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Here, we describe MetaErg, a standalone and fully automated metagenome and 
metaproteome annotation pipeline. Annotation of metagenomes is challenging. First, 
metagenomes contain sequence data of many organisms from all domains of life. Second, 
many of these are from understudied lineages, encoding genes with low similarity to 
experimentally validated reference genes. Third, assembly and binning are not perfect, 
sometimes resulting in artifactual hybrid contigs or genomes. To address these challenges, 
MetaErg provides graphical summaries of annotation outcomes, both for the complete 
metagenome and for individual metagenome-assembled genomes (MAGs). It performs 
a comprehensive annotation of each gene, including taxonomic classification, enabling 
functional inferences despite low similarity to reference genes, as well as detection of 
potential assembly or binning artifacts. When provided with metaproteome information, it 
visualizes gene and pathway activity using sequencing coverage and proteomic spectral 
counts, respectively. For visualization, MetaErg provides an HTML interface, bringing all 
annotation results together, and producing sortable and searchable tables, collapsible 
trees, and other graphic representations enabling intuitive navigation of complex data. 
MetaErg, implemented in Perl, HTML, and JavaScript, is a fully open source application, 
distributed under Academic Free License at https://github.com/xiaoli-dong/metaerg. 
MetaErg is also available as a docker image at https://hub.docker.com/r/xiaolidong/
docker-metaerg.

Keywords: metagenomics, metaproteomics, bioinformatics, gene prediction, functional annotation, taxonomic 
classification, pathway prediction, visualization

INTRODUCTION

Genome annotation is, literally, the annotation of features on assembled DNA molecules. Such 
features are, in the first place, genes, including those encoding proteins [“open reading frames” 
(ORFs)] and those encoding ribosomal or transfer RNA molecules. Annotation consists of the 
identification of such features and providing each feature with a meaningful list of hints about its 
possible biological function. Annotation is usually the final step of the automated computational 
processing of genomic or metagenomic data and the beginning of biology.

Depending on their background and research question, biologists will have different annotation 
needs. For example, when the research targets a single microbe, detailed gene-by-gene annotation of 
its genome would be desired. On the other hand, when the research targets a complete ecosystem, a 
high level summary of the functional potential of the associated metagenome might be the aim. These 
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examples also display a different starting point for annotation. In 
the first case, it may consist of a single, near-perfect whole genome 
sequence. In the second case, it may consist of many MAGs of 
varying quality, unbinned metagenomic contigs, or even billions of 
unassembled reads.

What sets annotation apart from other computational steps 
in processing metagenomic data is that no benchmarks for 
annotation tools exist. That means that ranking these tools 
and objectively declaring a winner is not straightforward. The 
choice of the best annotation pipeline will depend on the data, 
the research question, the computational resources available, and 
the background of the researcher who needs to make sense of the 
annotation software’s hints and the way they are presented.

In practice, options for genome annotation come in two flavors: 
online platforms and standalone pipelines. Examples of online 
platforms are IMG (Chen et al., 2017), MG-RAST (Keegan et al., 
2016), MicroScope (Vallenet et al., 2017), Mgnify (Mitchell et al., 
2018), and Edge (Li et al., 2017). When opting for a platform, you 
avoid the need for local computational infrastructure or tedious 
installation and updating of tools and databases, while benefiting 
from online collaboration abilities. The platform may provide 
accession numbers for sharing data after publication, as these 
platforms may also be data repositories.

However, a platform might not offer the type of annotation 
needed for a specific research question or might be slower in 
the uptake of the latest selection of tools and databases. If such 
factors are important, opting for a standalone pipeline might be 
the way to go. Scientists who are fluent in scripting languages, 
such as Python or Perl, might even create their own pipeline from 
scratch. Examples of available standalone pipelines for annotation 
of assembled contigs, scaffolds, or whole genome sequences are 
Prokka (Seemann, 2014), DFAST-core (Tanizawa et al., 2018), 
and PGAP (Tatusova et al., 2016). Prokka is a very fast genome 
annotation pipeline. Its core concept is that some databases or 
tools provide better or more information than others. Once a 
gene is annotated with a positive “hit” to a good database, there 
is no need to perform additional searches. DFAST adds to this 
approach by using a faster similarity search tool (ghostx). It 
infers orthology assignments based on reciprocal-best-blast-
hits between the query genome and a larger set of reference 
genomes, potentially including user-added custom reference 
genomes. It is thus especially useful to transfer annotations from 
a well-annotated reference genome. PGAP is used by the NCBI 
to annotate submitted whole genome sequences. It combines 
sophisticated gene prediction algorithms with gene assignments 
to its set of prokaryotic protein clusters (Klimke et al., 2009). 
As an institutional “gold standard” annotation, it emphasizes 
annotation standards and conventions, quality control, and due 
diligence during execution.

Here, we present MetaErg, an extendable standalone 
annotation pipeline developed for metagenome-assembled 
genomes (MAGs). Genome-centric metagenome data provides 
three major challenges. The first is that assembly quality can 
be relatively poor, and some contamination of MAGs with 
“foreign” genes can be expected. This challenge is addressed 
by performing fast similarity searches against a much larger 
database than would be needed to simply infer functions, to 

classify each gene taxonomically. This enables detection of 
potentially artefactual, hybrid bins or contigs. The second is 
that the user will likely need to make sense of many annotated 
genomes simultaneously. This challenge is addressed by 
visualizing and summarizing data, to enable quick inferences 
about encoded biological functions and pathways. The third 
is that, for many environmental microorganisms, meaningful/
close reference genomes are not yet available. This challenge 
is addressed by always providing comprehensive information 
about each gene, derived from different tools and databases, to 
assign functions as well as practically possible for genes with low 
similarity to reference genes.

MATERIALS AND METHODS

Program Implementation Overview
MetaErg is an integrated and fully automated pipeline for 
annotating metagenome-assembled contigs. It integrates a 
number of open-source tools and its modular design allows 
for flexible workflows, addition of new functions, and easy 
refactoring. MetaErg’s implementation consists of five main 
modules (Figure 1), including a command-line interface, an 
input data preprocessing module for filtering and formatting 
input DNA sequences, a structural annotation module for 
predicting biological features and elements, a function annotation 
module for inferring gene functions and classifying rRNA genes 
and ORFs to taxonomic lineages, and a presentation module for 
presenting annotation results in various summary reports and 
for visualization using HTML and JavaScript.

Command Line Interface
MetaErg is a command line program, designed to run on a 
Linux server or cluster. It accepts a preassembled FASTA format 
DNA sequence file as the minimum required input. The default 
values for the optional parameters in the pipeline are optimized 
for metagenome analysis. Through a command-line interface, 
experienced users can interact with the program to customize 
the gene prediction and database searching parameters, enable or 
disable certain tools and functions, setup data filtering thresholds, 
and specify an output directory.

Sequence Data Preprocessing
Every input DNA sequence is inspected, validated, and 
reformatted before annotation. The sequence identifiers in 
the input file must be unique; otherwise, the input file will be 
rejected, and the annotation process will be terminated. Any 
ambiguous nucleotides in the input sequence file are replaced by 
N. Gaps (-) and pads (*) are removed. Sequences shorter than a 
user defined minimum length are removed.

Structural Annotation
MetaErg begins biological feature and element prediction by 
identifying CRISPR elements and noncoding RNA genes (tRNA, 
rRNA genes). Next, to avoid identification of artefactual protein 
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coding genes overlapping with detected noncoding features, 
MetaErg masks these features by replacing them with Ns. Next, 
protein encoding genes are predicted. Figure 1 shows the 
MetaErg workflow.

The identification of CRISPR elements is achieved using 
MinCED (Skennerton, 2016) with default parameters. tRNA 
genes are predicted with the ARAGORN program (Laslett and 
Canback, 2004).

Ribosomal RNA genes (5S, 5.8S, 16S, 18S, 23S, 28S) are 
identified and classified using rRNAFinder, an in-house tool 
package, which is included in the MetaErg release. rRNAFinder 
uses nhmmer (Wheeler and Eddy, 2013) to query locally built 
rRNA HMM profiles against the input contig sequences for 
detecting rRNA genes on the contigs. To build the rRNA 
HMM profiles, the “rfam.seed.gz” file was downloaded from 
the Rfam database (Kalvari et al., 2018). The FASTA-formatted 
rRNA gene alignments were extracted and written to separate 
files for each of the three domains of life (Bacteria, Archaea, 
Eukaryota), respectively. The alignment files for each domain 
were then used by the hmmbuild program in HMMER (Eddy, 
2011) to create an rRNA gene HMM profile for the domain. 
Because a metagenome may contain rRNA sequences from 
all domains of life, in “metagenome” mode, rRNAFinder uses 
HMM models from all three domains of life. When multiple 
models yield hits to the same region, rRNAFinder outputs 
only the result of the model with the lowest E-value. When 
the E-value is the same for multiple hits, all best scoring 
predictions are kept. rRNAFinder uses blastn (Altschul et al., 
1990) for classification of detected rRNA genes using the full-
length SILVA SSU and LSU database (Quast et al., 2012). The 
standalone rRNAFinder tool is also freely available at https://
github.com/xiaoli-dong/rRNAFinder.

Protein coding genes (ORFs) are predicted using Prodigal 
(Hyatt et al., 2010). ORFs shorter than 180 nucleotides are 
excluded from further analysis by default.

Functional and Taxonomic Annotation
Metagenome functional annotation is very similar to genomic 
annotation and relies on comparisons of predicted genes with 
existing, previously annotated sequences. The goal is to propagate 
accurate annotations to correctly identified orthologs (Kunin 
et al., 2008).

Firstly, predicted ORFs are run through motif prediction tools. 
SignalP 5.0 (Armenteros et al., 2019) is run on all ORFs to predict 
the presence and absence of signal peptides and the location of their 
cleavage sites within an ORF. TMHMM (Krogh et al., 2001) is run 
on all ORFs to detect the transmembrane helices.

MetaErg uses profile HMMs and blast-based searches to detect 
similarity. All ORFs are searched against different databases. 
All search results are combined to associate query genes with 
functional categories, protein domains, KEGG Orthology (KO) 
terms, Gene Ontology (GO) terms, Enzyme Commission (EC) 
numbers, and metabolic potentials and traits. In brief, ORFs are 
searched with HMMs from Pfam-A (Finn et al., 2014), TIGRFAM 
(Haft et al., 2013), FOAM (Prestat et al., 2014), Metabolic-hmm 
(Anantharaman et al., 2016), and casgenes.hmm (Burstein et al., 
2016) using the hmmsearch tool. ORFs are also searched against 
the SwissProt (BBairoch and Apweiler, 2000) database using 
DIAMOND (Buchfink et al., 2014). ORFs without any search 
outcomes are annotated as “hypothetical protein”.

MinPath (Minimal set of Pathways) was used to reconstruct 
metabolic pathways. MinPath minimizes parsimony and yields 
a conservative estimate of the biological pathways present in 
a query dataset (Ye and Doak, 2009). MetaErg uses MinPath 

FIGURE 1 | MetaErg annotation workflow. The input file to MetaErg is a FASTA file that contains the assembled contigs.
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to predict KEGG (Kanehisa and Goto, 2000) and MetaCyc 
(Karp et al., 2002) pathways. For predicting the minimal set of 
KEGG pathways that still explains the presence of the detected 
functional genes, an ORF-identifier-to-KO-number-mapping-
file is provided as the input to MinPath. For inferring the list of 
MetaCyc pathways, an ORF-identifier-to-EC-number-mapping-
file is provided as the input to MinPath. The mapping files are 
derived from the blast searches of the ORFs against the Swiss-
Prot databases, as well as HMM searches against the FOAM and 
the TIGRFAMs database.

MetaErg classifies all ORFs based on best DIAMOND hits 
against a custom database, GenomeDB. To build GenomeDB, 
the Genome Taxonomy Database (GTDB) gtdbtk_r89_data.
tar.gz (Parks et al., 2018) was downloaded from https://data.
ace.uq.edu.au/public/gtdb/data/releases/release89/89.0/. Each 
genome included in GTDB was checked for presence in the 
NCBI RefSeq database. If present, the FASTA-formatted protein 
files were downloaded. Otherwise, the ORFs for the genome 
were predicted using Prodigal. The downloaded and locally 
predicted ORFs inherited their taxonomy from GTDB. To the 
GTDB data, only associated with Bacteria and Archaea, we 
added Eukaryota and viral data, by downloading the available 
NCBI RefSeq protein sequences of unicellular protozoa, fungi, 
plants (excluding Embryophyta), and viruses. The taxonomy 
of those proteins in GenomeDB was inherited from the NCBI 
records. For that, we inspected the assembly_summary.txt file, 
present in each NCBI RefSeq subdirectory (ftp://ftp.ncbi.nlm.
nih.gov/genomes/refseq/), which associates each assembled 
genome with a “ftp_path” and a “species_taxid”. We retrieved the 
protein sequences of each available Eukaryote or viral genome 
by following “ftp_path”. The taxonomy of the protein sequences 
was obtained via “species_taxid”. This process was automated in a 
Perl script, enabling periodical updating of the database.

With a user-supplied coverage file generated by mapping 
reads from each sample to the assembled contig sequences, 
MetaErg quantifies the relative abundance of organisms, 
functions, metabolic processes, and pathways in each sample 
by tracking the number of reads that map to each gene family 
or orthologous group. The coverage file, generated using “jgi_
summarize_bam_contig_depths” from MetaBat (Kang et al., 
2015), is a tab delimited text file and the example coverage 
file is available at https://github.com/xiaoli-dong/metaerg/
blob/master/example/demo.depth.txt. With a user-supplied 
metaproteomics spectral count file, MetaErg quantifies the 
abundance (in the proteome) of each taxon, function, metabolic 
process, and pathway based on expressed genes included in 
the spectral counts file for each sample. The spectral count file 
is a tab-delimited text file. The first column of the file is the 
gene id and all the columns after are the normalized protein 
expression level. The example metaproteomics spectral count 
file is available at https://github.com/xiaoli-dong/metaerg/
blob/master/example/demo.plevel.txt.

Output and Visualization
MetaErg reports annotations at the individual gene, single 
genome, and community level. For each gene, it reports the 

taxonomic classification and functional annotations, GO terms, 
EC numbers, KO terms, and its association with a metabolic 
pathway. At the community or genome level, MetaErg 
presents the taxonomic composition, protein function profiles, 
metabolic process profiles, and metabolic pathway profiles. A 
MetaErg output demo page is available at https://xiaoli-dong.
github.io/metaerg/

To facilitate the exploration of complex metagenome 
annotation results and make sense of the data, MetaErg’s 
annotation reports are presented in various formats. The HTML 
result page (Figure 2) visually brings together text summaries, 
output data files, and accompanying visualizations. The 
interactive sortable and searchable gene, function, and profile 
tables, collapsible trees, sunburst hierarchical views of taxonomy 
and functional ontology, and other graphical representations, 
enable the effective interactive exploration, analysis, filtering, and 
intuitive navigation of complex metagenomic data (Figure 3).

The intermediate results, including those from feature 
predictions and similarity searches, are stored as files, which 
could be used to dig deeper into the data and validate the results 
later on. With the intermediate files in place, MetaErg will skip 
the steps used to generate them when the program is restarted 
with the same input parameters. This can greatly reduce the 
computational time when redoing the analysis.

Generation of the Test Dataset
The paired-end Illunima raw reads of three biological replicates 
of a mock community sample (Kleiner et al., 2017, NCBI 
SRA accession numbers ERR1877474, ERR1877474, and 
ERR1877476) were filtered using BBDuk from the BBTools suite 
(Bushnell, 2014). Briefly, each read was screened by reference 
and by kmer for Illumina adapters (options: tbo tpe k = 23 
mink = 11 hdist = 1 ktrim = r) and for Phix (options: k = 31 
hdist = 1) and quality trimmed and filtered (options: qtrim  = 
rl trimq = 15 minlength = 30 entropy = 0.5). After cleaning, 
the remaining reads were merged using BBMerge with default 
settings. The resulting merged single-end reads and unmerged 
paired-end reads from three samples were co-assembled together 
using metaSpades (Nurk et al., 2017) with default settings. After 
assembling, contigs shorter than 500 bp were excluded from 
further analysis.

Mapping of the quality-controlled reads from all three libraries 
back to the assembled contigs was preformed using BBMap with 
default settings. The depth coverage file “depth.txt” was generated 
using “jgi_summarize_bam_contig_depths” from MetaBat.

RESULTS

To test MetaErg and determine the computational footprint, 
a MetaErg job was submitted to a Linux cluster node (56 
threads, 256 GB RAM) with the assembled contigs from a mock 
community as the input. The mock community consisted of 
25 species of Bacteria, 1 Archaeon, 1 Eukaryote, and 5 phages 
(Kleiner et al., 2017). Assembly with MetaSpades resulted in 
4,576 contigs (N50 126,358 base pairs, 85,113,339 base pairs 
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FIGURE 2 | MetaErg HTML result page visually links extensive analysis text summaries, result data files, and accompanying visualizations together.
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total). The MetaErg job took 2.12 h to complete. The total CPU 
time needed was 50.5 h. When prediction of signal peptides 
and transmembrane helixes was included (with options “–sp –
tm”), the run time and CPU time increased to 3.7 and 56.2 h, 

respectively. The average memory usage was 3 GB with peaks up 
to 9.5 GB. The total disk space used for the analysis including the 
intermediate files was 6.1 GB and the total disk space used for the 
final results was 482 MB.

FIGURE 3 | A screenshot montage of MetaErg output showing an example of the interactive Pfam annotation profile table, a hierarchical metabolic process 
sunburst view, a taxonomic summary tree view, and a KEGG pathway map. In the KEGG pathway map, the KOs presented in the analyzed dataset 
were highlighted.
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The overall metagenome annotation predicted 20 CRISPR 
arrays, 878 tRNA genes, 70 rRNA genes (16S, 18S, 23S, 28S, 5S, 
5.8S rRNA genes), and 80,407 ORFs. Of these, 48,723, 68,578, 
22,001, 25,184, 475, and 437 ORFs were annotated with SwissProt, 
Pfam, TIGRFAM, FOAM, metabolic hmm, and casgene.hmm 
databases, respectively. Signal peptides were predicted for 1,480 
ORFs and transmembrane helices were predicted for 18,766 
ORFs. The relative abundances of taxa, functions, and pathways 
were nearly identical across all three biological replicates of the 
mock community.

MetaBat binning of the contigs with default parameters 
produced 14 useful MAGs (>70% completeness, <5% 

contamination). MetaBat binned relatively few MAGs for this 
dataset, because the three available read sets were from replicate 
samples and were not useful for differential coverage based 
binning. The annotations for each MAG were extracted directly 
from the overall annotations using MetaErg’s utility scripts. The 
phylogenetic affiliations of MAGs were estimated according to 
the taxon assignments of ORFs and rRNA genes in the MAGs 
and visualized in the interactive HTML trees and sunburst 
hierarchical views. The HTML visualizations can help users 
visually validate the binning outcomes and identify chimeric 
MAGs or contamination with genes from other community 
members (Figure 4). Each gene from each MAG was assigned 

FIGURE 4 | Taxonomy in hierarchical sunburst view. Each taxonomic rank is represented by one ring with the innermost circle representing the kingdom. From the 
inner to outer rings, the rings represent kingdom, phylum, class, order, family, genus, and species. The segmented areas on the ring are proportional to the relative 
abundance of the taxon. (A) Overall taxonomic distribution profile from all ORFs, which provides insight into the community taxonomic distribution as a whole;  
(B) An example of chimeric MAG, displaying contamination, and this MAG was 99.42% complete and 97.14% contaminated, as assessed by CheckM. The taxon 
classification profile was based on ORF taxonomic assignment from the MAG; (C) and (D) Examples of uncontaminated MAGs.
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comprehensive information derived from different resources 
with different tools (Table 1).

DISCUSSION

With MetaErg, we provide a standalone and fully automated 
metagenome and metaproteome annotation pipeline. Compared 
to other standalone annotation pipelines, such as Prokka 
(Seemann, 2014) and DFAST-core (Tanizawa et al., 2018), 
MetaErg requires much more time to run and requires more 
computational resources. However, these extra resources result 
in more comprehensive annotation and visualization. Taxonomic 
classification of each gene, provided by MetaErg, enables detection 
of potential assembly or binning artifacts, as shown in Figure 4. 
More comprehensive annotation enables better inferences about 
gene function for genes that are more dissimilar to validated 
reference genes. High level visualization of pathways, and 
integration of expression data, enables more effective navigation 

of the full complexity of a metagenome. Thus, MetaErg provides 
solutions to challenges specific to metagenomes, which come at 
a computational cost.

Annotations are generated and visualized for the complete 
metagenome, as well as for each individual MAG. Depending 
on the research question, users can opt to only annotate a few 
selected MAGs. Alternatively, they could annotate the entire 
metagenome first and then use one of MetaErg’s utility scripts 
to extract annotations for each individual MAG. While the 
annotation of the complete metagenome provides insight into a 
community’s taxonomic composition and metabolic potential, 
analysis of an individual MAG presents this information for a 
single organism or population.

Because of the size and density of information in metagenome 
analysis, exploration of the data presents an overwhelming task 
that often takes many years to complete (Devlin et al., 2018). To 
address that challenge, MetaErg produces annotation summary 
results in various formats. The interactive HTML interface brings 
all annotation results together in sortable and searchable tables, 
collapsible trees, and other graphic representations, enabling 
intuitive navigation of complex data.

With typically massive metagenomic data, similarity-based 
functional analysis approaches usually suffer from excessive 
computation time. To address that, DIAMOND is used instead 
of BLASTP. Diamond is 500 to 20,000 times faster than Blast 
search tools with a similar degree of sensitivity. To overcome 
the computational bottleneck and to speed up the functional 
annotation process, the most time-consuming steps such as 
database searching in MetaErg are parallelized. Therefore, they 
run effectively on multicore processors.

Due to the high diversity and large proportion of 
uncharacterized microbial taxa in most environmental habitats, 
many microorganisms from environmental samples have no 
close reference genomes available. While a blast-like tool can 
quickly identify very similar genes, more distantly related genes 
can be missed. A profile HMM-based strategy is better at finding 
more divergent matches and gains sensitivity by incorporating 
position-specific information into the alignment process and 
by quantifying variation at each sequence position (Skewes-
Cox et al., 2014). MetaErg relies on both Blast and HMM 
databases (PFAM, TIGRAMs, Metabolic-hmm, casgenes.hmm, 
and FOAM). FOAM is a manually curated HMM database for 
identifying functional genes in environmental metagenomes and 
transcriptomes. Because FOAM was last updated in 2014, we 
are implementing the addition of UniRef as an alternative, for 
the next release of MetaErg. Gene annotations such as the EC 
number and KO number, currently provided by FOAM, could be 
retrieved from UniRef instead.

SignalP and TMHMM are established signal peptide and 
transmembrane helix prediction tools. Phobius (Kall et al., 
2004) is a combined transmembrane topology and signal 
peptide predictor. Phobius runs faster on the same dataset than 
SignalP and TMHMM. However, running Phobius on a 64-bit 
Linux system requires manually changing its source code before 
running, due to problems with the included decodeanhmm 
program. For that reason, we did not select Phobius as a 
dependency for MetaErg.

TABLE 1 | An example showing information associated with each protein coding 
gene after MetaErg analysis.

TAG Value

ID mockEvenCell|17112
contigid NODE_27_length_371703_cov_24.485093
allec_ids 7.1.1.-; 1.8.4.8
allko_ids K00390; K00338;
allko_ontology L1:18_Sulfur compounds metabolism;L2:Sulfur 

compounds cycle;L3:Sulfate reduction (assimilatory);L4:;
depth 82.0316;
foam_ecs 1.8.4.8;
foam_kos K00390;
foam_target db:FOAM-hmm_rel1a.hmm|HMMsoil748 63 117 

evalue:2.5e-13 qcov:30.55 identity:40.00 score:41.9 
seqT:47.9 name:KO:K00390_1.8.4.8;

genomedb_oc d__Bacteria;p__Proteobacteria;c__
Gammaproteobacteria;o__Betaproteobacteriales;f__
Burkholderiaceae;g__Cupriavidus;

genomedb_target db:genomedb|GCA_900185755.1|FYAX01000037.1_317 
1 163 evalue:1.4e-89 qcov:100.00 identity:100.00;

pfam_desc 4Fe-4S binding domain;
pfam_id Fer4;
pfam_target db:Pfam-A.hmm|PF00037.27 61 80 evalue:2e-07 

qcov:12.22 identity:55.00 score:24.1 seqT:53.6 
name:Fer4; db:Pfam-A.hmm|PF00037.27 97 118 
evalue:5.5e-11 qcov:13.44 identity:63.64 score:35.4 
seqT:53.6 name:Fer4;

sport_desc NADH-quinone oxidoreductase subunit I;
sprot_ec 7.1.1.-;
sport_go GO:0005886;GO:0051539;GO:0005506;GO:0050136

;GO:0048038;
sport_kos K00338;
sport_target db:uniprot_sprot|sp|Q1LPV5|NUOI_CUPMC 1 163 

evalue:4.1e-65 qcov:100.00 identity:100.00;
tigrfam_go GO:0050136;GO:0055114;
tigrfam_desc NADH-quinone oxidoreductase, chain I;
tigrfam_id NuoI;
tigrfam_mainrole Energy metabolism;
tigrfam_sub1role Electron transport;
tigrfam_target db:TIGRFAMs.hmm|TIGR01971 20 141 evalue:2.1e-48 

qcov:73.93 identity:52.46 score:152.8 seqT:153.0 
name:TIGR01971;
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Taxonomic classification of genes by similarity searches can 
be misleading because of the uneven representation of taxa 
in databases. This can lead to a bias towards highly sampled 
taxa (Kunin et al., 2008). In addition, with the growing size of 
the databases, searching all available sequence information 
becomes computationally challenging. To partially overcome 
this challenge and improve the classification of uncultured 
organisms, MetaErg classification databases were built based on 
GTDB, which provides a more even sampling across Bacteria and 
Archaea. Because microbial communities usually also comprise 
Eukaryotes and viruses, we have also added protein sequences 
of unicellular protozoa, fungi, plants (excluding Embryophyta), 
and viruses. Because MetaErg currently uses Prodigal for gene 
prediction, it is unable to correctly predict protein sequences 
of Eukaryotes. We are currently working on implementing 
workflows for better predictions of eukaryotic coding sequences, 
which will become part of the next version of MetaErg. Likewise, 
effective identification and analysis of viral contigs is currently 
still lacking and will become part of the next version.

Although advances in metagenomics have enabled a better 
understanding of microbial phylogenetic and functional gene 
compositions in microbiomes, it is also desirable to know which 
genes are actually expressed. This could be visualized based 
on transcriptomics or proteomics data (White et al., 2016). 
Currently, MetaErg enables visualization of expression based on 
proteomics data only. Visualization of transcriptomics data is 
planned for a future release.

In conclusion, MetaErg is an easy to use and robust metagenome 
analysis pipeline. It produces comprehensive analysis reports in 
various formats. The interactive visualizations help to ease the 
challenge in interpreting complex analysis results. MetaErg 
is fully open source and portable, available as a docker image, 
designed to run on moderately sized computational clusters. Its 

modular architecture enables addition of new functions. In the 
future, MetaErg will be expanded by adding new functionality 
focusing on identification and annotation of eukaryotic and 
viral MAGs, annotation and discovery of gene clusters encoding 
production of secondary metabolites, and visualization of 
transcriptomic data.
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