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Human T-lymphotropic virus 1 (HTLV-1) was the first recognized human retrovirus. 
Infection can lead to two main symptomatologies: adult T-cell lymphoma/leukemia 
(ATLL) and HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). 
Each manifestation is associated with distinct characteristics, as ATLL presents as a 
leukemia-like disease, while HAM/TSP presents as severe inflammation in the central 
nervous system, leading to paraparesis. Previous studies have identified molecules 
associated with disease development, e.g., the downregulation of Foxp3 in Treg cells 
was associated with increased risk of HAM/TSP. In addition, elevated levels of CXCL10, 
CXCL9, and Neopterin in cerebrospinal fluid also present increased risk. However, these 
molecules were only associated with specific patient groups or viral strains. Furthermore, 
the majority of studies did not jointly compare all clinical manifestations, and robust 
analysis entails the inclusion of both ATLL and HAM/TSP. The low numbers of samples 
also pose difficulties in conducting gene expression analysis to identify specific molecular 
relationships. To address these limitations and increase the power of manifestation-
specific gene associations, meta-analysis was performed using publicly available gene 
expression data. The application of supervised learning techniques identified alterations in 
two genes observed to act in tandem as potential biomarkers: GBP2 was associated with 
HAM/TSP, and CD40LG with ATLL. Together, both molecules demonstrated high sample-
classification accuracy (AUC values: 0.88 and 1.0, respectively). Next, other genes with 
expression correlated to these genes were identified, and we attempted to relate the 
enriched pathways identified with the characteristic of each clinical manifestation. The 
present findings contribute to knowledge surrounding viral progression and suggest a 
potentially powerful new tool for the molecular classification of HTLV-associated diseases.
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INTRODUCTION 
Human T-lymphotropic virus 1 (HTLV-1) belongs to the 
Retroviridae family and Deltaretrovirus genus, and presents 
tropism in the infection of T lymphocyte cells (Mirvish et al., 
2011). Two diseases are mainly associated with this infection: 
adult T-cell lymphoma/leukemia (ATLL) and HTLV-associated 
myelopathy/tropical spastic paraparesis (HAM/TSP) (Gessain 
and Mahieux, 2012). Around 2–5% of HTLV-infected subjects 
develop ATLL (Uchiyama et al., 1977) and 0.25–3.8% develop 
HAM/TSP (Osame et al., 1986), while the majority of HTLV-
infected subjects remain asymptomatic (Galvão-Castro 
et  al., 1997). ATLL is a lymphoma-like disease classified into 
four subtypes: acute, chronic, smoldering, and lymphoma 
(Shimoyama and members of The Lymphoma Study Group 
(1984–87)*, 1991). Developing this symptomatology results 
in a life expectancy less than 1 year in around 65% of affected 
individuals (Matutes, 2007), in addition to low documented 
chemotherapeutic response (Yamada et al., 2001). HAM/TSP is 
characterized as an inflammatory disease of the central nervous 
system (CNS), can progressively evolve to spastic paraparesis, 
and results in sensory disturbance in the lower extremities and 
bladder/bowel dysfunction (Nakagawa et al., 1995).

Currently, ATLL can be diagnosed by integrating cytology 
and lymphocyte immunophenotyping with HTLV-1 serology 
(Matutes, 2007). The diagnosis of HAM/TSP is based on clinical 
evaluation and the exclusion of other disorders and molecular 
and serological diagnosis, including HTLV-1 serology, Western 
blotting, and PCR analysis (Yamano and Sato, 2012). In this 
complex scenario, the identification of biomarkers of this disease 
is crucial for improving patient care and treatment. With the goal 
of furthering the understanding surrounding the mechanisms 
related to disease manifestation, some studies employing 
gene expression have been conducted. For instance, the 
downregulation of the FOXP3 gene in T-reg cells was reported to 
be induced by the HBZ viral protein from HTLV-1. Accordingly, 
the stimulated proinflammatory response was found to be 
associated with HAM/TSP development (Yamamoto-Taguchi 
et  al., 2013). Furthermore, other molecules in cerebrospinal fluid, 
such as CXCL10, CXCL9, and neopterin, have been proposed as 
promising candidates for prognostic biomarkers of HAM/TSP, 
offering improved predictive values in comparison to proviral 
load (Sato et al., 2013).

On the other hand, CAN2 and SPTA2 proteins have been 
proposed as biomarkers capable of classifying ATLL patients. 
CAN2 activity was found to induce ATLL cell death and the 
corresponding gene was downregulated in these cells. In 
addition, 17 proteins were proposed as capable of classifying 
healthy controls from asymptomatic carriers (ACs), HAM/
TSP, and ATLL patients (Ishihara et al., 2013). Several 
alterations in anti-inflammatory cytokine levels in infected T 
cells, e.g., increased IL-10 and suppressed pro-inflammatory 
cytokines, were also associated with this disease (Kagdi 
et al., 2018). Another study suggested diagnosing patients by 

measuring antibody responses to HTLV-1 gag, Env, and Tax 
proteins (Enose-Akahata et al., 2012); however, this is akin 
to an immunological diagnosis. Despite the identification of 
biomarker candidates, various limitations have prevented 
adoption, as some markers were only identified in specific 
populations (Yasuma et al., 2016), small sample sizes were used 
(Ishihara et al., 2013), and the identification was performed 
only in specific clinical manifestations without appropriate 
confirmation for use as a general biomarker (Sato et al., 2013; 
Yamamoto-Taguchi et al., 2013).

To mitigate the impact of low sample sizes, which have 
limited the interpretation of individual studies, meta-
analysis approaches have been employed in the field of gene/
marker identification. This approach was used to highlight 
important genes and molecular pathways in endometrioid 
endometrial cancer (O’Mara et al., 2016), for the identification 
of programmed death-ligand 1 as a potential biomarker in 
glioblastoma (Xue et al., 2017), to identify a set of candidate 
genes, pathways, and transcription factors not previously 
associated with the pathogenesis of sickle cell disease (Hounkpe 
et al., 2015), and to disclose a novel set of candidate genetic 
markers, pathways, and transcription factors common to both 
thrombosis and myeloproliferative disorders (Jha et al., 2016). 
Meta-analysis, in combination with classical approaches and 
machine learning, has also been applied to identify biomarkers 
of viral infection in the Aedes aegypti mosquito (Fukutani et al., 
2017). This methodology has proven powerful in discriminatory 
classification using gene expression data and was recently 
highlighted as a potentially useful method for discovering 
new evidences (Debray et al., 2017); Sweeney et al., 2017). 
Given the need to identify biomarkers associated with HTLV-1 
infection, and considering the abundance of individual studies 
that resulted in the generation of gene expression datasets, we 
performed meta-analysis in an attempt to identify candidate 
transcriptional biomarkers that could offer improved predictive 
power in the classification of clinical manifestations in HTLV-1, 
a novelty in this field that has never been done before.

METHODOLOGY

Description of Datasets Comprising the 
Discovery Dataset
To identify published datasets relevant to HTLV infection, 
the Gene Expression Omnibus (GEO) database (https://www.
ncbi.nlm.nih.gov/geo/) was searched filtering Homo sapiens 
as the organism of interest and “HTLV” as the keyword. This 
query returned a total of 41 datasets (search performed in 
September 2017). After manual evaluation, 32 datasets were 
excluded due to methodological incompatibility (non-blood 
cell tissues and absence of symptomatologic information). Of 
the remaining datasets, three with detailed gene expression by 
peripheral blood mononuclear cells (PBMCs) were selected to 
build the Discovery dataset: GSE55851 (Kobayashi et al., 2014), 
GSE29312, and GSE29332 (Tattermusch et al., 2012). All of the 
studies that produced these datasets were performed in PBMCs 
and included at least two different clinical forms of infection, as 

Abbreviations: ATLL, Adult T-Cell Lymphoma/Leukemia; HAM/TSP, HTLV-
associated myelopathy/tropical spastic paraparesis; AC, Asymptomatic Carriers.
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well as controls (healthy individuals). When combined, the three 
datasets included 20 controls, 43 AC, 12 ATLL, and 20 HAM/
TSP samples (Table 1). For our analysis, the AC samples were 
discarded to avoid possible classification bias, since this form can 
evolve to another clinical manifestation at some point during the 
patient’s life, and no information regarding disease progression 
was provided. The remaining six datasets performed in other 
tissue types were used for in silico validation.

Data Retrieval, Pre-Processing, and Batch 
Correction
Raw expression data were downloaded from GEO/NCBI 
using the GEOquery package (Davis and Meltzer, 2007). Next, 
the collapseRows R function in the WGCNA package (Miller 
et al., 2011) was used to collapse the data, and only probes 
mapping to genes common to all datasets were maintained. 
Log transformation was applied to the expression data using 
the preProcessCore package (Bolstad, 2018), and outlier samples 
were identified and removed by the ArrayQualityMetrics 
package for R (Kauffmann et al., 2008). The plyr package was 
subsequently used to merge all data (Wickham, 2011). Following 
pre-processing, the combined dataset was submitted to a batch 
correction procedure using an empirical Bayes framework 
implemented in the ComBat function of the sva package (Leek 
et al., 2013), with clinical manifestations and original datasets as 
covariates. This allowed us to account for known or unknown 
sources of variation in the datasets, enabling the use of samples 
from different datasets in the integrated dataset (i.e., Discovery 
dataset). This method allowed for the inclusion of the maximum 
number of samples for analysis, in addition to more robust data 
interpretation, leading to the identification of consistent insights 
regarding biological phenomena. ComBat has been used in 
other studies and was shown to outperform other similar tools 
designed for this purpose (Chen et al., 2011). The final dataset 
consisted of 94 samples, with expression data pertaining to 
10,533 genes in total.

Classification of HTLV Patient Clinical 
Manifestation via Decision Tree
A decision tree classification procedure was performed in the 
Discovery dataset to identify the key genes related to HTLV 
patient clinical manifestation (ATLL or HAM/TSP). Decision 
trees were constructed using the rpart package Therneau et  al. 
(2015), which screens for the key factors that allow for the 
separation of the groups with maximum accuracy. To measure 
the performance of the classification model, areas under receiver 
operating characteristic (ROC) curves were calculated to 
determine a given model’s sensitivity and specificity. The overall 
accuracy of a model is calculated by estimating the area under 
the curve (AUC), permitting measurements of the degree of class 
separability in a given model. Values approximating 1.0 indicate 
that the model is suitably capable of distinguishing among 
different classes. Finally, scatterplots were generated to visualize 
the dispersion of samples according to the model threshold in 
order to verify the accuracy estimated by ROC curve analysis.

Co-Expression and Enrichment Analysis of 
Genes Related to CD40LG and GBP2
A correlation matrix between the genes CD40LG and GBP2 
(identified as best classifiers) and all the genes within the 
Discovery dataset was constructed. Correlation was calculated 
separately for each group (control, ATLL, and HAM/TSP) using 
gene expression values measured as biweight midcorrelation 
coefficients, which function similarly to Pearson’s r, except this 
technique is more robust with regard to data outliers (Langfelder 
and Horvath, 2012). Correlations were considered significant 
using a threshold of |r| ≥0.7 and p-value ≤0.05. Next, correlated 
genes were clustered according to the functional terms of the 
REACTOME pathway database (https://reactome.org/). This 
enrichment analysis was performed using clusterProfiler Yu 
et al. (2012) with the following parameters: p-value threshold = 
0.05, Q-value threshold = 0.05, minimum number of genes to 
cluster  = 20, maximum number of genes to cluster = 500.

Description of Datasets Used  
for Validation
Six microarray expression datasets were retrieved from GEO: 
GSE17718 (Kress et al., 2010), GSE6034 (Hamamura et al., 
2007), GSE38537 (Pinto et al., 2014), GSE33615 (Fujikawa 
et al., 2016), GSE57259 (Araya et al., 2014), and GSE19080 (no 
citation available at GEO/NCBI). To confirm the gene signature 
performance, we performed the gene model comparison in the 
validation dataset independently, without using the thresholds 
yielded by the decision tree model estimated during the 
discovery phase. The model comparison in each different dataset 
was obtained by applying a logistic regression fitting, which 
estimated the variable accuracy (CD40LG and GBP2), according 
to the response variable [determined by dataset metadata (HTLV 
status)]. Then, the ROC curve and the AUC were measured, 
which allows the comparison of the gene signature classification 
power across the validation datasets. A full description of the 
selected datasets is available in Table S1.

TABLE 1 | Description of the datasets used as the Discovery set.

Accession 
number

Reference Symptomatology Sample 
number

Tissue

GSE55851 Kobayashi et al. 
(2014)

Control 3 PBMCs

Asymptomatic 6 PBMCs
ATLL 12 PBMCs

GSE29312 Tattermusch et al. 
(2012)

Control 9 PBMCs

Asymptomatic 20 PBMCs
HAM/TSP 10 PBMCs

GSE29332 Tattermusch et al. 
(2012)

Control 8 PBMCs

Asymptomatic 17 PBMCs
HAM/TSP 10 PBMCs

Total Control 20 PBMCs
Asymptomatic 43 PBMCs
ATLL 12 PBMCs
HAM/TSP 20 PBMCs
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RESULTS

Gene Expression of CD40LG and GBP2 
Permits Accurate Discrimination of ATLL 
and HAM/TSP Patients
The decision tree algorithm identified two genes, CD40LG and 
GBP2, as the most informative in differentiating between the 
clinical manifestations of HTLV-infected samples and controls. 
The expression of CD40LG allowed for the discrimination 
of individuals with ATLL with 100% accuracy. To correctly 
classify the remaining samples (HAM/TSP and controls), a 
second gene (GBP2) was required. Expression levels of GBP2 
were able to discriminate HAM/TSP samples with 84.2% 
classification accuracy, and controls with 100% accuracy, with a 
15.8% misclassification rate occurring between HAM/TSP and 
controls (Figure 1A). In addition, sample dispersion was visually 
checked by scatterplot using the log expression cutoffs returned 
by the decision tree algorithm: 6.30 for CD40LG and 12.05 
for GBP2 (Figure 1B). Finally, sensitivity and specificity were 
measured using ROC curve analysis, revealing high accuracy in 
discriminating among samples using genes CD40LG and GBP2: 
AUC of 0.90 for controls, 0.88 for HAM/TSP, and 1.00 for ATLL 
(Figure 1C).

Gene Expression of CD40LG and GBP2 
Correlate With Various Immune and 
Metabolic Pathways That Could Impact 
the Course of HTLV Infection
After evaluating the high predictive power of CD40LG and 
GBP2 in discriminating HTLV clinical status, the roles played 
by these genes were investigated. Correlation analysis was 
performed considering global expression for each clinical 
manifestation (HAM/TSP or ATLL) and controls. Our results 
showed that 208 genes were significantly positively (r > 0.7 
and p-value < 0.05) and 13 genes were significantly negatively 
(r > 0.7 and p-value < 0.05) correlated with CD40LG. Also, 84 
genes were significantly positively and 1 gene was significantly 
negatively correlated with GBP2. In contrast, in the ATLL 
samples, 399 genes were significantly negatively correlated with 
CD40LG and 743 genes were significantly positively correlated 
with GBP2. A total of 12 genes were found to be correlated with 
both CD40LG and GBP2 (OAZ1, SLC39A11, NADK, TMED2, 
SLC38A5, P4HA1, HM13, MGAT2, HIST1H2BG, UQCRFS1, 
PTDSS1, and TAP1B) (Figure S1A). In addition, the HAM/TSP 
samples presented 394 positive and 420 negative correlations, 
with three being associated with both CD40LG and GBP2 

FIGURE 1 | Continued

FIGURE 1 | (A) Decision tree classification of three different 
symptomatologies using CD40LG to separate all ATLL samples from the 
others, and GBP2 to separate 84.2% of the HAM/TSP samples from 
controls. (B) Scatterplot of CD40LG (Y axis) and GBP2 (X axis) gene 
expression detailing the dispersion of the analyzed samples. Red lines 
represent the thresholds suggested by decision tree analysis. (C) ROC curve 
representing accuracy. An AUC of 0.9016 was found for the control group, 
0.8898 for the HAM/TSP group, and 1.000 for ATLL. The red line represents 
the ATLL group, blue indicates HAM/TSP, and green is indicative of controls.
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(PWP1, H3F3A, and GNE). In these samples, correlations with 
CD40LG were mostly positive, with 367 positive correlations, 
while those with GBP2 were mostly negative, with 230 negative 
correlations (Figure S1B). More comprehensive information 
regarding this correlation analysis and the commonly observed 
genes is available as supplementary material (Tables S2–
S4). The gene set previously identified correlated with the 
biomarkers (CD40LG and GBP2) was analyzed in order to 
identify their enriched pathways. Thus, the top four pathways 
identified from being negatively correlated with the CD40LG 
gene set in the HAM/TSP were “Neutrophil degranulation,” 
“Signaling by interleukins,” “TRAF6-mediated induction of 
NFkB and MAP kinases upon TLR7/8 or 9 activation,” and 
“Toll Like Receptor 7/8 (TLR7/8) Cascade.” The main pathways 
identified from the gene set that negatively correlated with 
GBP2 in the HAM/TSP were “SUMO E3 ligases SUMOylate 
target proteins,” “SUMOylation,” “rRNA processing,” and “tRNA 
processing” (Figure 2B). Only one pathway was identified from 
the gene set that positively correlated with CD40LG in HAM/
TSP: “SUMOylation of DNA replication proteins.” Several 
pathways were identified from the genes that were positively 
correlated with GBP2 in HAM/TSP: “Interferon Signaling,” 
“Interferon alpha/beta signaling,” “Activation of G protein gated 

Potassium channels,” “G protein gated Potassium channels,” 
and “Interleukin-20 family signaling” (Figure 2A).

The top 5 pathways identified from the gene set that negatively 
correlated with CD40LG in the ATLL were “MAPK family 
signaling cascades,” “MAPK1/MAPK3 signaling,” “RAF/MAP 
kinase cascade,” “Mitotic G1−G1/S phases,” and “G1/S Transition” 
(Figure 2B). Moreover, the associated pathways from the gene 
set that positively correlated with GBP2 in ATLL patients were 
“tRNA processing in the nucleus,” “tRNA processing,” “Viral 
Messenger RNA synthesis,” “Late Phase of HIV Life Cycle,” and 
“HIV Life Cycle” (Figure 2A).

By contrast, in the control group, the pathways identified 
from the gene set that correlated with CD40LG were 
“Processing of Capped Intron-Containing Pre-mRNA,” 
“tRNA processing in the nucleus,” “tRNA processing,” 
“Viral Messenger RNA Synthesis,” “Dual incision in 
TC-NER,” “Transcription-Coupled Nucleotide Excision 
Repair (TC-NER),” “Late Phase of HIV Life Cycle,” “mRNA 
Splicing—Major Pathway,” “HIV Life Cycle,” “Synthesis of 
DNA,” “SUMOylation of DNA replication proteins,” and “HIV 
infection.” With regard to GBP2’s positively correlated genes, 
the following pathways were found in the control group: 
“Neutrophil degranulation,” “Metabolism of water-soluble 

FIGURE 2 | (A) Pathways associated with genes found to be positively correlated with CD40LG and GBP2, grouped according to symptomatology. (B) Pathways 
associated with genes found to be negatively correlated with CD40LG and GBP2, grouped according to symptomatology. Analysis performed using the following 
parameters: p-value = 0.05, q-value = 0.2, minimum number of genes to cluster = 20, maximum number of genes to cluster = 500.
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vitamins and cofactors,” “FCERI mediated MAPK activation,” 
“Toll-Like Receptors Cascades,” “TRAF6 mediated induction 
of NFkB and MAP kinases upon TLR7/8 or 9 activation,” “Toll 
Like Receptor 7/8 (TLR7/8) Cascade,” “MyD88 dependent 
cascade initiated on endosome,” “Toll Like Receptor 9 (TLR9) 
Cascade,” “Signaling by Interleukins,” “Apoptotic execution 
phase,” and “Interferon signaling” (Figure 2A). Further 
information regarding the pathways associated with these 
genes (ENTREZ  ID) is available as supplementary material, 
separated into negatively correlated (Table S5) and positively 
correlated categories (Table S6).

Validation of CD40LG and GBP2 
in Independent Datasets Reveals 
Classification Robustness in Different 
Tissue Types
To validate the accuracy of our two-gene model in the 
discrimination of ATLL, HAM/TSP, and control samples, this 
model was applied to the other datasets not used in the discovery 
set: (Kress et al., 2010) (GSE17718), (Hamamura et al., 2007) 
(GSE6034), (Pinto et al., 2014) (GSE38537), (Yamagishi et al., 2012) 
(GSE33615), (Olière et al., 2010) (GSE57259), and GSE19080. 
After downloading and pre-processing these datasets, ROC 
curve analysis was applied to measure the discriminant power of 
CD40LG and GBP2 in classifying HLTV-1 clinical manifestations. 
The discriminant power of this two-gene signature was found to be 
very high, allowing for the discrimination of the HTLV-1 clinical 
status in five of the datasets with an AUC value of 1 (GSE17718, 
GSE6034, GSE38537, GSE33615, and GSE57259). The need to 
include both genes for accurate classification was evidenced in the 
GSE19080 dataset (in which the CD40LG gene is absent), yielding 
a much lower AUC (0.875) in the discrimination of control 
samples, compared to 0.666 for HAM/TSP samples and 0.5 when 
discriminating ATLL samples. These validation datasets were 
derived from a variety of tissues, such as cell lines (StEd, MT-2, Tay 
and MT-4), CD4 lymphocytes, and PBMCs. The overall accuracy 
of this two-gene signature model is delineated in Table 2. Also, the 
sample distribution using the two-gene expression in all validation 
dataset is summarized in Figure S2.

DISCUSSION
To date, few studies have attempted to identify biomarkers capable 
of discriminating between ATLL and HAM/TSP in HTLV-1 
infection. A previous report (Sato et al., 2013) suggested three 
potential prognostic biomarkers in cerebrospinal fluid for HAM/
TSP disease progression: CXCL10, CXCL9, and neopterin. Another 
study (Baratella et al., 2017) stated that the HBZ protein, exclusively 
localized in the cytoplasm, could be a biomarker of HAM/TSP. 
In addition, CAN-2 and SPTA-2 were identified as biomarkers 
capable of discriminating ATLL (Ishihara et al., 2013). However, 
these biomarkers were found in a specific population and, to the 
best of our knowledge, the literature contains no sets of biomarkers 
offering sufficient accuracy to reliably identify both the ATLL and 
HAM/TSP phenotypes. With the objective of achieving accurate 
discrimination, we employed a robust bioinformatic approach 
to consolidate the available expression data using three different 
datasets combined into a single Discovery dataset. Three studies 
were selected for this analysis, one submitted by Kobayashi et al. 
(acc number: GSE55851) and two submitted by Tattermusch et al. 
(acc number: GSE29332 and GSE29312). The study by Kobayashi 
et al. compares gene expression levels in PBMCs from ATLL, 
asymptomatic, and control patients. The other studies submitted 
by Tattermusch et al. compared gene expression levels in PBMCs 
from HAM/TSP, asymptomatic, and control individuals. Next, a 
data mining technique was applied to the merged, batch-corrected 
Discovery dataset to identify which variables (genes) could 
effectively discriminate clinical status among the samples. Decision 
tree analysis revealed genes CD40LG and GBP2 as discriminators of 
ATLL and HAM/TSP, offering accuracy rates of 100% and 84.2%, 
respectively. A previous report identified lower CD40LG expression 
in cells expressing PTHrP and MIP-1α, two proteins associated 
with ATLL progression (Shu et al., 2012). The second marker 
identified herein, GBP2, was previously associated with tax protein 
activity in HTLV-1 (Arainga et al., 2012). Despite identifying these 
associations, no previous studies proposed either of these genes as 
biomarkers of ATLL or HAM/TSP symptomatology.

The CD40LG gene encodes a protein located on the surface of 
T cells and exerts the role of regulating B cell functions (Stelzer 
et  al., 2016). GBP2 is a guanylate binding protein induced 

TABLE 2 | Performance of the two-gene signature classifying the samples from validation datasets.

Accession number Symptomatology Tissue Biomarkers AUC

GSE17718 Control CD4+ Lymphocyte CD40LG and GBP2 1.00
ATLL Cell lines StEd and MT-2 CD40LG and GBP2 1.00

GSE6034 Control CD4+ Lymphocyte CD40LG and GBP2 1.00
ATLL Cell lines TaY, MT-2 and MT-4 CD40LG and GBP2 1.00

GSE38537 Control CD4+ Lymphocyte CD40LG and GBP2 1.00
HAM/TSP CD4+ Lymphocyte CD40LG and GBP2 1.00

GSE33615 Control CD4+ Lymphocyte CD40LG and GBP2 1.00
ATLL PBMCs (Mostly CD4+ Lymphocytes) CD40LG and GBP2 1.00

GSE19080 Control CD4+ Lymphocyte GBP2 0.87
ATLL CD4+ Lymphocyte GBP2 0.50

HAM/TSP CD4+ Lymphocyte GBP2 0.66
GSE57259 Control CD4+ CD25+ CCR4+ Lymphocytes CD40LG and GBP2 1.00

HAM/TSP CD4+ CD25+ CCR4+ Lymphocytes CD40LG and GBP2 1.00
ATLL CD4+ CD25+ CCR4+ Lymphocytes CD40LG and GBP2 1.00
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by IFN-γ and is considered as a control factor for tumor cell 
proliferation and spreading (Messmer-Blust et al., 2010). Our 
functional approach entailed the correlation of these biomarkers 
with the global expression of other genes, followed by enrichment 
analysis using the REACTOME database (Fabregat et al., 2018). 
This analysis showed that the genes positively correlated with 
CD40LG are associated with pathways mainly related to tRNA 
processing, viral replication, and mRNA splicing in the control 
group. However, in the HAM/TSP group, these genes were only 
found to be associated with the SUMOylation of DNA replication 
pathway, which is specifically associated with transcription and 
replication pathways. In addition, the genes negatively correlated 
with CD40LG were found to be associated primarily with 
neutrophil degranulation, signaling for interleukins and several 
cascades of Toll Like Receptors in HAM/TSP patients. These 
pathways may be associated with immune responses involving 
inflammation (Faurschou and Borregaard, 2003; Lacagnina et al., 
2018; Weitzman, 2003), which is frequently observed in HAM/
TSP patients (Nakagawa et al., 1995).

On the other hand, the genes negatively correlated with 
CD40LG were found to be associated with MAPK cascade-
associated pathways and cell cycle-related pathways. MAPK 
cascade-related pathways are associated with a wide spectrum of 
metabolic pathways related to cell proliferation, differentiation, 
and apoptosis (Shaul and Seger, 2007). Cell cycle-related 
pathways, such as Mitotic G1-G1/S phases, G1/S Transition, 
G2/M Transition, and Mitotic G2-G2/M phases, are related to 
cell proliferation (Matson and Cook, 2017). These pathways are 
all related to cell proliferation, which is consistent with ATLL 
symptomatology and the uncontrolled proliferation of T cells 
(Shimoyama and members of The Lymphoma Study Group 
(1984–87)*, 1991).

The top pathways that positively correlated with GBP2 
were mainly related to HIV infection, tRNA, and viral 
mRNA processing and synthesis, signaling by interleukins, 
and apoptosis regulation. The pathways observed to be 
related to HIV infection may be due to similarities between 
HTLV-1 and HIV, as both these retroviruses mainly infect 
T CD4+ lymphocytes. The tRNA and viral mRNA pathways 
are associated with the highly active processing of RNAs 
that occurs in ATLL cells. Furthermore, the regulation of 
apoptosis could be associated with the immortalization of T 
CD4+ cells  that characterizes the leukemic aspect of ATLL 
(Bellon et al., 2010).

In order to evaluate the predictive power of the CD40LG/GBP2 
two-gene signature in the accurate classification of HAM/TSP and 
ATLL samples, we conducted a validation step using independent 
datasets, which revealed excellent predictive values. The majority 
of datasets returned an AUC of 1.0, corresponding to an accuracy 
rate of 100% when classifying samples as ATLL, HAM/TSP, or 
controls. In one of six validation datasets (GSE19080), a poorer 
classification accuracy was found, which is likely due to the 
absence of the CD40LG in the array, indicating the requirement of 
both genes in order to maintain reliably consistent classification. 
Additionally, the selected validation datasets sampled not only 
PBMCs but also several transformed cell lines, including MT-2, 
MT-4, StEd, and TaY, as well as isolated CD4+ cells. These high 

rates of accuracy seen in a diverse range of tissue types serve 
to confirm the robustness of the two-gene signature identified 
herein, suggesting a conserved mechanism in the regulation 
of genes associated with each symptomatology. Despite some 
limitations such as the absence of available datasets  studying 
HTLV-1 biomarkers in a transcriptional approach and the 
reduced sample numbers, our findings provide useful biomarkers 
to independently identify populations affected by HTLV-1.

CONCLUSION
Our meta-analysis of gene expression datasets in HTLV-1-
infected patients with specific disease manifestations identified 
a two-gene signature (CD40LG/GBP2) allowing for excellent 
classification of the HAM/TSP and ATLL phenotypes. This 
signature was subsequently validated in six independent 
datasets. An exploratory functional enrichment analysis of 
the genes found to be positively and negatively correlated with 
this signature revealed diverse activation and repression of 
pathways relevant to this viral disease. Our findings add to the 
accumulation of knowledge surrounding HTLV-1 infection and 
may contribute to early diagnosis, as well as the treatment of 
related symptomatologies.
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TABLE S2 | Correlations observed between CD40LG and GBP2 in the HAM/
TSP group. 

TABLE S3 | Correlations observed between CD40LG and GBP2 in the ATLL group. 

TABLE S4 | Correlations observed between CD40LG and GBP2 in the control group.

TABLE S5 | Detailed information regarding the negatively correlated pathways 
and associated genes (ENTREZ ID).

TABLE S6 | Detailed information regarding the positively correlated pathways 
and associated genes (ENTREZ ID). 

FIGURE S1 | Correlation network based on gene expression values in ATLL 
samples. Highlighted genes were found to correlate with both CD40LG and GBP2. 
B - Correlation network based on the gene expression values in the HAM/TSP 
group. Highlighted genes were found to correlate with both CD40LG and GBP2. 
C - Correlation network based on the gene expression values in the control group.

FIGURE S2 | Scatterplot of validation datasets sample distribution using the 
CD40LG and GBP2's log transformed expression values. The samples can 
be separated by symptomatology [ATLL (green), HAM/TSP (red) and control 
(blue)], this separation is shown by the collored ellipses. The GSE19080's 
scatterplot has only GBP2 within the dataset, the values of X and Y axis are both 
representing GBP2's log transformed expression value. 

REFERENCES
Arainga, M., Murakami, H., and Aida, Y. (2012). Visualizing spatiotemporal 

dynamics of apoptosis after G1 arrest by human T cell leukemia virus type 1 
Tax and insights into gene expression changes using microarray-based gene 
expression analysis. BMC Genomics 13, 275. doi: 10.1186/1471-2164-13-275

Araya, N., Sato, T., Ando, H., Tomaru, U., Yoshida, M., Coler-Reilly, A., et al. 
(2014). HTLV-1 induces a Th1-like state in CD4+CCR4+ T cells. J. Clin. Invest. 
124, 3431–3442. doi: 10.1172/JCI75250

Baratella, M., Forlani, G., Raval, G. U., Tedeschi, A., Gout, O., Gessain, A., et al. 
(2017). Cytoplasmic localization of HTLV-1 HBZ protein: a biomarker of 
HTLV-1-Associated myelopathy/tropical spastic paraparesis (HAM/TSP). 
PLoS Negl. Trop. Dis. 11, e0005285. doi: 10.1371/journal.pntd.0005285

Bellon, M., Baydoun, H. H., Yao, Y., and Nicot, C. (2010). HTLV-I Tax-dependent 
and -independent events associated with immortalization of human primary T 
lymphocytes. Blood 115, 2441–2448. doi: 10.1182/blood-2009-08-241117

Bolstad, B. (2018). preprocessCore: A collection of pre-processing functions. R package 
version 1.44.0. Available at: https://github.com/bmbolstad/preprocessCore. 

Chen, C., Grennan, K., Badner, J., Zhang, D., Gershon, E., Jin, L., et al. (2011). 
Removing batch effects in analysis of expression microarray data: an evaluation 
of six batch adjustment methods. PLoS One 6, e17238. doi: 10.1371/journal.
pone.0017238

Davis, S., and Meltzer, P. S. (2007). GEOquery: a bridge between the Gene 
Expression Omnibus (GEO) and BioConductor. Bioinformatics 23, 1846–1847. 
doi: 10.1093/bioinformatics/btm254

Debray, T. P. A., Damen, J. A. A. G., Snell, K. I. E., Ensor, J., Hooft, L., Reitsma, J. B., 
et al. (2017). A guide to systematic review and meta-analysis of prediction 
model performance. BMJ 356, i6460. doi: 10.1136/bmj.i6460

Enose-Akahata, Y., Abrams, A., Johnson, K. R., Maloney, E. M., and Jacobson, S. 
(2012). Quantitative differences in HTLV-I antibody responses: classification 
and relative risk assessment for asymptomatic carriers and ATL and 
HAM/TSP patients from Jamaica. Blood 119, 2829–2836. doi: 10.1182/
blood-2011-11-390807

Fabregat, A., Jupe, S., Matthews, L., Sidiropoulos, K., Gillespie, M., Garapati, P., et 
al. (2018). The reactome pathway knowledgebase. Nucleic Acids Res. 46, D649–
D655. doi: 10.1093/nar/gkx1132

Faurschou, M., and Borregaard, N. (2003). Neutrophil granules and secretory 
vesicles in inflammation. Microbes Infect. 5, 1317–1327. doi: 10.1016/j.
micinf.2003.09.008

Fujikawa, D., Nakagawa, S., Hori, M., Kurokawa, N., Soejima, A., Nakano, K., et al. 
(2016). Polycomb-dependent epigenetic landscape in adult T-cell leukemia. 
Blood 127, 1790–1802. doi: 10.1182/blood-2015-08-662593

Fukutani, K. F., Kasprzykowski, J. I., Paschoal, A. R., Gomes, M., de, S., Barral, A., 
et al. (2017). Meta-analysis of expression datasets: comparing virus infection 
and blood-fed transcriptomes to identify markers of virus presence. Front. 
Bioeng. Biotechnol. 5, 84. doi: 10.3389/fbioe.2017.00084

Galvão-Castro, B., Loures, L., Rodriques, L. G., Sereno, A., Ferreira Júnior, O. C., 
Franco, L. G., et al. (1997). Distribution of human T-lymphotropic virus type 
I among blood donors: a nationwide Brazilian study. Transfusion 37, 242–243. 
doi: 10.1046/j.1537-2995.1997.37297203532.x

Gessain, A., and Mahieux, R. (2012). Tropical spastic paraparesis and HTLV-1 
associated myelopathy: clinical, epidemiological, virological and therapeutic 
aspects. Rev. Neurol. 168, 257–269. doi: 10.1016/j.neurol.2011.12.006

GSE19080, Hernandez, E., and Oliere, S. (2010). Gene expression profiling in 
patients infected with HTLV-1: Identification of ATL and HAM/TSP-specific 
genetic profiles. Gene Expression Omnibus. GSE19080. 

Hamamura, R. S., Ohyashiki, J. H., Kurashina, R., Kobayashi, C., Zhang,  Y., 
Takaku,  T., et al. (2007). Induction of heme oxygenase-1 by cobalt 
protoporphyrin enhances the antitumour effect of bortezomib in adult T-cell 
leukaemia cells. Br. J. Cancer 97, 1099–1105. doi: 10.1038/sj.bjc.6604003

Hounkpe, B. W., Fiusa, M. M. L., Colella, M. P., da Costa, L. N. G., Benatti, R., 
de, O., et al. (2015). Role of innate immunity-triggered pathways in the 
pathogenesis of Sickle Cell Disease: a meta-analysis of gene expression studies. 
Sci. Rep. 5, 17822. doi: 10.1038/srep17822

Ishihara, M., Araya, N., Sato, T., Tatsuguchi, A., Saichi, N., Utsunomiya, A., et al. 
(2013). Preapoptotic protease calpain-2 is frequently suppressed in adult T-cell 
leukemia. Blood 121, 4340–4347. doi: 10.1182/blood-2012-08-446922

Jha, P. K., Vijay, A., Sahu, A., and Ashraf, M. Z. (2016). Comprehensive Gene 
expression meta-analysis and integrated bioinformatic approaches reveal 
shared signatures between thrombosis and myeloproliferative disorders. Sci. 
Rep. 6, 37099. doi: 10.1038/srep37099

Kagdi, H., Demontis, M. A., Ramos, J. C., and Taylor, G. P. (2018). Switching 
and loss of cellular cytokine producing capacity characterize in vivo viral 
infection and malignant transformation in human T- lymphotropic virus type 
1 infection. PLoS Pathog. 14, e1006861. doi: 10.1371/journal.ppat.1006861

Kauffmann, A., Gentleman, R., and Huber, W. (2008). arrayQualityMetrics—a 
bioconductor package for quality assessment of microarray data. Bioinformatics 
25, 415–416. doi: 10.1093/bioinformatics/btn647

Kobayashi, S., Nakano, K., Watanabe, E., Ishigaki, T., Ohno, N., Yuji, K., et al. 
(2014). CADM1 expression and stepwise downregulation of CD7 are closely 
associated with clonal expansion of HTLV-I-infected cells in adult T-cell 
leukemia/lymphoma. Clin. Cancer Res. 20, 2851–2861. doi: 10.1158/1078-
0432.CCR-13-3169

Kress, A. K., Schneider, G., Pichler, K., Kalmer, M., Fleckenstein, B., and 
Grassmann, R. (2010). Elevated cyclic AMP levels in T lymphocytes 
transformed by human T-cell lymphotropic virus type 1. J. Virol. 84, 8732–
8742. doi: 10.1128/JVI.00487-10

Lacagnina, M. J., Watkins, L. R., and Grace, P. M. (2018). Toll-like receptors and 
their role in persistent pain. Pharmacol. Ther. 184, 145–158. doi: 10.1016/j.
pharmthera.2017.10.006

Langfelder, P., and Horvath, S. (2012). Fast R functions for robust correlations and 
hierarchical clustering. J. Stat. Softw. 46. doi: 10.18637/jss.v046.i11

Leek, J. T., Johnson, W. E., Parker, H. S., Fertig, E. J., Jaffe, A. E., Storey, J. D., et al. 
(2013). sva: Surrogate variable analysis. R Package Version 3. 

Matson, J. P., and Cook, J. G. (2017). Cell cycle proliferation decisions: the impact 
of single cell analyses. FEBS J. 284, 362–375. doi: 10.1111/febs.13898

Matutes, E. (2007). Adult T-cell leukaemia/lymphoma. J. Clin. Pathol. 60, 1373–
1377. doi: 10.1136/jcp.2007.052456

Messmer-Blust, A. F., Balasubramanian, S., Gorbacheva, V. Y., Jeyaratnam, J. A., 
and Vestal, D. J. (2010). The interferon-gamma-induced murine guanylate-
binding protein-2 inhibits rac activation during cell spreading on fibronectin 
and after platelet-derived growth factor treatment: role for phosphatidylinositol 
3-kinase. Mol. Biol. Cell 21, 2514–2528. doi: 10.1091/mbc.e09-04-0344

Miller, J. A., Cai, C., Langfelder, P., Geschwind, D. H., Kurian, S. M., Salomon, D. R., 
et al. (2011). Strategies for aggregating gene expression data: the collapseRows 
R function. BMC Bioinf. 12, 322. doi: 10.1186/1471-2105-12-322

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://doi.org/10.1186/1471-2164-13-275
https://doi.org/10.1172/JCI75250
https://doi.org/10.1371/journal.pntd.0005285
https://doi.org/10.1182/blood-2009-08-241117
https://github.com/bmbolstad/preprocessCore
https://doi.org/10.1371/journal.pone.0017238
https://doi.org/10.1371/journal.pone.0017238
https://doi.org/10.1093/bioinformatics/btm254
https://doi.org/10.1136/bmj.i6460
https://doi.org/10.1182/blood-2011-11-390807
https://doi.org/10.1182/blood-2011-11-390807
https://doi.org/10.1093/nar/gkx1132
https://doi.org/10.1016/j.micinf.2003.09.008
https://doi.org/10.1016/j.micinf.2003.09.008
https://doi.org/10.1182/blood-2015-08-662593
https://doi.org/10.3389/fbioe.2017.00084
https://doi.org/10.1046/j.1537-2995.1997.37297203532.x
https://doi.org/10.1016/j.neurol.2011.12.006
https://doi.org/10.1038/sj.bjc.6604003
https://doi.org/10.1038/srep17822
https://doi.org/10.1182/blood-2012-08-446922
https://doi.org/10.1038/srep37099
https://doi.org/10.1371/journal.ppat.1006861
https://doi.org/10.1093/bioinformatics/btn647
https://doi.org/10.1158/1078-0432.CCR-13-3169
https://doi.org/10.1158/1078-0432.CCR-13-3169
https://doi.org/10.1128/JVI.00487-10
https://doi.org/10.1016/j.pharmthera.2017.10.006
https://doi.org/10.1016/j.pharmthera.2017.10.006
https://doi.org/10.18637/jss.v046.i11
https://doi.org/10.1111/febs.13898
https://doi.org/10.1136/jcp.2007.052456
https://doi.org/10.1091/mbc.e09-04-0344
https://doi.org/10.1186/1471-2105-12-322


Meta-Analysis of HTLV-1 Identifies BiomarkersFukutani et al.

9 November 2019 | Volume 10 | Article 1056Frontiers in Genetics | www.frontiersin.org

Mirvish, E. D., Pomerantz, R. G., and Geskin, L. J. (2011). Infectious agents 
in cutaneous T-cell lymphoma. J. Am. Acad. Dermatol. 64, 423–431. doi: 
10.1016/j.jaad.2009.11.692

Nakagawa, M., Izumo, S., Ijichi, S., Kubota, H., Arimura, K., Kawabata, M., 
et  al. (1995). HTLV-I-associated myelopathy: analysis of 213 patients based 
on clinical features and laboratory findings. J. Neurovirol. 1, 50–61. doi: 
10.3109/13550289509111010

Olière, S., Hernandez, E., Lézin, A., Arguello, M., Douville, R., Nguyen, T. L.-A., 
et al. (2010). HTLV-1 evades type I interferon antiviral signaling by inducing 
the suppressor of cytokine signaling 1 (SOCS1). PLoS Pathog. 6, e1001177. doi: 
10.1371/journal.ppat.1001177

O’Mara, T. A., Zhao, M., and Spurdle, A. B. (2016). Meta-analysis of gene 
expression studies in endometrial cancer identifies gene expression profiles 
associated with aggressive disease and patient outcome. Sci. Rep. 6, 36677. doi: 
10.1038/srep36677

Osame, M., Usuku, K., Izumo, S., Ijichi, N., Amitani, H., Igata, A., et al. (1986). 
HTLV-I associated myelopathy, a new clinical entity. Lancet 1, 1031–1032. doi: 
10.1016/S0140-6736(86)91298-5

Pinto, M. T., Malta, T. M., Rodrigues, E. S., Pinheiro, D. G., Panepucci, R. A., 
Malmegrim de Farias, K. C. R., et al. (2014). Genes related to antiviral activity, 
cell migration, and lysis are differentially expressed in CD4(+) T cells in 
human t cell leukemia virus type 1-associated myelopathy/tropical spastic 
paraparesis patients. AIDS Res. Hum. Retroviruses 30, 610–622. doi: 10.1089/
aid.2013.0109

Sato, T., Coler-Reilly, A., Utsunomiya, A., Araya, N., Yagishita, N., Ando, H., 
et  al. (2013). CSF CXCL10, CXCL9, and neopterin as candidate prognostic 
biomarkers for HTLV-1-associated myelopathy/tropical spastic paraparesis. 
PLoS Negl. Trop. Dis. 7, e2479. doi: 10.1371/journal.pntd.0002479

Shaul, Y. D., and Seger, R. (2007). The MEK/ERK cascade: from signaling 
specificity to diverse functions. Biochim. Biophys. Acta 1773, 1213–1226. doi: 
10.1016/j.bbamcr.2006.10.005

Shimoyama, M., and members of The Lymphoma Study Group (1984–87)* 
(1991). Diagnostic criteria and classification of clinical subtypes of adult T-cell 
leukaemia-lymphoma. Br. J. Haematol. 79, 428–437. doi: 10.1111/j.1365-
2141.1991.tb08051.x

Shu, S. T., Dirksen, W. P., Lanigan, L. G., Martin, C. K., Thudi, N. K., Werbeck, J. L., 
et al. (2012). Effects of parathyroid hormone-related protein and macrophage 
inflammatory protein-1α in Jurkat T-cells on tumor formation in vivo and 
expression of apoptosis regulatory genes in vitro. Leuk. Lymphoma 53, 688–698. 
doi: 10.3109/10428194.2011.626883

Stelzer, G., Rosen, N., Plaschkes, I., Zimmerman, S., Twik, M., Fishilevich, S., 
et al. (2016). The GeneCards Suite: from gene data mining to disease genome 
sequence analyses. Curr. Protoc. Bioinf. 54, 1.30.1–1.30.33. doi: 10.1002/cpbi.5

Sweeney, T. E., Haynes, W. A., Vallania, F., Ioannidis, J. P., and Khatri, P. (2017). 
Methods to increase reproducibility in differential gene expression via meta-
analysis. Nucleic Acids Res. 45, e1. doi: 10.1093/nar/gkw797

Tattermusch, S., Skinner, J. A., Chaussabel, D., Banchereau, J., Berry, M. P., 
McNab, F. W., et al. (2012). Systems biology approaches reveal a specific 

interferon-inducible signature in HTLV-1 associated myelopathy. PLoS Pathog. 
8, e1002480. doi: 10.1371/journal.ppat.1002480

Therneau, T., Atkinson, B., and Ripley, B. (2015). rpart: Recursive Partitioning and 
Regression Trees. R package version 4. pp. 1–10.

Uchiyama, T., Yodoi, J., Sagawa, K., Takatsuki, K., and Uchino, H. (1977). Adult 
T-cell leukemia: clinical and hematologic features of 16 cases. Blood 50, 481–
492. doi: 10.1182/blood.V50.3.481.bloodjournal503481

Weitzman, J. (2003). Interleukins in inflammation. Genome Biol. 4, 
spotlight–20030217. doi: 10.1186/gb-spotlight-20030217-01

Wickham, H. (2011). The Split-Apply-Combine Strategy for Data Analysis. J. Stat. 
Softw. 40. doi: 10.18637/jss.v040.i01

Xue, S., Song, G., and Yu, J. (2017). The prognostic significance of PD-L1 
expression in patients with glioma: A meta-analysis. Sci. Rep. 7, 4231. doi: 
10.1038/s41598-017-04023-x

Yamada, Y., Tomonaga, M., Fukuda, H., Hanada, S., Utsunomiya, A., Tara, M., 
et al. (2001). A new G-CSF-supported combination chemotherapy, LSG15, for 
adult T-cell leukaemia-lymphoma: Japan Clinical Oncology Group Study 9303. 
Br. J. Haematol. 113, 375–382. doi: 10.1046/j.1365-2141.2001.02737.x

Yamagishi, M., Nakano, K., Miyake, A., Yamochi, T., Kagami, Y., Tsutsumi, A., 
et  al. (2012). Polycomb-mediated loss of miR-31 activates NIK-dependent 
NF-κB pathway in adult T cell leukemia and other cancers. Cancer Cell 21, 
121–135. doi: 10.1016/j.ccr.2011.12.015

Yamamoto-Taguchi, N., Satou, Y., Miyazato, P., Ohshima, K., Nakagawa, M., Katagiri, 
K., et al. (2013). HTLV-1 bZIP factor induces inflammation through labile Foxp3 
expression. PLoS Pathog. 9, e1003630. doi: 10.1371/journal.ppat.1003630

Yamano, Y., and Sato, T. (2012). Clinical pathophysiology of human T-lymphotropic 
virus-type 1-associated myelopathy/tropical spastic paraparesis. Front. 
Microbiol. 3, 389. doi: 10.3389/fmicb.2012.00389

Yasuma, K., Matsuzaki, T., Yamano, Y., Takashima, H., Matsuoka, M., and Saito, 
M. (2016). HTLV-1 subgroups associated with the risk of HAM/TSP are related 
to viral and host gene expression in peripheral blood mononuclear cells, 
independent of the transactivation functions of the viral factors. J. Neurovirol. 
22, 416–430. doi: 10.1007/s13365-015-0407-2

Yu, G., Wang, L.-G., Han, Y., and He, Q.-Y. (2012). clusterProfiler: an R Package 
for Comparing Biological Themes Among Gene Clusters. OMICS 16, 284–287 
doi: 10.1089/omi.2011.0118

Conflict of Interest: The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could be construed as a 
potential conflict of interest.

Copyright © 2019 Fukutani, Ramos, Kasprzykowski, Azevedo, Rodrigues, Lima, 
Araújo Junior, Fukutani and Queiroz. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License (CC BY). The use, 
distribution or reproduction in other forums is permitted, provided the original 
author(s) and the copyright owner(s) are credited and that the original publication 
in this journal is cited, in accordance with accepted academic practice. No use, 
distribution or reproduction is permitted which does not comply with these terms.

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://doi.org/10.1016/j.jaad.2009.11.692
https://doi.org/10.3109/13550289509111010
https://doi.org/10.1371/journal.ppat.1001177
https://doi.org/10.1038/srep36677
https://doi.org/10.1016/S0140-6736(86)91298-5
https://doi.org/10.1089/aid.2013.0109
https://doi.org/10.1089/aid.2013.0109
https://doi.org/10.1371/journal.pntd.0002479
https://doi.org/10.1016/j.bbamcr.2006.10.005
https://doi.org/10.1111/j.1365-2141.1991.tb08051.x
https://doi.org/10.1111/j.1365-2141.1991.tb08051.x
https://doi.org/10.3109/10428194.2011.626883
https://doi.org/10.1002/cpbi.5
https://doi.org/10.1093/nar/gkw797
https://doi.org/10.1371/journal.ppat.1002480
https://doi.org/10.1182/blood.V50.3.481.bloodjournal503481
https://doi.org/10.1186/gb-spotlight-20030217-01
https://doi.org/10.18637/jss.v040.i01
https://doi.org/10.1038/s41598-017-04023-x
https://doi.org/10.1046/j.1365-2141.2001.02737.x
https://doi.org/10.1016/j.ccr.2011.12.015
https://doi.org/10.1371/journal.ppat.1003630
https://doi.org/10.3389/fmicb.2012.00389
https://doi.org/10.1007/s13365-015-0407-2
https://doi.org/10.1089/omi.2011.0118
http://creativecommons.org/licenses/by/4.0/

	Meta-Analysis of HTLV-1-Infected Patients Identifies CD40LG and GBP2 as Markers of ATLL and HAM/TSP Clinical Status: Two Genes Beat as One

	Introduction 

	Methodology

	Description of Datasets Comprising the Discovery Dataset

	Data Retrieval, Pre-Processing, and Batch Correction

	Classification of HTLV Patient Clinical Manifestation via Decision Tree

	Co-Expression and Enrichment Analysis of Genes Related to CD40LG and GBP2

	Description of Datasets Used 
for Validation


	Results

	Gene Expression of CD40LG and GBP2 Permits Accurate Discrimination of ATLL and HAM/TSP Patients

	Gene Expression of CD40LG and GBP2 Correlate With Various Immune and Metabolic Pathways That Could Impact the Course of HTLV Infection

	Validation of CD40LG and GBP2 in Independent Datasets Reveals Classification Robustness in Different Tissue Types


	Discussion

	Conclusion

	Data Availability Statement

	Author Contributions

	Funding

	Acknowledgments

	Supplementary Material

	References



