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Genetic and nongenetic factors are involved in the individual ability to physiologically 
acclimatize to high-altitude hypoxia through processes that include increased heart rate 
and ventilation. High-altitude acclimatization is thought to have a genetic component, 
yet it is unclear if other factors, such as epigenetic gene regulation, are involved in 
acclimatization to high-altitude hypoxia in nonacclimatized individuals. We collected saliva 
samples from a group of healthy adults of European ancestry (n = 21) in Kathmandu 
(1,400 m; baseline) and three altitudes during a trek to the Everest Base Camp: Namche 
(3,440 m; day 3), Pheriche (4,240 m; day 7), and Gorak Shep (5,160 m; day 10). We 
used quantitative bisulfite pyrosequencing to determine changes in DNA methylation, a 
well-studied epigenetic marker, in LINE-1, EPAS1, EPO, PPARa, and RXRa. We found 
significantly lower DNA methylation between baseline (1,400 m) and high altitudes in 
LINE-1, EPO (at 4,240 m only), and RXRa. We found increased methylation in EPAS1 (at 
4,240 m only) and PPARa. We also found positive associations between EPO methylation 
and systolic blood pressure and RXRa methylation and hemoglobin. Our results show that 
incremental exposure to hypoxia can affect the epigenome. Changes to the epigenome, 
in turn, could underlie the process of altitude acclimatization.
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INTRODUCTION 

More than 140 million people worldwide permanently live at high altitudes, and 40 million more 
visit altitudes above 2,500 m annually (Ward et al., 2000; Moore, 2001). Atmospheric oxygen partial 
pressure decreases with increasing altitude, and most individuals experience physiological changes 
in low-oxygen environments, including increased ventilation, increased red blood cell production, 
and increased heart rate (HR) (Houston and Riley, 1947). A combination of molecular- to the 
organismal-level changes occurs during high-altitude acclimatization (Sarkar et al., 2003).

The acute response to hypoxia (seconds to hours) involves changes in homeostatic regulation, 
whereas chronic acclimatization (hours to years) is characterized by gene expression changes in 
the carotid body, endothelial cells, and other tissues (Kourembanas et al., 1990; Wiener et al., 1996; 
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Huey and Powell, 2000). One of main responders to decreasing 
levels of oxygen is the hypoxia-inducible factor 1 (HIF) pathway. 
HIF-1 consists of two subunits, oxygen-regulated HIF-1α, and 
constitutively expressed HIF-1β (Ivan et al., 2001). In normoxic 
conditions, HIF-1α is hydroxylated by HIF prolyl hydroxylase 
(EGLN) and destined for degradation by ubiquitination via the 
von Hippel–Lindau ubiquitin ligase (Ohh et al., 2000; Epstein 
et al., 2001). HIF-1α hydroxylation is decreased in hypoxic 
conditions allowing it to accumulate and dimerize with HIF-1β 
forming an active HIF-1 transcription factor in the nucleus 
(Semenza, 2007). HIF is involved in promoting angiogenesis, 
regulating erythropoiesis, stimulating glycolysis, and inhibiting 
fatty acid oxidation (Formenti et al., 2010; Haase, 2013; Huang 
et al., 2014).

Previous studies have shown that mRNA levels of genes 
involved in the HIF pathway change upon hypoxic exposure, 
including HIF1A and ARNT in rats and mice (Wiener et al., 
1996), mRNA levels of the platelet-derived growth factor 
(PDGF-B) in human endothelial cells (Kourembanas et al., 
1990), and dopamine D2 receptor (D2R) in rat carotid body 
(Huey and Powell, 2000). Given their ability to change upon 
exposure to environmental factors, epigenetic mechanisms have 
been hypothesized to play a role the hypoxic response (Brown 
and Rupert, 2014). Epigenetics refers to mitotically and, in some 
cases, meiotically heritable changes to gene expression that do 
not involve changes to DNA sequence and may be reversible 
(Wolffe and Guschin, 2000; Feil and Fraga, 2011). The most 
widely studied and best understood epigenetic modification 
is DNA methylation, an addition of a methyl group to the 
nucleotide cytosine in a cytosine-guanine dinucleotide (CpG) 
(Mohn and Schubeler, 2009; Lam et al., 2012). DNA methylation 
is most commonly associated with gene repression when located 
in promoter regions of genes (Klose and Bird, 2006).

Epigenetic modifications are known for their plasticity and 
ability to change based on the environmental conditions (Bollati 
and Baccarelli, 2010). Previous studies found associations 
between DNA methylation and pharmaceuticals, exercise, stress, 
and other exposures (Dolinoy, 2007; Dolinoy and Jirtle, 2008; 
Senut et al., 2012; Faulk et al., 2014; Non et al., 2016). Decreased 
oxygen levels are associated with increased production of 
reactive oxygen species (ROS) that are genotoxic and can affect 
DNA methylation and the posttranslational modifications to 
histone proteins (James et al., 2004; Niu et al., 2015). Moreover, 
epigenetic changes have been observed in cancer cells that are 
often hypoxic due to the lower oxygen availability of solid tumors 
(Shahrzad et al., 2007; Baxter et al., 2014). Here, we focused on 
DNA methylation and exposure to high-altitude hypoxia.

Epigenetic regulation has been studied in the context of 
high-altitude adaptation in Andeans and Ethiopians (Alkorta-
Aranburu et al., 2012; Childebayeva et al., 2019). Despite 
this,  epigenetic changes associated with acclimatization to  
high-altitude hypoxia are not well understood (Julian et  al., 
2014). To determine if short-term exposure to hypoxia affects 
the epigenome, we recruited individuals trekking to Everest Base 
Camp in the Nepal Himalaya. We collected saliva samples and 
various physiological measurements at four different altitudes: 

Kathmandu [1,400m; baseline (BL)], Namche (3,440m; day 3), 
Pheriche (4,240m; day 7), and Gorak Shep (5,160m; day 10).

We determined the DNA methylation status of the repetitive 
element LINE-1 and the hypoxia-associated genes EPAS1, EPO, 
PPARa, and RXRa. We chose LINE-1 as the marker of global 
methylation as it has been shown to have different methylation 
profiles at high compared to low altitude in multigenerational 
Andeans of Quechua ancestry (Childebayeva et al., 2019). We 
examined methylation at EPAS1 as polymorphisms near this 
locus are associated with hemoglobin levels in Tibetans (Beall 
et al., 2010), EPO as it is involves in red blood cell production 
(Eckardt et al., 1992; Dame et al., 1998; Beall et al., 2010), 
and PPARa and RXRa as these hypoxia-associated genes are 
involved in lipid metabolism regulation (Keller et al., 1993; 
Chinetti et al., 2000) and PPARA is associated with adaptation 
in high-altitude populations in the Himalaya (Keller et al., 
1993; Chinetti et  al., 2000; Simonson et al., 2010; Horscroft 
et al., 2017). RXRa and PPARa form a heterodimer that is 
necessary for PPARa functioning (Chan and Wells, 2009). The 
aforementioned HIF pathway genes have been chosen due to 
previous evidence that methylation levels at these genes are 
associated hypoxia (Rossler et al., 2004; Lachance et al., 2014; 
Cortese et al., 2016).

MATeRIALs AND MeTHODs

ethics and participant Recruitment
This study abided by the Canadian Government Tri-Council 
policy on research ethics with human participants (TCPS2) and 
the Declaration of Helsinki, except for registration in a database. 
Ethical approval was received in advance through Mount Royal 
University Human Research Ethics Board (protocol 100012 and 
101361), the Syracuse University Institutional Review Board 
(protocol 18-006), and the University of Michigan Institutional 
Review Board (HUM00141118) and harmonized with the Nepal 
Health Research Council (protocol 109-2017).

This study took place in May 2018 as part of a research 
expedition in the Khumbu Valley, Everest region of Nepal. We 
recruited 21 healthy, nonpregnant, nonlactating, nonsmokers 
between 19 and 52 years of age from a larger research expedition 
to Everest Base Camp in the Nepal Himalaya. All participants 
were recruited in Kathmandu via verbal communication and 
provided written and informed consent prior to voluntary 
participation in the study. Even though these participants were 
recruited as a part of a larger research expedition, the research 
questions and data collection reported here were planned a priori 
in advance. Participants either were all altitude naive or had an 
extended period since the last altitude experience (> 1year). All 
participants were of self-reported European descent to control 
for population effects on epigenetics. Participant characteristics 
can be found in Table 1.

Ascent profile and Data Collection
Over the course of 10 days, a team of researchers and study 
participants trekked from 2,800 to 5,160 m. The ascent profile 
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included three nontrekking rest days at 3,440 m (day 3), 3,820 m 
(day 5), and 4,240 m (day 7; Figure 1). In the morning between 
6:00 and 8:00 local time at 1,400m (Kathmandu; day 0), 3,440 m 
(Namche; day 3), 4,240 m (Pheriche; day 7), and 5,160 m (Gorak 
Shep; day 10), saliva samples for DNA and physiological measures 
were taken following one night of sleep at each altitude.

With respect to physiological measures, body weight was 
measured using a portable digital scale (model HBF-516B; 
Omron, San Ramon, CA, United States). All physiological 
measures were obtained at rest in a seated position following 
>2-min rest with eyes closed and white noise played through 
headphones to limit distraction. Blood pressure was assessed 

using an automated sphygmomanometer. Peripheral oxygen 
saturation and HR (min−1) were measured using a portable 
finger pulse oximeter (Masimo SET Rad-5, Danderyd, Sweden). 
Hemoglobin concentration [(Hb); Hemocue Hemoglobin 
System, Hb201+, Angelholm, Sweden] was assessed via finger 
capillary blood sample using sterile lancets and universal 
precautions. Self-reported acute mountain sickness scores were 
obtained using the standard Lake Louise Questionnaire (Roach 
Rc et al., 1993). All phenotypic measures were performed at the 
same time of day for each participant. Physiological data can be 
found in Table 1 and Supplementary Table 1.

DNA Methylation
Saliva samples were collected, and DNA was extracted following 
a well-established protocol (Quinque et al., 2006). Quantitative 
pyrosequencing was performed to assess DNA methylation 
levels of LINE1, EPAS1, EPO, PPARa, and RXRa. Five hundred 
nanograms of DNA from each sample was bisulfite converted 
using the EZ-96 DNA Methylation™ Kit (Zymo Research, 
Irvine, CA, USA). Bisulfite-converted DNA was amplified using 
primers for LINE1 and each targeted gene and HotstarTaq plus 
Master Mix (Qiagen, Valencia, CA, USA). Primer sequences and 
the locations of the amplicons can be found in Supplementary 
Table 2. Each sample was pyrosequenced in duplicate using 
the Pyromark Q96 pyrosequencer (Qiagen). Quality control 
of the data was assessed using quality control measures built 
into the pyrosequencing software. All measurements outside 
of 2 standard deviations from the mean of all samples for each 
CpG position were excluded. Moreover, measurements with 
the coefficient of variance between replicates of more than 10 
were excluded from further analyses. Duplicate measurements 
were averaged, as was DNA methylation at CpG sites within 
each gene. Statistical modeling was performed on these average 
DNA methylation values for each subject at each gene. Statistical 
analyses were performed using the samples collected from the 
21 individuals at four altitudes for each LINE1, EPAS1, EPO, 
and PPARa and 19 for RXRa. No template controls and 0% 

TABLe 1 | Participant characteristics and DNA methylation.

Kathmandu (1,400m) Namche (3,400m) pheriche (4,370m) Gorak shep (5,160m)

LINE-1 64.55 (3.05) 62.83 (3.41)** 63.40 (2.12)* 63.70 (3.63).
EPAS1 6.48 (1.19) 6.55 (1.09) 6.95 (1.38)* 6.90 (1.35)
EPO 72.78 (4.88) 71.79 (4.14) 69.57 (4.13)* 71.22 (3.98)
PPARa 13.68 (4.16) 14.92 (4.51) 15.49 (3.79)** 16.12 (4.09)***
RXRa 40.01 (11.75) 35.13 (12.82)* 32.44 (9.05)*** 33.57 (12.98)**
Hemoglobin (g/dL) 132.20 (26.67) 146.32 (18.13)** 149.42 (16.84)** 149.63 (26.06) **
Body mass index 22.69 (2.52) 22.58 (2.46) 22.45 (2.36)** 22.25 (2.34)***
Systolic blood pressure (mmHg) 119.62 (12.29) 124.62 (10.60). 120.62 (10.91) 126.67 (17.98)*
Diastolic blood pressure (mmHg) 83.00 (6.61) 87.95 (7.61)** 87.19 (8.45)** 86.38 (9.01)*
Peripheral oxygen saturation 96.86 (1.11) 92.67 (3.26)*** 89.29 (2.72)*** 81.48 (4.80)***
% Female 45.45 (24.65, 66.26)
Age (year) 24.41 (8.20)

Data are means (SD) of average measurement per individual, 95% confidence interval (CI) for proportions in brackets. Age is presented as mean (SD).
Significance symbols denote the difference between Kathmandu baseline and each altitude.
.p<0.10. *p<0.05. **p<0.01. ***p<0.001.

fIGURe 1 | Trekking profile with the sampling locations marked by arrows.
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methylated DNA and 100% methylated DNA controls (Qiagen) 
were included in all experiments.

statistical Analysis
We used R version 3.5.1 (R Core Team, 2018). Packages lme4 
(Bates et al., 2015), lmerTest (Kuznetsova et al., 2017), ggplot2 
(Wickham, 2009), and directlabels (Hocking, 2018) were 
employed in our statistical analysis and plotting. Linear mixed-
effects modeling was used to account for replicate measurements 
at each altitude. The following linear mixed-effects models were 
tested. Study participants were modeled as random effects to 
account for repeated measurements. We included age and sex 
in the models, since both are known to affect DNA methylation 
(Liu et al., 2010; Hernandez et al., 2011; Lam et al., 2012; 
Horvath, 2013).

Yi (% methylation) ~ B00 + B01(X) + B02(Sex) + B03(Age) + 
(1|ID) + ei, where X = low altitude (1,440m, BL) vs. high 
altitude [3,440m (day 3), vs. 4,240m (day 7), vs. 5,160m (day 10) 
combined], ID = sample ID.

Yi (% methylation) ~ B00 + B01(X) + B02(Sex) + B03(Age) + 
(1|ID) + ei, where X = altitude [1,400 (BL) vs. 3,440m (day 3), vs. 
4,240m (day 7), vs. 5,160m (day 10)], ID = sample ID.

Yi (% methylation) ~ B00 + B01(X) + B02(Altitude) + 
B03(Sex) + B04(Age) + (1|ID) + ei, where X = phenotype, 
altitude = 1,400m (BL), 3,440m (day 3), 4,240m (day 7), 5,160m 
(day 10), ID = sample ID.

ResULTs

Hypoxic exposure Is Associated With 
Changes in DNA Methylation
We found LINE1 methylation to be negatively associated 
with altitude when comparing low altitude 1,400 m (BL) to 
high altitude [3,440 m (day 3) + 4,240 m (day 7) + 5,160 m 
(day 10)] (β  = −1.62 (high), p = 0.005) (Table 2, Figure 2, 
and Supplementary Figure 1A). Methylation levels of LINE1 
were also significantly lower at 3,440 m (day 3) and 4,240 m 
(day 7) compared to 1,400 m (BL) (Table 2, Figure 2 and 
Supplementary Figure 1B).

The association between EPAS1 methylation and high vs. 
low altitude approached significance (β = 0.36 (high), p = 0.096, 
Supplementary Figure 1B), and only the comparison between 
1,400 m (BL) and 4,240m (day 7) was significant at p<0.05 (β = 
0.58, p = 0.033, Table 2).

EPO methylation was not significantly different between high 
and low altitude [β = −1.34 (high), p = 0.171] (Table 2, Figure 2 
and Supplementary Figure 1C), and only the comparison 
between 1,400 and 4,240 m (day 7) was significant (β = −2.71, 
p = 0.023, Table 2, Figure 2).

PPARa methylation was positively associated with high 
altitude [β = 1.97 (high), p = 0.002, Figure 2 and Supplementary 
Figure 1D], and the comparisons between 1,400 m (BL) vs. 
4,240 m (day 7) and 5,160 m (day 10) were significant (Table 2).

We observed decreased methylation of RXRa associated 
with high altitude [β = −7.14 (high), p<0.001, Figure 2 and 

Supplementary Figure 1E]. Moreover, RXRa methylation levels 
at 3,440 m (day 3), 4,240 m (day 7), and 5,160 m (day 10) were 
significantly lower than at 1,400 m (BL) (Table 2).

Associations Between DNA Methylation 
and phenotypic Data
Systolic blood pressure was positively associated with EPO 
methylation (β = 0.63, p = 0.022, Supplementary Table  3). 
This relationship was seen for baseline, day 3, and day 
10 but not day 7 (Supplementary Figure 2B). We found 
a significant association between increased RXRa DNA 
methylation and increased hemoglobin levels (β = 0.54, p = 
0.038, Supplementary Table 3). This general relationship was 
observed for each altitude, except the low-altitude baseline 
(Supplementary Figure 2A). We also identified associations 
approaching significance between PPARa methylation and 
hemoglobin, RXRa methylation and systolic blood pressure, 
body mass index, and EPO, and mean arterial pressure and 
EPO methylation (Supplementary Table 3). We did not find 
any significant associations between hemoglobin levels and 
EPAS1 or EPO methylation (data not shown).

DIsCUssION

Oxygen homeostasis is an essential component of basic 
physiological homeostasis. In the mitochondria, oxygen is used 

TABLe 2 | Associations between DNA methylation and altitude.

β p

LINE-1
Low vs. high* −1.62 (High) 0.005 **

3,440m (day 3)** −2.04 0.003 **
4,240m (day 7)** −1.47 0.037 *

5,160m (day 10)** −1.32 0.055.
EPAS1

Low vs. high* 0.36 (High) 0.096.
3,440m (day 3)** 0.27 0.310
4,240m (day 7)** 0.58 0.033*

5,160m (day 10)** 0.22 0.393
EPO

Low vs. high* −1.34 (High) 0.171
3,440m (day 3)** −0.61 0.603
4,240m (day 7)** −2.71 0.023 *

5,160m (day 10)** −0.69 0.553
PPARa

Low vs. high* 1.97 (High) 0.002 **
3,440m (day 3)** 1.10 0.125
4,240m (day 7)** 2.05 0.005 **

5,160m (day 10)** 2.76 < 0.001***
RXRA

Low vs. high* −7.14 (High) < 0.001***
3,440m (day 3)** −5.13 0.039 *
4,240m (day 7)** −8.70 < 0.001***

5,160m (day 10)** −7.58 0.003 **

Low vs. high refers to 1,400m (BL) vs. 3,440, 4,240, and 5,160m combined. 
Otherwise, results indicate the difference between 1,400m (BL) and the altitude 
listed. All mixed-effects models were adjusted for age and sex.
.p<0.10. *p<0.05. **p<0.01. ***p<0.001.
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to produce ATP in the process of oxidative phosphorylation 
(Semenza, 2007). HIF downregulates oxygen consumption by 
mitochondria and stimulates the glycolytic pathway enzymes 
(Semenza, 2010). In addition, the HIF pathway is involved in 
the regulation of fatty acid metabolism (Huang et al., 2014; 
Liu et al., 2014). Fatty acid oxidation is inhibited in hypoxic 
conditions as a result of the switch to glycolysis. This leads 
to accumulation of lipid droplets that have been shown to 
play a role in protection against ROS (Whitmer et al., 1978; 
Bensaad et al., 2014). Moreover, the HIF pathway is involved in 
increasing hemoglobin levels in response to decreased oxygen 
levels (Franke et al., 2013). In this study, we determined DNA 
methylation levels of four HIF pathway genes involved in 
oxygen homeostasis and metabolism, EPAS1, EPO, PPARa, 
and RXRa, and the marker of global methylation, LINE-1, to 
better understand how the epigenome responds to changes in 
ambient oxygen availability.

This is the first study to report changes in DNA methylation 
associated with an incremental ascent to high altitude in a 
cohort of European ancestry. Previous studies have shown 
that DNA methylation is affected by chronic exposure to 
hypoxia (Watson et al., 2010; Yuen et al., 2013; Brown and 
Rupert, 2014; Childebayeva et al., 2019). However, the effects 
of short-term hypoxic exposure on the epigenome have not 
been studied in the context of acclimatization to high altitude 
in nonacclimatized individuals.

We found decreased LINE-1 methylation, increased PPARa, 
and decreased RXRa methylation at high compared to low 
altitude. We also identified increased EPAS1 methylation at 

4,240 m (seven days of ascent) and decreased EPO methylation 
at 4,240 m compared to 1,400m. We also found positive 
associations between RXRa methylation and hemoglobin 
and between EPO methylation and systolic blood pressure. 
These findings show that short-term exposure to high-altitude 
hypoxia can influence the epigenome, which may in turn 
influence gene expression and phenotype and thus contribute 
to high-altitude acclimatization.

LINE-1 is a repetitive element, and its methylation level is 
associated with the global genomic methylation level (Ogino 
et al., 2008a; Iwagami et al., 2012). The methylation status of 
LINE-1 has been used as a proxy for the status of the methylome 
upon exposure to toxicants and in cancer (Chalitchagorn et al., 
2004; Kile et al., 2012). Decreased LINE-1 methylation has 
been shown in cancer and has been associated with genomic 
instability (Ogino et al., 2008b; Pattamadilok et al., 2008). We 
found lower LINE-1 methylation levels associated with high-
altitude exposure in our cohort. This could be explained by the 
effect of ROS on the genome, since ROS production is higher in 
hypoxic conditions (Wongpaiboonwattana et al., 2013; Kloypan 
et al., 2015). This finding likely reflects the effects of hypoxia as a 
stressor on the genome.

EPAS1 is involved in activation of oxygen-regulated 
genes, plays a role in vascular remodeling (Peng et al., 
2000), and is an important regulator of EPO, which controls 
erythropoiesis (Rankin et al., 2007). Importantly, EPAS1 
contributes to high-altitude adaptation in Tibetans and 
shows altered methylation in Andeans (Beall et al., 2010; 
Childebayeva et al., 2019). We found increased methylation 

fIGURe 2 | DNA methylation difference between Kathmandu and each altitude is plotted for each gene over time. The baseline is Kathmandu, which is 0. 
Significance levels are shown by *p<0.05, **p<0.005, ***p<0.001.
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of EPAS1 associated with high altitude at 4,240m (day 7), 
potentially suggesting decreased EPAS1 expression. In 
comparison, high-altitude adapted Andeans show decreased 
methylation in hypoxic conditions compared to normoxia 
(Childebayeva et al., 2019). It is possible that the increase 
in EPAS1 methylation corresponds to the increase in EPAS1 
hydroxymethylation. Hydroxymethylation of a CpG site is an 
intermediate stage in the demethylation pathway catalyzed by 
the ten-eleven translocation (TET) family enzymes (Tahiliani 
et al., 2009). The bisulfite conversion method we used does 
not differentiate between methylated and hydroxymethylated 
cytosines (Nestor et al., 2010). It is possible that EPAS1 is in 
the process of demethylation, which would be expected in 
hypoxic conditions, although we are seeing a general increase 
in DNA methylation in our participants.

EPO plays a major role in increased erythropoiesis under HIF 
control (Koury and Bondurant, 1990; Yoon et al., 2006; Risso 
et al., 2007). EPO levels rise quickly upon hypoxic exposure 
(Eckardt et al., 1989). In previous studies of high-altitude 
acclimatization, EPO has been shown to peak after 1 to 3 days 
at altitude, followed by a decline in an altitude-dependent 
manner (Abbrecht and Littell, 1972; Ge et al., 2002). EPO has 
a conserved HIF-1 binding site (HBS) CGTG in its 3′ UTR 
containing a CpG site (Wang and Semenza, 1993; Wang and 
Semenza, 1996; Wenger et al., 1998). Decreased methylation 
status of the HBS has been associated with activation of EPO 
in hypoxic conditions (Wenger et al., 1998). We found lower 
methylation upstream of the HBS site at all higher altitudes 
compared with 1,400m, and this was statistically significant 
at 4,240m. These findings are concordant with previously 
observed increased EPO expression levels at high altitude 
(Robach et al., 2004) and suggest that DNA methylation may 
play a role in this process.

We found a significant positive association between EPO 
methylation and systolic blood pressure suggesting that lower 
levels of erythropoietin may be correlated with higher blood 
pressure, since higher DNA methylation around this locus just 
upstream of an HBS has been linked to decreased expression 
of EPO based on previous research (Wenger et al., 1998). 
Other studies have shown a positive relationship between 
erythropoietin and human recombinant erythropoietin 
and blood pressure at rest and exercise in humans and 
in hypertensive and normotensive rats (Berglund and 
Ekblom, 1991; Raine and Roger, 1991; Muntzel et al., 1993). 
More research is necessary to establish if decreased EPO 
methylation of the locus targeted here is truly associated with 
higher levels of erythropoietin and if there is a link between 
EPO methylation and systolic blood pressure, especially since 
we did not find an association with hemoglobin. Of note, we 
observed a negative relationship between EPO methylation 
and systolic blood pressure at 4,240m (day 7), indicating a 
potential positive link between EPO expression and blood 
pressure at this altitude. This is the only altitude where we 
observed a significant change in methylation compared to 
the baseline. Further investigation is necessary to determine 
why the positive relationship between EPO expression and 

systolic blood pressure was identified only at 4,240 m of 
altitude (day 7).

PPARa is a transcription factor involved in controlling fatty 
acid metabolism and oxidation (Keller et al., 1993). PPARs 
activate the gene for acyl coenzyme A oxidase, which is the 
rate-limiting enzyme of the peroxisomal β-oxidation pathway 
(Dreyer et al., 1992; Keller et al., 1993). In addition to its role in 
fatty acid metabolism, PPARa is also associated with conditions 
such as obesity and diabetes, as well as various cardiovascular 
conditions including hypertension and atherosclerosis (Belanger 
et al., 2002). PPARa promotes fatty acid oxidation and may be 
involved in the switch from fatty acid oxidation to glucose 
oxidation via regulation of uncoupling protein 3 (Teruel et al., 
2000; Gilde et al., 2003).

HIF transcription factors are known regulators of metabolism 
(Formenti et al., 2010). Previous studies in cell cultures have 
shown that PPARa is downregulated by HIF-1 in hypoxic 
conditions, which may be an adaptive response to hypoxia-
induced inflammatory stimuli and metabolic changes (Narravula 
and Colgan, 2001). Another study of hypoxia exposure during 
an incremental ascent to the Everest Base Camp has found lower 
capacity for fatty acid oxidation in skeletal muscle and lower 
PPARa expression at altitude in the Himalayan Sherpa compared 
to lowlanders (Horscroft et al., 2017).

We found increased PPARa methylation associated with 
increasing altitude. The region we targeted is in the promoter 
region of PPARa suggesting that increased methylation here 
would be associated with a decrease in expression of PPARa, 
which is consistent with previous findings of decreased 
PPARa expression in hypoxic conditions (Narravula and 
Colgan, 2001). Decreased expression of PPARa is associated 
with diminished breakdown of fatty acids (Yoon, 2009). Lower 
levels of fatty acid oxidation are hypothesized to occur in 
hypoxic conditions due to the switch to anaerobic glycolysis 
(Ge et al., 2012).

RXRa is a transcription factor involved in fat metabolism 
and intracellular receptor signaling. RXRa binds to PPARa 
forming an active transcriptional complex able to bind to target 
genes known as proliferator-responsive elements (Dreyer 
et al., 1993). Several studies have shown that the activity of 
the PPARa/RXRa complex is reduced in hypoxic conditions 
to enable suppression of fatty acid metabolism (Huss et al., 
2001; Belanger et al., 2007). The RXRa pathway was altered 
by hypobaric hypoxia exposure in the rat brain (Sethy et al., 
2011). RXRs play a protective role in H9c2 cardiomyocytes 
from hypoxia/reoxygenation–induced oxidative injury in rats 
(Shan et al., 2014). We found decreased methylation of the 
CpG island located in the promoter region of RXRa, which 
may be associated with increased expression of RXRa.

Interestingly, we observed opposite trends in PPARa 
and RXRa methylation change. For example, individuals 
with increased PPARa methylation at high altitude have 
decreased RXRa methylation (Supplementary Figures 
1D, E). Interestingly, individuals with decreased PPARa 
methylation (IDs 7 and 17) at high altitude have increased 
RXRa methylation (IDs 7 and 17), further highlighting the 
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interactive nature of PPARa/RXRa. Since we see opposite 
change in PPARa and RXRa methylation levels, it is unclear 
whether it indicates increased or decreased activity of the 
PPARa/RXRa complex.

We found a significant positive association between RXRa 
methylation and hemoglobin levels. RXRa is a member of 
the retinoic acid receptor family and is necessary for normal 
hematopoiesis during development (Melnick and Licht, 1999; 
Oren et al., 2003). Retinoic acid signaling, specifically retinoic 
acid receptor α, is also involved in adult hematopoiesis (Canete 
et al., 2017). RXRa has been shown to play a role in hematopoietic 
signaling in mice (Ricote et al., 2006). However, the role of 
RXRa in this process is not well understood in adult humans. 
Our data suggest that there is a relationship between RXRa and 
hemoglobin levels. Previous studies have shown that PPARa is 
associated with hemoglobin levels, which could explain why we 
see a significant association with RXRa as well, since PPARa and 
RXRa are known to interact (Simonson et al., 2010; Scheinfeldt 
et al., 2012).

One of the limitations of our study is the use of saliva as 
a source of DNA. Saliva comprised white blood cells and 
epithelial buccal cells. Due to differences in DNA methylation 
signatures between tissues, any changes in methylation 
associated with altitude exposure may be confounded by 
cell type composition differences between altitudes (Lokk 
et al., 2014). We did not quantify saliva cell types at each 
altitude and thus were unable to control for this limitation. 
Furthermore, we only assessed the methylation levels of saliva. 
Therefore, it is unclear how other tissues responded to hypoxic 
exposure. However, there are known correlations between 
saliva and blood. Studies of genome-wide DNA methylation 
have reported 88.5% to 96.7% Pearson correlation between 
blood and saliva CpG sites within an individual (Thompson 
et  al., 2013; Smith et al., 2015a). Saliva buccal epithelial cell 
methylation is also similar to the methylation patters of the 
brain due to the same ectodermal developmental origin and 
thus may serve as a proxy for DNA methylation changes in 
the brain (Smith et al., 2015b). Methylation levels of certain 
CpG sites are known to be tissue-specific, while methylation 
levels of other CpG sites correlate between tissue types (Varley 
et al., 2013). To our knowledge, the genes and loci we chose 
to study have not been shown to be tissue-specific in terms of 
methylation levels.

Lastly, we did not collect gene expression data from our 
participants and thus have not been able to directly link changes 
in DNA methylation to gene expression.

Overall, we found that short-term exposure to high-altitude 
hypoxia can affect the epigenome. We observed changes in 
LINE-1 and hypoxia-pathway associated genes EPAS1, EPO, 
PPARa, and RXRa. We also found significant associations 
between DNA methylation of EPO and RXRa and systolic 
blood pressure and hemoglobin, respectively. Our findings 
contribute to the growing literature on the role of epigenetics in 
acclimatization to high altitude. Future studies of the genome-
wide effects of hypoxia on epigenetics are necessary to better 
understand the extent of DNA methylation change upon high-
altitude exposure.
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