < 0.05 is obtained from tables of the cumulative 
standard normal curve.

(v) If Zi <1.645, we conclude that null hypothesis has not been 
falsified, and hence we are not justified in claiming that there 
is an association between marker and trait.

In applying these principles to our case, we need to take into 
account that the estimates of allele frequency in the selected pools 
and in the control are based on three subpools for each pool 
or control. The estimates of selected frequency in the selected 
pools and in the controls are thus based on average of the three 
subpools. Also, in our case, we do not use a standard error based 
on theoretical derivation, but an empirical standard error based 
on the variance among the frequency in the three subpools of the 
selected pools, and the three subpools of the control pool.

However, detailed examination of the any GWAS based on 
such single marker tests, showed that even significant regions 

are always a mixture of significant markers and non-significant 
markers, making it difficult to set boundaries for the QTL region 
(QTLR). To circumvent this, following Lipkin et al. (2016), we 
smoothed the results, in this study by the LOESS method, as 
detailed below.

The following is a more explicit presentation of the application 
of the above principles to our specific case.

Let pMijk be the LOESS smoothed frequency estimate 
(eFrequency) of the YE-531 allele of the ith marker in the jth pool 
of the kth category,

where,
i = 1 to M markers used in the study,
j = 1 to 3, is the serial number of the random subpool within 

its category,
k = 1 to 3 is the category, where 1 = Growth selected pools; 2 = 

Survival selected pools; 3 = Control (F6) pools.

Thus, pM111 would be the eFrequency of Marker 1, in subpool 
1, of the growth selected pools.

Marker-trait association was determined by a single-marker 
test, separately for growth and survival, where CWER P-value of 
the ith marker was set equal to

 Pi = 2  area of the standard normal

curve to the right of Z

×

ii = Di/SE(D)

 

where,
Di = Avg(pMi.1) − Avg(pMi.3), for the growth trait pools, and
Di.2 = Avg(pMi.2) − Avg(pMi.3), for the survival trait pools.

Avg(pMi.1) is the average of pMi taken across the three 
growth subpools. The dot in the expression Avg(pMi.1) tells us 
that the average is taken over the three growth subpools.

Avg(pMi.2) is the average of pMi taken across the three 
survival subpools,

Avg(pMi.3) is the average of pMi taken across the three AIL-
F6 control subpools.

SE(D.k) is the standard error taken over all pools and markers 
in a given category.

By definition, the SE of a “treatment” effect is the expected 
standard deviation under the null hypothesis that the treatment 
(the above Di.k), has no effect. An empirical estimate of the 
SE(D.k) was obtained based on the assumption that the variance 
of marker allele frequency among pools of the same category (i.e., 
among growth, survival or control pools), is affected by sampling 
variation and technical variation, but does not represent a real 
difference in marker allele frequency due to a QTL effect. Thus, 
it is a measure of sampling variation among pools within a given 
category under the null hypothesis (Mosig et al., 2001; Korol et al., 
2007; Bagnato et al., 2008). SE(D.k) was obtained by appropriate 
weighting of these variance estimates.

To implement this, for each marker we calculated the variance 
of the marker allele frequency across the three F6 control subpools. 
The locally smoothed variance was calculated to obtain VarPijk 
for each marker, an empirical estimate of the sampling variation 
among control subpools under the null hypothesis. Similarly, for 
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each marker × trait combination, the variance of marker allele 
frequency across all three tail subpools was calculated. Then the 
locally smoothed variance across span of 10% of the markers for 
growth and survival pools, respectively (VarSijk.1 and VarSijk.2), 
was calculated.

Since Avg(pMi) for the various categories is an average of 
three subpools, SE2(Dijk) = VarSijk/3 + VarPijk/3, where Dijk = 
D for the ith marker, in the jth pool, of kth category.

Declaring Significance and QTL Mapping
To account for the multiple tests involved in the present study (> 
35,000 marker tests for each trait), we used the False Discovery 
Rate (FDR) criterion (Benjamini and Hochberg, 1995), with 
alpha = 0.2 to set experiment wide significance for the individual 
marker  × trait combinations (Figure 3). The critical CWER 
P-values for declaring significance at FDR = 0.20, were 0.046 
for growth and 0.033 for survival. This is quite a bit higher and 
much more permissive than the Bonferroni threshold. But, of 
course, this is exactly the reason we employed the FDR criterion. 
In addition, the Bonferroni threshold would require taking into 
account the correlation among closely linked markers while the 
FDR criterion holds under positive dependency (Benjamini and 
Yekutieli, 2001). Benjamini and Yekutieli, 2005 provided detailed 
and exhaustive justification for the use of the FDR criterion in 
QTL mapping.

QTLs boundaries were defined with a 1.0 log-drop support 
interval procedure as in Lipkin et al., 2016 (see also Lander 
and Botstein, 1989). Briefly, 1 log-drop procedure starts from 
the top log10P value in a region, and moving out on both sides 
until a drop of 1.0 of the log10P value is obtained (that is, if the 
top log value was 4.0, moving out until the first log10P ≤ 3.0). 
Note that a single QTL may be considered as two QTLs when 
two adjacent peaks are observed. We considered QTLs of the 
two traits as overlap when their 1.0 log-drop boundaries partly 
overlapped.

Phylogenetic Analysis
We compared our strain YE-531, isolated from nature, and 
the popular laboratory strain S288c with a selected set of 13 
commercial and wild strains available in the SGD database 
(Cherry et al., 2012). Some of the strains represent main 
lineages that appear in Liti et al., 2009; Schacherer et al., 2009; 
Maclean et al., 2017. Phylogenetic analysis was performed on 
the whole genome sequence of the 15 strains using RealPhy 
(Bertels et  al., 2014) with default parameters except for the 
tree building. The tree building was performed with PhyML 
(Guindon and Gascuel, 2003) using non-parametric bootstrap 
100 times. The tree was drawn with Dendroscope (Huson and 
Scornavacca, 2012), bootstrap values are presented on the 
branches in black. A radial phylogenetic tree is presented in 
Figure 1.

Marker Allele Substitution Effect
Allele substitution effect (δ) was calculated for each marker 
located in a QTL following Darvasi and Soller, 1994, except that 

instead of twice the allele substitution effect (2δ), obtained by 
comparing two extreme tails, here δ was obtained by comparing 
each tail to the unselected F6 population (see a detailed example 
in the supplements). The phenotypic means of each tail and 
control F6 isolates were obtained from ethanol exposure 
experiments, similarly to those described in the second stage of 
the Pool construction. As detailed above, a two-stage selection 
scheme was used (Figure 2). Selection proportions in the tails 
were 35% and 30% in the first and the second stage, together 
10.5%. However, as the design used here was a 1-tail design 
(unlike Darvasi and Soller, 1994, 2-tails design), average 
selection was equivalent to 21%.

QTLs Allele Effect and Contribution to the 
Phenotypic Variance
The average of effects of the top three markers in each QTL was 
used to estimate the QTL allele effect, δ. The contribution of 
the QTL to the phenotypic variation was calculated as VarQ = 
2pqδ2 (Mosig et al., 2001), where p and q are the means of allele 
frequencies of the same three markers used to estimate the QTL 
effect. VarP, the phenotypic variance of each trait in the entire F6 
population, was obtained from ethanol exposure experiments, 
performed similarly to the second stage selection procedures, and 
the proportional contribution of the QTL to VarP was calculated 
as VarQ/VarP.

Reciprocal Hemizygosity Analysis
For RHA (Steinmetz et al., 2002), deletions were made in the 
S288c and YE-531 haploid backgrounds (see more details in 
Supplementary text). Reciprocal strains were generated by 
crossing the deletion parental with the other parental strain. 
To determine whether one allele is advantageous over the 
other in the RHA tests, we tested growth and survival of the 
two reciprocal deletion strains under ethanol stress, as in the 
second stage of the pool construction. We tested six genes 
for a single trait only (growth or survival), and two genes 
for both traits, making a total of 10 gene × trait tests. More 
details regarding the tests and the RHA statistical analysis can 
be found in the Supplementary text, and in Supplementary 
Table 9.

Testing Candidate Causative Mutations 
in Three-Dimensional (3D) Protein 
Structures
For gene with a known protein structure, the PDB data (Bernstein 
et al., 1977) were used. For proteins with unknown structure, 
we predicted the structure using the servers Phyre2 (Kelley 
et al., 2015) and I-TASSER (Zhang, 2008; Roy et al., 2010; Yang 
et al., 2015). The location of non-synonymous mutations on 
the 3D structure of tested proteins was identified. In addition, 
the level of evolutionary conservation based on each mutation 
was estimated using ConSurf software (Ashkenazy et al., 
2010; Celniker et al., 2013); favorable sites for protein-protein 
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interaction were detected by ODA (Fernandez-Recio et al., 
2005); effects of mutations on protein stability was predicted by 
DUET (Pires et al., 2014).
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