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Folate (vitamin B9) is a common name for a group of coenzymes that function as carriers 
of chemical moieties called one-carbon groups in numerous biochemical reactions. The 
combination of these folate-dependent reactions constitutes one-carbon metabolism, the 
name synonymous to folate metabolism. Folate coenzymes and associated metabolic 
pathways are vital for cellular homeostasis due to their key roles in nucleic acid biosynthesis, 
DNA repair, methylation processes, amino acid biogenesis, and energy balance. Folate 
is an essential nutrient because humans are unable to synthesize this coenzyme and 
must obtain it from the diet. Insufficient folate intake can ultimately increase risk of certain 
diseases, most notably neural tube defects. More than 20 enzymes are known to participate 
in folate metabolism. Single-nucleotide polymorphisms (SNPs) in genes encoding for 
folate enzymes are associated with altered metabolism, changes in DNA methylation 
and modified risk for the development of human pathologies including cardiovascular 
diseases, birth defects, and cancer. ALDH1L1, one of the folate-metabolizing enzymes, 
serves a regulatory function in folate metabolism restricting the flux of one-carbon groups 
through biosynthetic processes. Numerous studies have established that ALDH1L1 
is often silenced or strongly down-regulated in cancers. The loss of ALDH1L1 protein 
positively correlates with the occurrence of malignant tumors and tumor aggressiveness, 
hence the enzyme is viewed as a candidate tumor suppressor. ALDH1L1 has much 
higher frequency of non-synonymous exonic SNPs than most other genes for folate 
enzymes. Common SNPs at the polymorphic loci rs3796191, rs2886059, rs9282691, 
rs2276724, rs1127717, and rs4646750 in ALDH1L1 exons characterize more than 97% 
of Europeans while additional common variants are found in other ethnic populations. 
The effects of these SNPs on the enzyme is not clear but studies indicate that some 
coding and non-coding ALDH1L1 SNPs are associated with altered risk of certain cancer 
types and it is also likely that specific haplotypes define the metabolic response to dietary 
folate. This review discusses the role of ALDH1L1 in folate metabolism and etiology of 
diseases with the focus on non-synonymous coding ALDH1L1 SNPs and their effects on 
the enzyme structure/function, metabolic role and association with cancer.
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iNTRODUCTiON: FOLATe MeTABOLiSM 
AND CeLLULAR HOMeOSTASiS

Folate (vitamin B9) is a common name for a group of coenzymes that 
function as carriers of chemical moieties called one-carbon groups 
(OCGs) in numerous biochemical reactions. The combination 
of these folate-dependent reactions constitutes one-carbon 
metabolism, the name synonymous to folate metabolism. The 
intracellular folate pool consists of several major coenzyme forms, 
including tetrahydrofolate (THF) and its derivatives differing by the 
oxidation state of conjugated OCG (Fox and Stover, 2008; Tibbetts 
and Appling, 2010). Folate coenzymes and associated metabolic 
pathways are vital for cellular homeostasis due to their key roles 
in nucleic acid biosynthesis, DNA repair, methylation processes, 
amino acid biogenesis, and energy balance (Blom et al., 2006; 
Fox and Stover, 2008; Tibbetts and Appling, 2010; Locasale, 2013; 
Fan et al., 2014; Ducker and Rabinowitz, 2017). Folate-dependent 
biochemical reactions underlying these processes include de novo 
purine and TMP biosynthesis, re-methylation of homocysteine 
to methionine linked to the production of the universal methyl 
donor S-adenosylmethionine, degradation of histidine and 
glycine, interconversion of serine and glycine, and the final step 
of carbon oxidation to CO2 linked with NADPH production 
(Tibbetts and Appling, 2010; Fan et al., 2014; Baggott and Tamura, 
2015; Brosnan et al., 2015). Additional folate-dependent pathways 
include the clearance of formate (Brosnan et al., 2015) and the 
formylation of mitochondrial methionyl-tRNA, a process essential 
for translation initiation in eukaryotic mitochondria (Spencer 
and Spremulli, 2004; Tucker et al., 2011; Minton et al., 2018). 
Interestingly, a recent paper reported the direct involvement of 
one of folate coenzymes, 5,10-methylene-THF, in the methylation 
of mitochondrial tRNAs with the deficiency of this pathway likely 
being linked to defective oxidative phosphorylation in human cells 
(Morscher et al., 2018). This discovery not only extends the list of 
folate-dependent biochemical reactions and further underscores 
the indispensable role of the coenzyme but also emphasizes that 
precise molecular mechanisms underlying folate homeostasis are 
not completely understood.

Folate is an essential nutrient because humans are unable 
to synthesize this coenzyme and must obtain it from the diet 
(Cooper, 1986). Insufficient folate intake ultimately leads to 
deregulation of cellular homeostasis and is associated with 
increased risk of certain diseases, most notably neural tube 
defects (NTDs) (Rock et al., 2000; Fleming, 2001; Mitchell 
et al., 2004; Moat et  al., 2004; Beaudin and Stover, 2007; 
Strickland et al., 2013; Newman and Maddocks, 2017). For 
example, periconceptional folate supplementation, in addition 
to preventing NTDs, has been associated with a significant 
reduction in the incidence of early spontaneous preterm births 
(Bukowski et al., 2009). Largely for NTD prevention, the FDA in 
1996 approved a mandatory fortification of several types of grain 
foods in the US with a synthetic form of the vitamin, folic acid 
(FDA, 1996). The fortification resulted not only in a significant 
reduction of the incidence of NTDs in the US (Blom et al., 2006), 
but also improved folate status in the adult population (Jacques 
et al., 1999).

FOLATe eNZYMeS, SiNGLe-NUCLeOTiDe 
POLYMORPHiSMS AND DiSeASeS

More than 20 enzymes are known to participate in folate 
metabolism (Figure 1) (Fox and Stover, 2008; Tibbetts and 
Appling, 2010). They bring OCGs into folate pool, interconvert 
folate coenzymes, or use OCGs in biosynthetic reactions 
(Tibbetts and Appling, 2010). Of note, folate enzymes are 
highly compartmentalized in the cell, being localized to 
either cytoplasm or mitochondria (Tibbetts and Appling, 
2010). Several cytoplasmic folate enzymes can also translocate 
to the nucleus to enable TMP biosynthesis at specific sites 
(MacFarlane et al., 2011; Anderson et al., 2012; Field et al., 2014; 
Field et al., 2015). The nucleus and cytoplasm exchange folate 
through a simple diffusion, but the mitochondrial membrane 
is not permeable to folate and shuttling requires a special 
transporter (Titus and Moran, 2000). Thus, mitochondrial 
folate metabolism is distinct from cytosolic and uses its own 
set of enzymes (Tibbetts and Appling, 2010). Several folate 
reactions in mitochondria parallel those in the cytoplasm; these 
are catalyzed by homologous enzymes which are products of 
different genes (Tibbetts and Appling, 2010; Strickland et al., 
2011). Folate mitochondrial pathways (i) provide one-carbon 
groups (in the form of formate) for the cytosolic folate pool, 
where they are utilized for biosynthetic reactions (Tibbetts and 
Appling, 2010); (ii) generate NADPH (Fan et al., 2014), or (iii) 

FiGURe 1 | Numbers of common and rare haplotype alleles in genes of 
folate metabolism (human genome assembly GRCh37/hg19; rare haplotypes 
have frequency below 1%). *, GNMT is the enzyme regulated by folate. Red 
box indicates four enzymes of the mitochondrial glycine cleavage system, 
#, the folate dependent enzyme in glycine cleavage. Haplotypes were 
analyzed using UCSC Genome Browser (https://genome.ucsc.edu).
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serve specific mitochondrial functions (Tucker et al., 2011; 
Morscher et al., 2018; Tani et al., 2018).

Changes in folate metabolism contribute to human 
pathologies (Stover, 2009), and recent studies underscore the 
role of several folate enzymes and associated pathways in NTDs 
and cancer (Jain et al., 2012; Narisawa et al., 2012; Momb et al., 
2013; Nilsson et al., 2014; Pai et al., 2015; Piskounova et al., 
2015; Ducker et al., 2016; Leung et al., 2017). Alterations in 
expression or activity of numerous enzymes of folate pathways 
can either enhance or impair folate metabolism. For example, 
the increased demand for nucleotides and methylation 
reactions in cancer cells commonly causes enhanced 
expression of folate enzymes to maintain the flux of folate-
bound OCGs towards biosynthesis, thus supporting increased 
proliferation (Jain et al., 2012; Ducker and Rabinowitz, 2017; 
Rosenzweig et al., 2018). Accordingly, several of these enzymes 
were successfully targeted in cancer chemotherapy (Goldman 
et al., 2010; Visentin et al., 2012). Further links between the 
function of folate enzymes and onset of diseases have been 
clarified in studies using knockout mouse models. Thus, the 
loss of either MTHFD1L or the folate-dependent glycine 
cleavage (both localized to mitochondria) causes NTDs in 
mice (Momb et al., 2013; Pai et al., 2015). Another example 
is the knockout of folate-regulatory enzyme GNMT: the loss 
of this protein produces spontaneous tumors in the mouse 
liver (Martinez-Chantar et al., 2008). It has been also reported 
that the deficiency in the 10-formyl-THF synthetase activity 
of cytosolic trifunctional enzyme MTHFD1 is associated 
with increased incidence of congenital heart defects in 
mouse embryos (Christensen et al., 2015). Numerous studies 
also indicate strong gene-nutrient interactions in the folate 
metabolism regulation. For example, the loss of SHMT1 was 
insufficient to produce NTDs but caused exencephaly under 
conditions of maternal folate deficiency (Beaudin et al., 2011; 
Beaudin et al., 2012).

Single-nucleotide polymorphisms (SNPs) in genes 
encoding folate enzymes are associated with altered 
metabolism, changes in DNA methylation and modified 
risk for the development of human pathologies [reviewed in 
(Stover, 2011)] including cardiovascular diseases (Klerk et al., 
2002), birth defects (Ou et al., 1996; Mills et al., 1999), and 
cancer (Sharp and Little, 2004; Lightfoot et al., 2010). The most 
investigated target in these studies was MTHFR (methylene-
THF reductase) (Ueland et al., 2001; Hirschhorn et al., 2002; 
Klerk et al., 2002), which has two common SNPs in the coding 
region causing non-synonymous amino acid substitutions 
and creating enzyme variants with reduced activity (Frosst 
et al., 1995; Weisberg et al., 1998). Numerous SNPs in other 
key genes of folate pathways, including DHFR (dihydrofolate 
reductase) (Mishra et al., 2007), MTR (methionine synthase) 
(Harmon et al., 1999; Ma et al., 1999), TYMS (thymidylate 
synthase) (Pullarkat et al., 2001), and MTRR (methionine 
synthase reductase) (Wilson et al., 1999; Gaughan et al., 2001) 
were linked to human diseases. Of note, the effect of folate 
pathway gene polymorphisms on disease risk often depends 
on folate status (Friso et al., 2002; Ulrich et al., 2002; Philip 
et al., 2015).

ALDH1L1 FOLATe ReGULATORY eNZYMe

ALDH1L1, one of the folate-metabolizing enzymes, converts 
10-formyl-THF to THF with simultaneous production of 
NADPH from NADP+ (Krupenko, 2009). By oxidizing the 
formyl group to CO2, this reaction clears the OCG from the cell, 
thus restricting flux through biosynthetic processes (Figure  2). 
In this way, ALDH1L1 regulates one-carbon metabolism and 
serves a catabolic function (Krupenko and Oleinik, 2002; 
Anguera et al., 2006; Krupenko, 2009). ALDH1L1 is active as a 
tetramer and has a complex structure and catalytic mechanism 
(Figure 3). The ALDH1L1 gene originated from a natural fusion 
of three unrelated primordial genes (Strickland et al., 2011; 
Krupenko et al., 2015), and the resulting protein has a modular 
organization with three structurally and functionally distinct 
domains (Krupenko, 2009). The N-terminal folate binding/
hydrolase domain structurally resembles methionine-tRNA 
formyltransferase (Schmitt et al., 1996; Chumanevich et al., 
2004) and catalyzes the initial cleavage of the 10-formyl group 
from 10-formyl-THF (Krupenko et al., 1997a; Chumanevich 
et al., 2004). The C-terminal dehydrogenase domain forms the 
tetrameric core and is a structural and functional homolog of 
aldehyde dehydrogenases (ALDHs) (Krupenko et al., 1997b; 
Tsybovsky et al., 2007) [hence the assignment of ALDH1L1 to this 
superfamily of proteins (Marchitti et al., 2008)]. In humans, there 
are 19 genes encoding for aldehyde dehydrogenases (Marchitti 
et al., 2008; Koppaka et al., 2012). ALDHs catalyze NAD(P)+-
dependent irreversible oxidation of a wide variety of endogenous 
and exogenous aldehydes to corresponding acids, display distinct 
substrate specificity, and are generally regarded as detoxification 
enzymes (Marchitti et al., 2008; Koppaka et al., 2012). The ALDH 
domain of ALDH1L1 shares about 49% of its amino acid sequence 
with ALDH1, has a typical ALDH fold and by itself catalyzes 
the oxidation of short-chain aldehydes to corresponding acid 
using strictly NADP+ (Krupenko, 2009). It is not clear whether 
ALDH1L1 is involved in the utilization of aldehyde substrates in 
vivo. As a part of the ALDH1L1 enzymatic machinery, this domain 
catalyzes the reduction of NADP+ and the oxidation of formyl 
group to CO2 (Krupenko et al., 1997b; Tsybovsky et al., 2007). 
The two catalytic domains communicate via the intermediate 
domain, which is a structural and functional homolog of acyl 
carrier proteins (Donato et al., 2007; Strickland et al., 2010).  

FiGURe 2 | One-carbon groups (derived from amino acid oxidation or 
formate) enter the folate pool and are directed towards three biosynthetic 
pathways (methionine, purines and thymidylate synthesis). Note that the 
enzyme ALDH1L1 diverts these groups from biosynthetic pathways thus 
serving a catabolic function. Input of folate from diet is required to support 
the intracellular levels of the coenzyme. SAM, S-adenosylmethionine.
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Its prosthetic group, 4′-phosphopantetheine (4′-PP), functions 
as a flexible arm reaching into the catalytic centers on the N- 
and C-terminal domains (Horita and Krupenko, 2017) and 
transporting the reaction intermediate (formyl) from one center 
to the other (Figure 3). The three domains of ALDH1L1 work 
in concert to enable the conversion of 10-formyl-THF to THF 
and NADPH production linked to the oxidation of formyl group 
to CO2. Thus, in the case of ALDH1L1 the recruitment of the 
folate-binding domain extended the substrate specificity of an 
aldehyde dehydrogenase. Of note, the ALDH family also includes 
ALDH1L2, the mitochondrial homolog of ALDH1L1 (Krupenko 
et al., 2010), which is the product of a separate gene [one of the 
19 ALDH genes (Marchitti et al., 2008)].

That ALDH1L1 serves a regulatory role was determined by 
several reports that demonstrated the effect of the enzyme on 
folate and purine pools and on methylation (Champion et al., 
1994; Oleinik et al., 2005; Anguera et al., 2006; Oleinik et al., 
2006; Hoeferlin et al., 2011). ALDH1L1 is also a key component 
of the formate degradation pathway, which converts toxic 
formate to neutral CO2, through 10-formyltetrahydrofolate 
as an intermediate (Strickland et al., 2011). In the cell, 

formate is directly produced not only from the degradation of 
3-methyl-branched fatty acids and the shortening of 2-hydroxy 
long chain fatty acids (Casteels et al., 2007) but also from 
the oxidation of methanol present in juices and alcoholic 
beverages (Hang and Woodams, 2010) and from metabolism 
of artificial sweetener aspartame (Choudhary and Pretorius, 
2017). The first step of the formate degradation pathway, the 
incorporation of formate into the folate pool, is catalyzed by 
MTHFD1 and the second rate-limiting step releasing CO2 is 
catalyzed by ALDH1L1 (Neymeyer et al., 1997). It appears 
that the ALDH1L1-dependent pathway is the only pathway in 
humans to metabolize formate, and it is more prominent for the 
clearance of lower, physiological doses of formate (Cook et al., 
2001). In further support of this role, decreased expression of 
ALDH1L1 was observed in cobalamin-deficient rats, likely as a 
mechanism to divert formate towards methyl group production 
(MacMillan et al., 2018). ALDH1L1 was also highlighted as a 
pan-astrocyte marker (Cahoy et al., 2008), but its importance 
for the astrocyte function is not clear. Interestingly, decreased 
levels of ALDH1L1 in cerebrospinal fluid were linked to 
neonatal hydrocephalus in a rat model (Cains et al., 2009). 

FiGURe 3 | Structures of the N-terminal formyltransferase (dark green), central acyl-carrier (red, with manually added phosphopantetheinyl moiety), and C-terminal 
dehydrogenase (blue and gray) domains of ALDH1L1. Green spheres highlight positions of amino acids corresponding to exonic SNPs discussed in the text, other 
colored spheres show positions of 10-formyltetrahydrofolate (N-terminal domain), phosphopantetheine (intermediate domain), and NADP+ (C-terminal domain). 
Subunit A of the tetrameric dehydrogenase domain is blue, subunits B, C, and D are gray. The extended phosphopantetheine is critical to the reaction as both 
the formyl donor (10-formyltetrahydrofolate) and electron acceptor (NADP+) are located at the bottoms of clefts in the protein surface. PDB structures are: 4tt8 
(N-terminal domain); 2cq8 (intermediate domain); and 2o2q (aldehyde dehydrogenase domain).
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Further studies of this model suggested a role for the enzyme 
in cerebral folate transport and regulation of folate availability 
in the brain (Naz et al., 2016; Jimenez et al., 2019). In line with 
such function, it has been also demonstrated that ALDH1L1 
protects folate from degradation in zebrafish embryos, which 
is a defense mechanism against oxidative stress (Chang et al., 
2014; Hsiao et al., 2014). Furthermore, the protective effect of 
ALDH1L1 on THF degradation has been recently observed 
in cancer cells (Zheng et al., 2018). These studies provide 
experimental support for the hypothesis that ALDH1L1 serves 
as folate depot (Krupenko and Krupenko, 2018).

eviDeNCe THAT ALDH1L1 iS A 
CANDiDATe TUMOR SUPPReSSOR

ALDH1L1 is most abundant in liver, kidney and pancreas 
comprising about 1% of total cytosolic protein in hepatocytes 
(Krupenko, 2009). However, it is not a housekeeping gene and 
its expression is tissue-specific with some tissues lacking this 
protein expression (Krupenko and Oleinik, 2002). Furthermore, 
the enzyme is tightly regulated during mouse brain development 
(Anthony and Heintz, 2007) and during the progression of 
NIH3T3 cells through the cell cycle (Khan et al., 2018). In 
both cases, ALDH1L1 protein is dramatically decreased in 
proliferating cells but elevated in non-proliferating/resting cells. 
During mouse brain development, ALDH1L1 expression is likely 
controlled by transcriptional regulation (Anthony and Heintz, 
2007) while in NIH3T3 cells it is rapidly degraded through the 
ubiquitin-proteasome pathway during the transition from G0/
G1 to S-phase (Khan et al., 2018). Because the enzyme limits 
proliferation by diverting OCGs from biosynthetic to catabolic 
pathways, its down-regulation could be one of the mechanisms 
to maintain proliferative state.

In line with its antiproliferative function, ALDH1L1 is often 
silenced or strongly down-regulated in cancer cell lines and 
malignant tumors [reviewed in (Krupenko and Krupenko, 2018; 
Krupenko and Krupenko, 2019)]. This is in strict contrast to other 
folate enzymes, which are commonly up-regulated in cancer (Jain 
et al., 2012; Ducker and Rabinowitz, 2017). Several studies have 
established that the silencing of ALDH1L1 in human cancers is 
driven by gene methylation (Oleinik et al., 2011; Dmitriev et al., 
2012; Senchenko et al., 2013; Dmitriev et al., 2014; Beniaminov 
et al., 2018). Methylation takes place in the CpG island, which 
includes 96 CpG base pairs and covers the promoter, first exon 
and the part of the first intron in ALDH1L1 (Oleinik et al., 2011; 
Beniaminov et al., 2018). Remarkably, a microarray-based global 
gene expression profiling of approximately 42,000 genes has found 
that ALDH1L1 was one of the most down-regulated proteins 
in primary hepatocellular carcinomas and in liver metastases 
(Tackels-Horne et al., 2001). Analysis of gene expression profiles 
across 33 human cancer types using The Cancer Genome Atlas 
(TCGA) data indicated that ALDH1L1 is more strongly down-
regulated in late-stage cancers (Li et al., 2017). Overall, the loss 
of ALDH1L1 protein positively correlates with the occurrence 
of malignant tumors and tumor aggressiveness [reviewed in 
(Krupenko and Krupenko, 2018; Krupenko and Krupenko, 

2019)], hence the suggestion that the enzyme is a candidate 
tumor suppressor (Senchenko et al., 2013).

SNPS iN ALDH1L1 AND THeiR 
ASSOCiATiON wiTH PATHOLOGieS

ALDH1L1 is located on the minus strand of chromosome 3, 
spans about 94 thousand nucleotides and may harbor numerous 
SNPs. Several reports have investigated the functional role of 
some of these SNPs as well as their associations with diseases. 
For example, genome-wide association studies (GWAS) revealed 
that SNPs in ALDH1L1 are associated with serine to glycine 
ratio in serum (Dharuri et al., 2013) thus supporting the role 
of the enzyme as metabolic regulator. Another GWAS analysis 
identified an association between rs1107366, located about 3800 
nucleotides upstream of the ALDH1L1 transcription start site, 
and glycine to serine ratios (Xie et al., 2013). This study also 
indicated that the rs1107366-linked glycine to serine ratio is 
associated with insulin sensitivity but not with type 2 diabetes. 
ALDH1L1 SNPs were also associated with NTDs in Dutch and 
Chinese Han populations (Franke et al., 2009; Wu et al., 2016).

An interesting study evaluated the effect of two intronic 
ALDH1L1 SNPs, rs2276731 and rs2002287, on genome-wide 
DNA methylation as well as site-specific methylation in normal 
breast tissues from healthy women (Song et al., 2016). This study 
identified 57 CpG sites in human genome that were differentially 
methylated depending on SNPs in six genes of folate metabolism. 
The strongest association for differential methylation at these 
sites were with the ALDH1L1 SNPs. Furthermore, rs2276731 
was also associated with a significantly higher global DNA 
methylation as well as with differential methylation of CpGs 
within ALDH1L1 itself. Of note, for both ALDH1L1 SNPs, the 
pattern of differentially methylated sites was different between 
whites and blacks (Song et al., 2016). Importantly, a modifying 
effect on breast cancer incidence of these ALDH1L1 SNPs has 
also been reported (Stevens et al., 2007). Here, however, these 
SNPs have opposite effects: the rs2276731 allele was associated 
with increased risk whereas the rs2002287 allele was associated 
with decreased risk of breast cancer.

The rs2276731 SNP could also have a role in the host-gut 
microbiome interaction. This has been suggested from the 16S 
rRNA-based analysis of the gut microbiome in 1,126 twin pairs, 
which thought to calculate the heritability of specific components 
of the gut microbiota and to find associations between the 
abundance of specific microbes and host gene alleles (Goodrich 
et al., 2016). The study identified an association between the 
host gene ALDH1L1 (via rs2276731) and the bacteria SHA-98 
[unclassified genus of the order SHA-98, phylum Firmicutes 
(Goodrich et al., 2014)]. It further suggested that this association 
is linked to the metabolism of formate (as discussed above, 
ALDH1L1 is a key component of the formate clearance). In 
addition to the sources listed in the previous section, formate is 
also a fermentation product which acts as a major interspecies 
electron carrier promoting syntrophy (Goodrich et al., 2016). 
Of note, it has been shown that urinary formate excretion 
significantly correlated with blood pressure (Holmes et al., 2008). 
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Since a SNP in ALDH1L1 was associated with incident ischemic 
stroke (Williams et al., 2014), the enzyme might link formate 
metabolism with the risk of cardiovascular diseases.

Interestingly, ALDH1L1 has much higher frequency of non-
synonymous exonic SNPs than most other genes for folate enzymes 
(Figure 1). Such SNPs cause amino acid substitutions, could affect 
the enzyme function, and thus could be relevant to the role of 
the enzyme in cancer. Curiously, a highly similar mitochondrial 
homolog, ALDH1L2, which is a product of a separate gene resulted 
from gene duplication (Krupenko et al., 2010; Strickland et al., 
2011; Krupenko et al., 2015), does not have common SNPs (Figure 
1). SNPs in ALDH1L1 are common but their effect on metabolism 
and the etiology of cancer disease is not well understood. Notably, 
the frequency of exonic SNPs in this gene is highly different 
between ethnic populations [Figure 4; analyzed using UCSC 
genome browser (Mangan et al., 2014)]. While common SNPs at 
the polymorphic loci rs3796191, rs2886059, rs9282691, rs2276724, 
rs1127717 and rs4646750 in ALDH1L1 exons characterize more 
than 97% of Europeans, additional common variants are found in 
African, Hispanic, and Chinese populations (Figure 4). Several 
studies indicated that coding SNPs in ALDH1L1 are associated 
with altered risk of certain cancer types. Thus, ALDH1L1 rs1127717 
was associated with the increased risk of hepatocellular carcinoma 
in Chinese population (1500 cancer patients and 1500 controls 
were enrolled in this study) (Zhang et al., 2015). Another SNP, 
rs2276724, could be associated with the post-operative survival 
of patients with hepatitis B-related hepatocellular carcinoma 
(Zhu et al., 2017). This study indicates that the effect of the SNP 
is associated with the expression level of ALDH1L1 mRNA and 
also depends on the p53 status. An elevated risk of non-Hodgkin 
lymphoma (NHL) was observed among carriers of the G allele at 
ALDH1L1 Ex21+31 (p.D793G; rs1127717) (Lee et al., 2007; Lim 
et al., 2007; Suthandiram et al., 2015). Furthermore, the protective 
effect of methionine on NHL was associated with ALDH1L1 
SNPs (Lim et al., 2007; Li et al., 2013) suggesting gene-nutrient 
interactions. Importantly, four exonic SNPs shown in Figure  4 
are associated with leukocyte telomere length (Pusceddu et  al., 

2017), implicating these polymorphisms in cancer (Sarek et al., 
2015; Zhu et al., 2016). Of note, studies investigating ALDH1L1 
SNPs as a risk factor for prostate and renal cancers did not find any 
associations (Stevens et al., 2008; Gibson et al., 2011), which could 
suggest the cancer type-specific role of the SNPs. Additionally, the 
overall effect of ALDH1L1 SNPs is likely ethnicity-specific (Marini 
et al.,  2016; Wu et al., 2016) and could also be modified by the 
folate status.

POTeNTiAL iMPACT OF ALDH1L1  
eXONiC SNPS

The substitution of a single amino acid residue in the protein 
structure, caused by a SNP, could be mute or could cause significant 
alterations in protein properties. For example, one of the exonic 
SNPs in MTHFR, C677T, results in the A222V amino acid change in 
the FAD-binding catalytic domain of the enzyme. This substitution 
produces a less thermostable protein with reduced catalytic activity 
(Frosst et al., 1995). Another common exonic SNP in MTHFR, 
A1298C (Weisberg et al., 1998), exists in strong linkage disequilibrium 
with C677T (Stover, 2011) and results in the E429A enzyme variant. 
The effect on the enzyme activity of this substitution, which is in the 
regulatory domain of the protein, is less clear. Initial report indicated 
that this substitution decreases the enzyme activity though to a lesser 
extent than the A222V substitution (Weisberg et al., 1998). A later 
study of purified recombinant human MTHFR concluded that the 
E429A protein has biochemical properties that are indistinguishable 
from the wild-type enzyme (Yamada et al., 2001). In vivo, however, 
MTHFR is phosphorylated at multiple residues (Yamada et al., 
2005), and both the A222V and E429A mutations are predicted 
to disrupt phosphorylation of neighboring Ser residues (Shahzad 
et al., 2013). Notably, the recently solved crystal structure of human 
MTHFR links the enzyme’s phosphorylation state to its sensitivity to 
inhibition by S-adenosylmethionine (Froese et al., 2018).

Amino acid substitutions associated with common exonic 
ALDH1L1 SNPs are found in each of the functional domains 
(Figures 3 and 4) but their effect on protein properties have not been 
studied. Analysis of the crystal structures of the ALDH1L1 domains 
identifies potential important structural roles for residues mutated 
by these polymorphisms. For example, Ser481 is an α-helix N-cap 
and its side chain makes a hydrogen bond with Gln549 in a different 
subunit, suggesting a role in protein oligomerization and stability. 
Two other residues affected by ALDH1L1 SNPs, Asp793 and Ile812 
(changed to Gly and Val, respectively) are strictly conserved through 
all species. Interestingly, these residues are adjacent on parallel 
β-strands and form backbone hydrogen bonds (Figure 5). This 
can be interpreted as a role in supporting protein conformation 
and stability. Of note, the co-occurrence of both SNPs is not found, 
suggesting that it perhaps would have too damaging a structural 
effect if both residues are changed. Our previous studies indicate 
that point mutations in the ALDH1L1 aldehyde dehydrogenase 
domain can significantly alter the protein conformation, with 
some of them impairing the protein’s stability (Tsybovsky et al., 
2007; Tsybovsky and Krupenko, 2011; Tsybovsky et al., 2013). 
Furthermore, a long-range communication between the aldehyde 
dehydrogenase catalytic center and the NADP+-binding domain, 

FiGURe 4 | Left panel, SNPs in the exonic region causing non-synonymous 
amino acid substitutions are common in ALDH1L1. Right panel, SNP-
associated haplotypes are markedly different between ethnic populations.
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observed previously (Tsybovsky and Krupenko, 2011), could 
transduce the effect of an amino acid substitution to distant domains 
with an unpredictable effect. In line with this notion, the structure of 
MTHFR suggests a long-range influence of S-adenosylmethionine 
binding in the regulatory domain of the enzyme on the catalytic 
domain some 300 amino acids away (Froese et al., 2018).

The SNP rs2886059 produces the V330F substitution in the 
intermediate domain of ALDH1L1, close to the modification 
site where the prosthetic group is attached (Figure 5). This 
substitution introduces a bulky side-chain in the core of the 
intermediate domain helical bundle which could interfere with the 
binding of phosphopantetheine transferase (PPTase) (Bunkoczi 
et al., 2007). PPTase appends the 4′-phosphopantetheinyl moiety 
to a serine in the intermediate domain and converts inactive 
apo-ALDH1L1 into active holo-ALDH1L1 (Strickland et al., 
2010). Conformational changes associated with other SNPs 
could interfere with PPTase binding or hinder the ability of the 
intermediate domain to shuttle reactant between the catalytic 
domains. The SNP rs3796191 creates the L254P amino acid 
substitution in the C-terminal lobe of the N-terminal folate 
binding domain of ALDH1L1. In the structurally homologous 
enzyme, MTFMT, this sub-domain is responsible for the binding 
of methionyl-tRNA (Schmitt et al., 1996) but the role of this part 
of the ALDH1L1 molecule in the enzyme’s function is not clear. 
It perhaps serves to properly align the folate-binding and the 
intermediate domains for the acceptance of the formyl group 
by the 4′-PP arm. Replacement of Leu with Pro will alter and 
restrict backbone conformation and loop flexibility, and perhaps 
cause a misalignment between the N-terminal and intermediate 
domains, impeding access to the folate-binding pocket. In fact, 
the role of this sub-domain for the proper ALDH1L1 function, 
likely through the proper orientation of the functional domains, 
has been demonstrated (Reuland et al., 2006).

Finally, as in the case with MTHFR, coding SNPs can affect 
ALDH1L1 stability and degradation rate. Towards this end, we have 
recently demonstrated that ALDH1L1 can be rapidly degraded 

through the ubiquitin-proteasome pathway (Khan et al., 2018). It 
is known that protein variants associated with non-synonymous 
SNPs can be differently degraded by the ubiquitin-proteasome 
pathway (Siegel et al., 2001; Bandiera et al., 2005). These findings 
raise the question of whether amino acid substitutions caused by 
coding SNPs will affect the ALDH1L1 degradation, which would 
affect the protein function as the proliferation regulator.

CONCLUDiNG ReMARKS

While the phenomenon of ALDH1L1 silencing/down-
regulation in cancer is now well recognized (Krupenko and 

FiGURe 5 | Left panel, D793 and I812 are adjacent on parallel β-strands making backbone hydrogen bonds. Right panel, the structure of a phosphopantetheinyl 
transferase (gray surface) in complex with an ACP (acyl carrier protein) domain (green ribbon) shows that initial modification of the ACP domain serine (spheres) 
requires substantial access to the ACP surface. ACP helices 1 and 2 and the connecting loop lie on the surface of the transferase. The side chain of V330 (yellow 
spheres) packs in the interior of the ACP domain helical bundle. The substitution with Phe (rs2886059) will clash with surrounding residues (dots), likely causing a 
shift of the helix which contacts the transferase domain (gray surface) and interfering with binding.

FiGURe 6 | ALDH1L1 is a main regulator of folate metabolism, and its 
gene is commonly silenced in cancer (the loss of the protein is linked to 
accelerated proliferation and tumor progression); coding SNPs in this gene 
are likely to modify cancer risk.
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Krupenko, 2018; Krupenko and Krupenko, 2019), the effects 
of exonic SNPs on the protein function in tumorigenesis and 
tumor progression are not clear. It is also not known whether this 
gene is involved in tumor initiation or whether its loss provides 
selective advantage for tumor progression at later stages. The 
high prevalence of exonic SNPs causing non-synonymous 
amino acid substitutions in ALDH1L1 raises the question of 
how these SNPs affect cellular metabolism and proliferation 
regulated by ALDH1L1. If ALDH1L1 polymorphic variants 
have altered activity or stability/half-life, they are likely to 
cause the imbalance of intracellular reduced folate pools with 
a consequent effect on de novo purine biosynthesis and amino 
acid metabolism. Overall, ALDH1L1-dependent metabolic 
reprogramming associated with functional exonic SNPs 
could be an important contributor to disease etiology with a 
more profound effect in populations with certain ALDH1L1 
haplotypes (Figure 6). With regard to gene-diet interactions, 
the effect of dietary folate on the ALDH1L1 regulatory role 
is not clear, and the impact of functional SNPs is yet to be 
investigated. The understanding of how haplotype-specific 

effects are modified by folate supplementation could empower 
precision nutrition approach in disease prevention/treatment. 
Finally, since ALDH1L1 is involved in formate clearance, it could 
be an important component of the methanol detoxification 
pathway (Tephly, 1991). In this regard, it will be interesting to 
learn whether individuals with different ALDH1L1 haplotypes 
have a different susceptibility to methanol toxicity.
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