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To address the problem of resistance to paclitaxel treatment, we have investigated to 
which extent is possible to predict Breast Cancer (BC) patient response to this drug. We 
carried out a large-scale tumor-based prediction analysis using data from the US National 
Cancer Institute’s Genomic Data Commons. These data sets comprise the responses of 
BC patients to paclitaxel along with six molecular profiles of their tumors. We assessed 
10 Machine Learning (ML) algorithms on each of these profiles and evaluated the resulting 
60 classifiers on the same BC patients. DNA methylation and miRNA profiles were the 
most informative overall. In combination with these two profiles, ML algorithms selecting 
the smallest subset of molecular features generated the most predictive classifiers: a 
complexity-optimized XGBoost classifier based on CpG island methylation extracted a 
subset of molecular factors relevant to predict paclitaxel response (AUC = 0.74). A CpG 
site methylation-based Decision Tree (DT) combining only 2 of the 22,941 considered 
CpG sites (AUC = 0.89) and a miRNA expression-based DT employing just 4 of the 337 
analyzed mature miRNAs (AUC = 0.72) reveal the molecular types associated to paclitaxel-
sensitive and resistant BC tumors. A literature review shows that features selected by 
these three classifiers have been individually linked to the cytotoxic-drug sensitivities and 
prognosis of BC patients. Our work leads to several molecular signatures, unearthed from 
methylome and miRNome, able to anticipate to some extent which BC tumors respond 
or not to paclitaxel. These results may provide insights to optimize paclitaxel-therapies in 
clinical practice.

Keywords: biomarker discovery, machine learning, artificial intelligence, precision oncology, tumor profiling

INTRODUCTION

Breast cancer (BC) is the most common type of cancer in women worldwide resulting in half a 
million deaths annually (Golubnitschaja et al., 2016). BC is a disease presenting substantial inter-
tumor heterogeneity (Russnes et al., 2011). Cytotoxic drugs are used to eradicate tumor cells, 
to complement surgery or radiotherapy as well as to alleviate cancer symptoms. Paclitaxel is a 
BC-approved cytotoxic drug from the taxane family, which acts by interfering with the normal 
function of microtubules during cell division (Perez, 1998). As with other cancer drugs (Brown 
and Böger-Brown, 1999; Cardoso et al., 2002; Ribeiro et al., 2012; Housman et al., 2014), resistance 
to paclitaxel have been regularly observed in BC patients (Flint et al., 2009; Ajabnoor et al., 2012).
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Precision oncology requires predictors to guide the 
optimization of drug therapies for patients (Peck, 2016; 
Schwartzberg et al., 2017). Indeed, it is now well-established 
that gene polymorphisms and other genomic alterations play 
important roles in the observed heterogeneous response to 
drugs (Wang et al., 2011; Harper and Topol, 2012; Kadra et al., 
2012). This has led to the identification of clinical biomarkers 
of drug response from molecular profiles of the patients’ 
tumors (Huang et al., 2014). These predictive biomarkers now 
guide patient-specific treatment selection during clinical trials 
and are also used in clinical practice (Mandrekar and Sargent, 
2009; Biankin et al., 2015). Most commonly, single-gene 
markers are used to discriminate between therapy responders 
and non-responders (Prahallad et al., 2012; Rodríguez-
Antona and Taron, 2015), typically consisting of an actionable 
mutation (e.g. single-nucleotide variant) of a specific gene in 
the tumor sample.

Single-gene markers that are able to predict the efficacy of 
cytotoxic drugs are rare (Felip and Martinez, 2012), especially 
for taxanes (Murray et al., 2012; Bartlett et al., 2015; Norimura 
et al., 2018). For instance, Marsh et al. (2007) have proposed 
that the point mutation CYP1B1*3 could be an important 
factor that helps to differentiate between sensitive and 
resistant BC patients to paclitaxel. However, Gehrmann et al. 
(2008) have raised doubts about the association between this 
alteration and paclitaxel-treated patient prognosis, concluding 
that CYP1B1 alone is not sufficient to predict tumor response 
to paclitaxel, and that it could interact with still unknown 
factors involved in paclitaxel sensitivity. This is an example 
of inter-patient variability in drug response not being fully 
captured by the mutational status of single gene, as it has also 
been seen in vitro in a range of drugs (Naulaerts et al., 2017).

Machine Learning (ML) can be used to build in silico models 
able to predict tumor response to a given drug by combining 
multiple tumor features in an optimal manner (Libbrecht 
and Noble, 2015; Ali and Aittokallio, 2018). The scarcity 
of suitable clinical data to build such predictors has been a 
major roadblock, which has made predictors based on cancer 
cell line data thrive (Costello et al., 2014; Ding et al., 2016). 
Fortunately, response data from paclitaxel-treated BC patients 
along with comprehensive molecular profiles of their tumors are 
increasingly available. Such datasets represent an opportunity to 
improve our ability to anticipate which BC patients will respond 
to paclitaxel. We obtained them from the recently created 
Genomic Data Commons (GDC) of the US National Cancer 
Institute (NCI) (Jensen et al., 2017). The GDC provides a unified 
data repository enabling data sharing across cancer genomic 
studies in support of precision medicine. The GDC feeds 
from several cancer genome programs at the NCI Center for 
Cancer Genomics, notably The Cancer Genome Atlas (TCGA) 
(Weinstein et al., 2013), and offers a range of information-rich 
genomic, transcriptomic and epigenomic profiles, as well as 
clinical drug response data.

These datasets, however, pose the challenge of being high-
dimensional. Each profile typically contains between hundreds 
and many thousands of features, but only tens of profiled 

tumors of the same cancer type and treated with the same 
drug. For example, a community challenge intended to predict 
drug response employed 53 BC cell lines (Costello et al., 2014), 
while thousands of features from DNA copy-number variation, 
transcript expression, mutations, DNA methylation, and protein 
abundance profiles were considered. In another study (Tripathi 
et al., 2016), predictive models of response to cytotoxic drugs 
were achieved using 60 pancancer cell lines and gene variants 
as features. A further example of predictive drug-sensitivity 
models is a study employing 60 diverse cell lines and protein 
abundances as features (Ma et al., 2006). Small sample sizes are 
not only typical of preclinical studies, but also of clinical studies 
addressing the same problem. For instance, gene expression 
signatures were identified and evaluated using 81 melanoma 
patients to predict their response to PD-1 checkpoint inhibitors 
(Ayers et al., 2017).

In this study, we will investigate whether it is possible to 
anticipate the response of BC patients to paclitaxel using GDC 
data. We also aim at discovering the molecular factors that, 
collectively, best discriminate between paclitaxel-resistant 
and paclitaxel-sensitive BC patients. High-dimensional data 
promotes model overfitting, which in turn results in poorer 
predictions. As predictive performance differences between 
ML algorithms are strongly problem-dependent (Tan and 
Gilbert, 2003; Fernández-Delgado et al., 2014), considering 
a range of algorithms to identify those that are most suitable 
for paclitaxel-treated BC patients is appealing. To this end, 
we apply 10 ML methods to build predictive models in 
combination with each available molecular profile. Some of 
the resulting multi-variate predictors are highly interpretable 
in that they can answer questions such as why this particular 
patient is non-responsive. This information should permit 
formulating hypothesis about the molecular mechanisms of 
BC patient resistance to paclitaxel.

MATERIAl AND METhODs

gDC Data
GDC molecular profiling and clinical data from the TCGA 
Breast Invasive Carcinoma or BRCA (https://portal.gdc.cancer.
gov/projects/TCGA-BRCA) provide the basis for this study. 
Molecular profiles and clinical data come from release version 
4.0, except for miRNA and miRNA isoform (isomiR) expressions 
coming from release version 8.0 (Release Notes - GDC Docs).

TCGA-BRCA project gathers data from 1,098 patients, 
resulting in almost 13,000 files (around 130 GB). These datasets 
were retrieved and downloaded using the GDC Application 
Programming Interface (API). Table S1 reports information 
about files collected from the GDC that have been used to 
generate datasets.

Processing Clinical Data for Modelling
Patient population included primary or secondary advanced 
breast cancer receiving single-agent paclitaxel. For some 
patients it was observed that different drugs have the same or 

Frontiers in Genetics | www.frontiersin.org October 2019 | Volume 10 | Article 1041

https://portal.gdc.cancer.gov/projects/TCGA-BRCA
https://portal.gdc.cancer.gov/projects/TCGA-BRCA
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Paclitaxel Response Predicted With Interpretable ClassifiersBomane et al.

3

very close treatment start and end time. These entries may form 
part of a drug combination. However, available drug response 
annotations do not allow to check this information. Therefore, 
possible effects due to drug combinations are ignored in this 
study when identifying paclitaxel-treated patients. Patients 
with missing paclitaxel response were not retained. To only 
consider baseline tumors’ molecular profiles, patient records 
were only retained if no treatment was administered before 
resection and the time of sample procurement is indicated. 
We assumed that a baseline molecular profile can explain 
drug responses observed in a given patient even if paclitaxel 
was administered at any time after sample resection (Geeleher 
et al., 2014). After these curation steps, 61 paclitaxel-treated 
BC patients with valid records remained (Table S2 reports 
information about treatments and biospecimens). Annotated 
patient responses are divided into four categories based on the 
RECIST standard (Therasse et al., 2000): “Complete Response” 
(CR), “Partial Response” (PR), “Stable Disease” (SD), and 
“Clinical Progressive Disease” (CPD). We further classified 
clinical responses into two categories, namely “responder” (CR 
or PR) and “non-responder” (SD or CPD).

Processing Molecular Profiles for 
Modelling
The GDC works on harmonization of raw genomic data 
developing specific workflows to provide consistent and up-to-
date molecular profiles (GDC Reference Files | NCI Genomic 
Data Commons, Genomic Data Harmonization | NCI Genomic 
Data Commons). Available profiles comprise copy-number 
variation (CNV), DNA methylation, mRNA, miRNA and isomiR 
(Ameres and Zamore, 2013) expressions. In order to produce 
suitable inputs for ML algorithms and/or extract some specific 
information, we processed some of them. More details are 
available in the homonym section of Supplementary Methods. 
All the datasets produced from these molecular profiles are made 
of real-valued features.

Predicting Drug Response Using Ml 
Algorithms With Embedded Feature 
selection
Most classifiers were built with ML algorithms capable of 
embedded feature selection to mitigate the impact of high-
dimensional data on their generalization on unseen data. 
Implementations of Classification And Regression Tree (CART) 
(Breiman et al., 1984) and Random Forest (RF) (Breiman, 2001) 
were taken from the python library Scikit-learn version 0.19.1, 
while the ones of XGBoost (XGB) (Chen and Guestrin, 2016) 
version 0.6 and LightGBM (LGBM) (Ke et al., 2017) version 
2.0.10 were respectively downloaded from https://github.com/
dmlc/xgboost and https://github.com/Microsoft/LightGBM. We 
also applied a Deep Neural Network (DNN) algorithm (Bengio, 
2009) implemented with the python library Keras version 2.2.4 
using the TensorFlow backend. In addition to these nonlinear 
models, linear models were generated with Logistic Regression 
(LR) (Ranstam et al., 2016), which is also implemented in 

Scikit-learn. The visualization of Decision Trees (DTs) was done 
with the python package dtreeviz version 0.2.2. The homonym 
section in Supplementary Methods provides more details.

Predicting Drug Response Using the 
Optimal Model Complexity (OMC)
OMC is a strategy to build ML models employing only the most 
relevant features (Nguyen et al., 2018). More details are available 
in the homonym section of Supplementary Methods.

Measuring the Predictive Performance 
of a Classifier
This is a binary classification problem, as each patient belongs 
to one of two classes, responder and non-responder, with the 
responder considered as the positive class. As it is customary 
with problems with a small number of data instances (Table S3), 
we are using LOO (Leave-One-Out) CV (Cross-Validation) to 
evaluate the developed classifiers. Several types of LOOCV will 
be used: standard for “all-features models”, nested for “OMC 
models”, and permutated for “permutation models”. As with any 
other CV (Kohavi, 1995), each data instance (patient here) is 
exactly once in the test set. Thus, CV performance of a model is 
exclusively based on the prediction of test instances that were not 
used in any way to train or select the model (any feature selection 
is hence carried out on training folds only). Employing nested 
CV on algorithms requiring model selection (those employing 
OMC) provides an unbiased estimate of model performance, as 
it has been shown elsewhere (Cawley and Talbot, 2010; Varma 
and Simon, 2006).

Once known and predicted classes are compared for all 
held-out samples, true positives (TP), true negatives (TN), false 
positives (FP) and false negatives (FN) are counted among BC 
patients. These counts are used for calculating classification 
metrics that summarize the predictive performance reached by 
a classifier: precision, recall, F1-scores (Van Rijsbergen, 1979), 
and Matthews Correlation Coefficient (MCC) (Matthews, 1975; 
Boughorbel et al., 2017). More details about these metrics can 
be found in the homonym section of Supplementary Methods. 
Classification scores and contingency matrices obtained 
from all produced classifiers are stored in Tables S4 and S5, 
respectively.

REsUlTs

Benchmarking of All-Features Models 
(RF, XgB, lgBM, DNN, lR) Reveals some 
Informative Molecular Profiles, But the 
Resulting Classifiers Perform Marginally 
Better Than Random
Figure 1 shows that most of the all-features ML classifiers 
perform worse than random classification reaching 
slightly negative median MCCs (from -0.19 to -0.05). Poor 
performance was also obtained when using linear models: 
LR models perform randomly at best (median MCCs range 
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FIgURE 1 | Continued
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from -0.17 to 0.1 depending on the profile). Poor predictive 
performance is primarily caused by FPs (i.e. misclassification 
of non-responders). This problem was particularly noticeable 
in RF models, which misclassified every non-responsive patient 
regardless of the employed profile, leading to undefined MCCs. 
The latter shows that all-features RF handles class imbalance 
poorly on these particular problem instances.

DNA methylation-based XGB, LGBM, and DNN models 
achieve median MCCs slightly higher than 0.0, and they perform 
hardly better than permutation models. On the one hand, CpG 
site methylation-based XGB, LGBM, and DNN models obtain a 
median MCC of 0.08 (p-value from two-sided paired Student’s 
t-test obtained by class-permutation test = 1.05∙10-1), 0.04 
(p-value = 1.41∙10-1), and 0.14 (p-value = 4.08∙10-1), respectively. 
On the other hand, CpG island (CGI) methylation-based XGB 
and LGBM models achieve a median MCC of 0.08 (p-value = 
2.33∙10-1) and 0.09 (p-value = 8.04∙10-2), respectively. Moreover, 
miRNA and mRNA expression-based DNN models had a 
median MCC of 0.088 (p-value = 4.84∙10-2) and 0.015 (p-value = 
4.76∙10-1), respectively.

Complexity-Optimized Ml Models 
(RF-OMC, XgB-OMC, and lgBM-OMC) 
Provide Better Prediction and Extract 
Relevant Factors for Paclitaxel Response 
From CgI Methylation Data
Using OMC allows both to reduce considerably the number of 
features considered during model training and to adjust the 
operating threshold for assigning class labels to data instances. 
This leads to some OMC models that perform better than 
those considering all features from dataset (Table S12 in 
Supplementary Results). This is especially the case for some 
methylation-based models that have been improved using 
OMC (Figure 1), unlike for models based on other profiles 

(Figure S5). The improvement of OMC over the all-features 
approach is ML algorithm-dependent.

CGI methylation-based OMC models have obtained 
improved predictive performance, using either RF or XGB. 
For instance, XGB-OMC models obtain a median MCC of 
0.25, which is significantly better than both permutation and 
all-features models (p-values equal 9.30 ×∙10-4 and 2.16 ×∙10-2, 
respectively). In order to extract a robust subset of molecular 
factors potentially involved in paclitaxel response, the most 
informative features selected by these models were investigated 
(Table S13 and S14). It results in 7 out of the 11,644 CGI 
coordinates encoded as CGI_ID.24217, CGI_ID.15915, CGI_
ID.6919, CGI_ID.5276, CGI_ID.5459, CGI_ID.16043, and 
CGI_ID.11903. Moreover, we notice that 5 of them are common 
to the features used by the RF-OMC models. Consulting indices 
provided in Tables S7 and S8 (more details in Supplementary 
Methods), we found that these coordinates are related to the 
following 16 genes: CYP2D6, NDUFA6-AS1, RP4-669P10.19 
(or C6orf108 pseudogene), MBTPS2, YY2, C2orf40 (or 
ECRG4), UXS1, IKZF1, APOBEC4, RGL1, ARPC5, NCF2, 
SMG7, C1orf177 (or LEXM), RP11-631M21.6 (or FAM166A 
pseudogene 7), and TUBB8 (Table S14).

Transparent Ml Models (CART) Capture 
Cpg Methylation sites and Mature 
MIRNAs Relevant for the sensitivity 
to Paclitaxel and show how They Are 
Combined to Explain Drug Response
Most of the available profiles led to poor classification of test set 
patients when modelled with CART (Figure 1). By contrast, CART 
classifiers based on miRNA expression and CpG site methylation 
data provided high to very high predictive performance in the 
context of this problem (in 10 LOOCV runs, median MCCs 
of 0.43 and 0.54 were obtained, respectively) and performed 

FIgURE 1 | DNA methylation and miRNA expression lead to the most predictive ML models. Each MCC of a given model is calculated by LOOCV. The experiment 
is repeated several times, each time with a different random seed, giving rise to a boxplot of MCCs for each case. Permutation models were generated after 
shuffling class labels on the considered training set. As RF models give undefined MCCs, blanks are found in bins where boxplots are expected. Substantial 
variability is observed, showing that this problem is both profile- and classification method-dependent. The dashed line shows the expected MCC from random 
classification. (A) Predictive performance of all-features models. All-features models are those in principle employing all the features in the profile to generate the 
prediction. Models are built with ML algorithms using the default operating threshold (0.5) to calculate the predicted class label from the predicted class probability. 
Five random seeds were set for each ML algorithm; thus, MCC values come from five runs of standard LOOCV. x-axis shows the employed molecular profile, while 
y-axis displays the MCCs obtained by classifiers. From the lightest to the darkest blue, boxplots summarize the distributions of MCCs obtained by XGB,LGBM, 
LR, and DNN models, respectively. Ellipses indicate which profiles employed by models obtain better-than-random predictive performance: DNA methylation 
profiles are the most predictive. This also suggests that the other profiles are less informative for the prediction of BC tumor response to paclitaxel. (B) Predictive 
performance applying OMC to methylation-based models. 10 random seeds were used to investigate further the most predictive profiles. OMC models had their 
hyperparameters complexity and operating threshold tuned and thus required nested LOOCV. Horizontal axes show the employed ML algorithms to process CpG 
site (left) and CGI (right) methylation datasets, while vertical axes display MCCs achieved by classifiers. Light-pink, medium-pink, and indigo boxplots summarize 
the distributions of MCCs obtained by all-features, OMC and permutations models, respectively. Circles indicate ML algorithms releasing models with predictive 
performance improved using OMC. This shows that predictive accuracy depends on both the molecular profile and the ML algorithm. Here, the best models found 
are CpG site methylation-based RF-OMC, CGI methylation-based RF-OMC, and CGI methylation-based XGB-OMC. (C) Predictive performance of CART models. 
These models (light-pink boxes) were built considering all features in the profile with no hyperparameter tuning. Permutation models (indigo boxes) were trained after 
that shuffling class labels in the training set. Each MCC is calculated by standard LOOCV, a process repeated with 10 different random seeds. x-axis shows the 
molecular profiles (‘CNV’ is short for copy-number variation, ‘methy_CpG’ for CpG site methylation, and ‘methy_CGI’ for CGI methylation), while y-axis displays the 
LOOCV MCCs achieved by each classifier. The dashed line shows the expected MCC from random classification. Ellipses indicate molecular profiles processed by 
CART models obtaining the highest predictive performance. These results reveal that CpG sites methylation-based and miRNA expression-based CART models are 
the most predictive. Predictive accuracy is substantially higher than that provided by all-features or OMC models (in A and B), which demonstrates that the CART 
learning algorithm is more suitable for these problem instances.
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significantly better than random models (p-values from two-
sided paired Student’s t-test obtained by class-permutation test 
equal 4.57∙× 10-6 and 2.86∙× 10-4, respectively; see Figure 1 and 
Table 1). For each case, the best model is defined as that obtaining 
the highest MCC in 10 standard LOOCVs of the full dataset (i.e. 
all data instances and all available features). Figure S6 shows that 
the performance of these models is robust to different sizes of 
both training set and test set.

As observed in Figure 2 CART models strongly reduce the 
number of features involved in the predictions. The miRNA 
expression-based model found that 4 out of 337 mature miRNAs 
were the most informative features (MIMAT0004985 or miR-
942-5p, MIMAT0000084 or miR-27a-3p, MIMAT0000274 or 
miR-217, and MIMAT0004657 or miR-200c-5p), while the CpG-
site methylation model identified 2 out of 22,941 CpG sites as 
the most informative features (cg09691574, which is related to 
the protein coding genes MRGPRX4 and SAA2-SAA4, and to 
the lincRNA RP11-113D6.6 also called antisense to MRGPRX4; 
and cg12542281, which is related to the protein coding gene 
N4BP2L2). The DTs represented in Figure 2 show directly 
the interactions between independent features leading to the 
predictions. They also reveal the molecular types associated to 
paclitaxel-sensitive and paclitaxel-resistant BC tumors (the CpG 
site index is provided in Table S7).

Lastly, integrating different molecular profiles has sometimes 
been found to provide small predictive accuracy gains, e.g. see 
Figure 4 in this study (Costello et al., 2014). Thus, since both miRNA 
and methy_CpG profiles led to the most predictive models, it makes 
sense to integrate these data sets and train CART models on the 
features of the resulting hybrid profile. Using the same 10 random 
seeds as the methy_CpG-based CART models (median LOOCV 
MCC of 0.54), the hybrid CART models obtained slightly worse 
accuracy (median LOOCV MCC of 0.52). The resulting CART tree 
is identical to that in Figure 2, suggesting that miRNA features were 
overshadowed by methy_CpG features during CART induction.

DIsCUssION

Owing to the wealth of curated data offered by the GDC, we 
could evaluate six profiles. The exhaustive evaluation of the 60 

predictive models obtained, employing 10 ML algorithms with 
each profile, reveal strong variability in predictive performance 
(Figure 3). These results show the importance of considering 
multiple profiles and ML algorithms, the latter being always 
possible. For example, we could have carried out this study using 
the standard all-features versions of tree-ensemble, LR and DNN 
algorithms. However, this would have only resulted in models 
with near-random predictability despite using six profiles and 
thus, we could have concluded that precision oncology is not 
possible for paclitaxel-treated BC patients. Instead, we also 
tested algorithms generating models requiring only a handful of 
features (OMC-based and CART), which in addition, provided 
the best performance on these problem instances. Note that the 
most predictive of these models achieved an over 10,000-fold 
reduction in the number of features (Table 1).

Identifying a concise list of predictive molecular features is 
indeed beneficial for interpretability. The CGI methylation-
based XGB-OMC model employs a dramatically reduced 
number of features (11 of the considered 11,644). The 
increased predictive performance comparing to all-features 
model (Figure 1) shows that the selected subset of features 
contains the information relevant for predictions (Figure S2). 
Therefore, applying OMC not only offers better predictivity, 
but also better interpretability of response to paclitaxel, as it 
revealed a molecular signature able to discriminate sensitive 
and resistant BC tumors from high-dimensional data. The best 
CART models reached the highest predictive performance 
among the generated predictors (Figure 1). Moreover, these 
models allow going further in the interpretation of response 
to paclitaxel (Figure  2). For example, the CpG-methylation 
DT unveils two rules employing only two features to predict 
which are the paclitaxel-sensitive BC tumors (Figure 2). The 
other example is the miRNA DT, which carries out these 
predictions using four induced rules based on only four 
features (Figure 2). Thus, the application of these rules to 
forthcoming tumors should improve paclitaxel treatment for 
BC patients. To facilitate such application, we are providing 
two python scripts in the supplementary materials, each 
implementing the rules for one of these predictive profiles.

Our best classifier obtained a median MCC of 0.54 in 10 
LOOCV runs (an average MCC of 0.62, with MCC ranging from 

TABlE 1 | Best CART models. 

Tumor profiling data Number of considered 
features

Number of selected 
features

Median MCC(CART 
trained on original 

data)

Median MCC(CART 
trained on class-
permutated data)

p-value(original vs 
permutated)

miRNA 337 4 0.43 0.09 4.57∙10-6

methy_CpG 22,941 2 0.54 0.23 2.86∙10-4

The predictive performance of CART models was presented in Figure 1. Here we summarize the characteristics of the two best models (i.e. those exploiting miRNA expression 
and CpG methylation profiles). A median MCC was calculated with the 10 MCCs coming from LOOCV experiments (each with a different random seed). This five additional 
LOOCV runs with respect to those presented in Figure 3 were carried out to better characterize the performance of the best models found in our study. The small difference found 
in median MCC (0.52 in Figure 3 versus 0.54 here) suggests that this performance metric is quite robust to the number of LOOCV runs for CART. The training sets were also 
class-permutated during cross-validation as explained in the Methods section and CART trained on the resulting data to provide a second set of 10 MCCs per profile. The p-value 
(two-sided paired Student’s t-test) of this class-permutated test shows how likely are the MCCs of the CART models to arise by chance. The first model was trained on miRNA 
expression: 4 out of 337 mature miRNAs were retained to build this model reaching a median MCC of 0.43 and performing significantly better than models based on permutated 
data (p-value = 4.57∙10-6). The second model is obtained processing CpG site methylation (shorten as ‘methy_CpG’): 2 out of 22,941 CpG sites were retained to build this model 
achieving a median MCC of 0.54 and performing significantly better than permutation models (p-value = 2.86∙10-4).
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0.48 to 0.87 in these runs as it can be seen in Figure 1). To put these 
predictive accuracies in the context of what is typically achieved 
when predicting tumor response to a drug from omics profiles, we 
have looked at other test set performances reported at the literature 
for this problem. One study (Kim et al., 2016) applied a range 
of ML algorithms to predict pancancer cell line response from 
transcriptomic profiles and obtained MCCs below 0.6 in all cases 
(see Figure 1 in that paper). Maximum MCCs slightly above 0.5 
and 0.3 were also obtained using RF with transcriptomic profiles 

(Nguyen et al., 2017) and genomic profiles (Naulaerts et al., 2017), 
respectively. Another study (Xu et al., 2019) also predicted drug 
response using many hundreds of pancancer cell lines using several 
ML algorithms from various omics profiles (gene expression, copy-
number alterations, single-nucleotide mutations). Depending 
on the considered data resource, average MCCs across drug and 
profiles range from 0.15 to 0.31 or from 0.22 to 0.45 (see Tables 
2 and 3 in that paper). Yet another example is by (Tripathi et al., 
2016) using gene variants as features, where MCCs range across 

FIgURE 2 | The most predictive CART models offer high interpretability of BC tumors response to paclitaxel. Visualization of the most predictive CART models seen 
in Figure 1 exploiting (A) miRNA expression and (B) CpG site methylation data. Each DT node has a histogram showing the distribution of patients at that node 
against the selected feature (the proportion of responders vs non-responders in each feature bin is also shown). The triangle under the histogram marks the value 
of the best split for the selected feature, whose name can be found under the histogram as well. Each node has two leaves: to the left (patients with a feature value 
lower than that of the best split) and to the right (the rest of the patients). Terminal nodes (or leaves) are displayed as pie charts. The proportions of non-responders 
and responders are respectively colored yellow and green. The log2-transformed miRNA expression-based DT shown in (A) reveals four different molecular types of 
sensitive BC tumors and one molecular type associated to resistant BC tumors involving four mature miRNAs: MIMAT0004985, MIMAT0000084, MIMAT0000274, 
and MIMAT0004657 (also known as miR-942-5p, miR-27a-3p, miR-217, and miR-200c-5p, respectively). Thus, a tumor is classified as responsive to paclitaxel if: 
1) the expression value of MIMAT0004985 is higher than 2.18, or 2) the expression value of MIMAT0004985 is lower than 2.18 and that of MIMAT0000084 is lower 
than 9.69, or 3) the expression value of MIMAT0004985 is lower than 2.18, and that of MIMAT0000084 is higher than 9.69 and that of MIMAT0000274 is higher 
than 4.55, or 4) the expression value of MIMAT0004985 is lower than 2.18, and that of MIMAT0000084 is higher than 9.69, and that of MIMAT0000274 is lower than 
4.55, and that of MIMAT0004657 is higher than 5.39. Otherwise, the tumor is classified as non-responsive. The DT based on CpG site methylation (shortened 
as ‘methy_CpG’) shown in (B) unveils two different molecular types of sensitive BC tumors and one type of resistant BC tumors involving two CpG sites represented 
by probes cg09691574, which is related to the protein coding genes, MRGPRX4 and SAA2-SAA4; and to the lincRNA RP11-113D6.6, also called antisense, to 
MRGPRX4; and to cg12542281, which is related to the protein coding gene N4BP2L2. Thus, a tumor is predicted to be sensitive to paclitaxel if: 1) the beta value 
associated to the methylation of cg09691574 is higher than 0.77, or 2) the beta value associated to the methylation of cg09691574 is lower than 0.77, and that 
of cg12542281 is higher than 0.05. Otherwise, the tumor is predicted to be resistant. Both DTs were found to give pure leaves (i.e. all data instances that are in 
terminal nodes belong to the same class).
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drugs from 0.32 to 0.56 or from 0.30 to 0.44 depending on data 
resource (see Tables 1 and 2 in that paper). Lastly, single-gene drug 
response markers identified by MANOVA and Chi-Square tests on 
pancancer cell lines obtained maximum MCCs of 0.30 and 0.31, 
respectively (Dang et al., 2018).

The alteration of gene expression due to epigenetic 
modifications triggers the development of cancers, including 
BC. DNA methylation changes, occurring both within and 
around CGIs, can impact transcriptional activity of genes or 
transcription factors involved in malignant phenotypes (Esteller, 
2002; Irizarry et al., 2009; Levenson, 2010; Deaton and Bird, 2011; 
Manjegowda et al., 2017; Stirzaker et al., 2017). It has been shown 
that biomarkers for prognosis and treatment can be unearthed 
from DNA methylation profiles (Xiang et al., 2013; Mikeska and 
Craig, 2014; Stirzaker et al., 2014; Li et al., 2015; Pouliot et al., 
2015). Furthermore, it has been found that DNA methylation 

can interfere in chemo-resistance to paclitaxel (Wang et al., 2012; 
Ignatov et al., 2014; Yun et al., 2015; He et al., 2016; Zhang et al., 
2018). Our DNA-methylation-based predictors selected CpG sites 
and CGIs related to genes previously found individually involved 
in cancer development and with transcriptional activity regulated 
by methylation (e.g. MBTPS2, YY2, ECRG4, IKZF1). Selected 
features by these models are also related to genes associated 
to response to cytotoxic drugs such as N4BP2L2 (paclitaxel), 
CYP2D6 (tamoxifen), APOBEC4 (tamoxifen, doxorubicin, and 
etoposide), and TUBB8 (paclitaxel) (Table S15).

miRNAs also play a key role in cancer development by acting 
as tumor suppressors or oncogenes. These molecules can be 
used as biomarkers, and modulation of their specific activities 
provides insight for therapeutic investigations (Hayes et al., 2014; 
Peng and Croce, 2016). Furthermore, the expression of some 
miRNAs has been associated to the sensitivity to paclitaxel (Zhou 

FIgURE 3 | Employing multiple ML algorithms and tumor profiles increase the likelihood of discovering models able to predict BC patient response to paclitaxel. 
ML algorithms include the unaltered version of tree-ensemble and linear algorithms using all available features (RF, XGB, LGBM, and LR) and their OMC versions 
(RF-OMC, XGB-OMC, LGBM-OMC, and LR-OMC). The 9th algorithm was CART, employed to generate simpler and more interpretable classification models. 
The 10th algorithm was DNN, employed to generate more sophisticated but less interpretable models. Each of these algorithms was evaluated on each of the 
six molecular profiles, which resulted in 60 classifiers on the same BC patients. LOOCV evaluation was performed 5 times setting a different random seed for the 
employed ML algorithm, leading to 5 MCC determinations quantifying predictive performance. The heatmap shows the median MCC per classifier. Rows show 
the processed molecular profiles (‘CNV’ is short for copy-number variation, ‘methy_CpG’ for CpG site methylation, and ‘methy_CGI’ for CGI methylation), while 
columns display the employed ML algorithms. Thus, each cell corresponds to the median MCC of a given predictive model. Cells are colored in light-blue and 
dark-blue when this model reaches a negative or very negative median MCC (i.e. classification worse than random); in grey when it reaches a median MCC very 
close to 0.0 (i.e. random classification); in light-brown and dark-brown when it reaches a positive or very positive median MCC (i.e. classification better than random 
or close to perfect); in white and labelled NA (i.e. not available) when it reaches an undefined median MCC (i.e. misclassification of non-responders within several 
or all iterations). These results show that DNA methylation is the most informative profile (it leads to 2 of the 3 classifiers with a median MCC of a least 0.25). The 
choice of ML algorithm also affects the predictive performance. For example, none of the RF or LGBM classifiers obtain an MCC of at least 0.10. Thus, predictive 
performance depends strongly on of algorithm- profile combination: only one XGB-OMC models is predictive (that based on CGI methylation) and it is among the 
best predictors (median MCC of 0.25). Two other examples are the CART classifiers based on CpG methylation and miRNA expression, with median MCC of 0.52 
and 0.43, respectively. Figures s4 and s5 further characterizes the performance of the best classifiers.
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et al., 2010; Chen et al., 2014; He et al., 2016; Lu et al., 2017). The 
miRNA expression-based CART model combines miR-27a-3p, 
miR-217, miR-200c-5p, and miR-942-5p to predict which BC 
tumors are paclitaxel-responsive with high accuracy (Figures 1 
and 2A). Individually, each of these miRNAs have been linked to 
paclitaxel response and BC prognosis: the first three are related to 
paclitaxel resistance, whereas the last one is associated to shorter 
survival of BC patients (Table S15).

Our study has some limitations to be pointed out. First, 
for a given patient, molecular profiles were obtained from the 
primary tumor, while clinical response was registered later 
following tumor evolution. Both tumors may present some 
differences at the molecular level, due to temporal or spatial 
tumor heterogeneity, as well the possible impact of the treatment 
administered after tumor resection. Second, while we reported 
predictive accuracy on BC tumors not used in any way to build 
or select the model, an additional independent evaluation on a 
second cohort would shed further light into how general these 
models are. The latter is currently not possible due to the scarcity 
of paclitaxel-treated BC patients with DNA methylation or 
miRNA profiles of their tumors.

Yet, our work provides very predictive (in the context of the 
considered problem), robust (Figure S4 and Figure 4), and even 
interpretable models to identify primary BC tumors sensitive to 
paclitaxel. These results also suggest that tumor methylomes and 
miRNomes can be a source of multi-variate models to predict 
prognosis and treatment response. Indeed, our predictive models 
reveal molecular features that can collectively anticipate which BC 
tumors are sensitive or resistant to paclitaxel. Previous studies have 
experimentally validated the involvement in BC development, 
and even in the resistance to paclitaxel, of these molecular factors 
individually, which further supports the applicability of these 
classifiers. Furthermore, our results also suggest novel predictive 
factors such as the antisense to MRGPRX4; the pseudogenes 
(Poliseno et al., 2015; Xiao-Jie et al., 2015) C6orf108 and FAM166A; 
and the coding genes NDUFA6-AS1, UXS1, RGL1, and LEXM.
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The datasets generated for this study can be found in the https://
portal.gdc.cancer.gov/.

FIgURE 4 | ROC curves of the most predictive case of best models. ROC curves obtained plotting the true positive rates against the false positive rates calculated 
from the models presented in Figures s4. The AUCs were calculated from the predictions that came out from the nested and standard LOOCV runs and were 
respectively carried out for OMC and CART models. We notice that AUCs follow the same trend as MCCs and that models shown in (A), (C), and (D) are very 
robust. The dashed line delimitates the expected AUC from random classification.
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