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Type 2 Diabetes Mellitus (T2DM) is a chronic, progressive metabolic disorder
characterized by hyperglycemia resulting from abnormalities in insulin secretion, insulin
action, or both. It is associated with an increased risk of developing vascular complication
of micro as well as macro nature. Because of its inconspicuous and heterogeneous
character, the management of T2DM is very complex. Modeling physiological processes
over time demonstrating the patient’s evolving health condition is imperative to
comprehending the patient’s current status of health, projecting its likely dynamics and
assessing the requisite care and treatment measures in future. Hidden Markov Model
(HMM) is an effective approach for such prognostic modeling. However, the nature of the
clinical setting, together with the format of the Electronic Medical Records (EMRs) data, in
particular the sparse and irregularly sampled clinical data which is well understood to
present significant challenges, has confounded standard HMM. In the present study, we
proposed an approximation technique based on Newton’s Divided Difference Method
(NDDM) as a component with HMM to determine the risk of developing diabetes in an
individual over different time horizons using irregular and sparsely sampled EMRs data.
The proposed method is capable of exploiting available sequences of clinical
measurements obtained from a longitudinal sample of patients for effective imputation
and improved prediction performance. Furthermore, results demonstrated that the
discrimination capability of our proposed method, in prognosticating diabetes risk, is
superior to the standard HMM.

Keywords: type 2 diabetes mellitus, machine learning, hidden Markov model, prognostic modelling, risk prediction,
risk scoring
INTRODUCTION

Diabetes mellitus is a metabolic disorder of multiple etiologies (Alberti and Zimmet, 1998). It can
lead to progressive development of multidimensional complications as to vascular system of human
body (Einarson et al., 2018). Complications of micro-vascular endpoints may include retinopathy,
nephropathy and neuropathy, while the ones related to macro-vascular endpoints may include
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macro-vascular endpoints may include stroke, peripheral
vascular disease and ischemic cardio vascular disease (McEwen
and Herman, 2017; Zou et al., 2018). Diabetes mellitus is found
to be potentially an independent contributing factor for
premature mortality and reduced life expectancy (Atlas, 2015).
There is significant evidence that the prevalence of diabetes
mellitus is rising shockingly at a faster pace affecting middle-
aged adult population disproportionately (Emerging Risk Factors
Collaboration, 2010). Globally, about 382 million people were
diagnosed with diabetes in 2013—bringing 6.6% of the world’s
population under this disease (Perveen et al., 2016). Studies
indicate it is likely to escalate by 51% by 2030 (Wild et al., 2004).

Diabetes accounts for a considerable proportion of health-
care resources worldwide (Liebl et al., 2000; Perveen et al.,
2018a). Even though a century after the invention of insulin,
diabetes still calls for significant therapeutic measures.
Degenerative complications (like renal failure and cardio
vascular disease) in a substantial fraction of diabetic patients
are the reasons behind it to some extent (Pambianco et al., 2006;
Gregg et al., 2014). Health-care cost for diabetic patients is
anticipated to be about $490 billion for 2030, which accounts
for 11.6% of global health spending (Perveen et al., 2016).

Several pathogenic processes are believed to play long-winded
role in the development process of diabetes (Perveen et al., 2018a).
Diabetes does not manifest noticeable symptoms at the initial stage
of its development (Ramachandran, 2014). Rather, it demonstrates
a highly covert nature of symptoms particularly at the early stage of
disease until it substantially developed and evident symptoms
transpire (American Diabetes Association, 2014). Due to this
asymptomatic intricacy of diabetes, the identification a-priori of
pre-diabetic individuals remains quite challenging.

In 2002, Diabetes Prevention Program (DPP) demonstrated
that lifestyle intervention directed at exercise and reducing
weight was more effective to reduce or delay the risk of
developing Type 2 Diabetes Mellitus (T2DM) than the
treatment with Metformin (Knowler et al., 2002; Lindstrom et
al., 2003; Li et al., 2008). Several meta-analysis and clinical trial
also suggests that early interventions can delay or altogether
counteract the developing mechanism of diabetes mellitus (Li et
al., 2008). However, the constraints and cost of these
interventions for individuals are primary the arguments against
their provision. Furthermore, the interventions can be cost
effective only when appropriate target population is used i.e.
the one which has a high likelihood of developing diabetes at the
baseline (Diabetes Prevention Program Research Group, 2003).

Within this context, the focus of disease management needs
to be changed as follows; from hazard to vulnerability reduction;
from reactive to proactive; from response management to risk
management. However, these changes require novel
technological solutions with an emphasis on management of
early stages of the disease.

There are various well know diabetes risk prediction model,
including FDRSM (Wilson et al., 2007), ARIC (Kahn et al.,
2009), San-Antonio (Stern et al., 2002), AUSDRISK (Chen et al.,
2010) and FINDRISC (Lindström and Tuomilehto, 2003) that
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provide the opportunity to estimate the risk of developing
diabetes. However, the selection of appropriate risk scoring
model is a cumbersome and challenging process (Mashayekhi
et al., 2015; Perveen et al., 2016). In general these scoring
models are based on prospective studies (like Framingham
heart study (Wilson et al., 2007) that prove to be very
expensive and also time consuming. Furthermore, these risk
scoring models also inherit bias due to differential loss to follow
up along with a progressive time taking and costly screening
procedure that again makes the intervention measures ineffective
and impractical.

Machine Learning (ML) techniques, over the last few years,
have been seen to exhibit an increased relevance to a variety of
objectives, including risk assessment (Perveen et al., 2018b). This
rich knowledge may be useful for some decisive steps to
characterize disease risk and progression. ML techniques seem
to be an appealing option for the prevention of T2DM. In this
context, Electronic Medical Records (EMRs) create a promising
horizon for establishing rich and complex physiological models
(Gunter and Terry, 2005; Liu et al., 2015). Hence, it is a driving
factor for the adoption of state of art data-driven techniques,
bringing together the opportunities to automate health-care
related tasks (Birkhead et al., 2015).

Hidden Markov Model (HMM) has been extended to deal
with the sequential data (Lai et al., 2016). It is particularly an
effective approach to predict the future risk of a disease in an
individual using sequences of clinical measurements obtained
from longitudinal samples of patients (El Nahas et al., 2012;
Srikanth, 2015). While classical HMM is used for disease
progression modeling, in general, it is not suitable because
it assumes that measurement data is collected regularly at
discrete time intervals (Liu et al., 2015). However, in reality
patient visits are often irregular in time, as a consequence
of scheduling issues, selectively miss some pre-scheduled
visits or be assessed at self-selected points in time and
changes in symptomatology (i.e. patients may visit more often
when unwell or vice versa). Consequently, yield electronic
medical records with observations sequence irregularly or
sparsely sampled and grossly violate the model assumption.
Furthermore, these effects also make learning and inference
problems more complicated.

In order to resolve the above-mentioned problem and to
provide a prompt and comprehensive analysis of EMRs data in
the present study, we propose to use HMM with a formulation
approach based on Newton’s Divided Difference Method
(NDDM) to develop a simple and robust tool to investigate the
future diabetes incidents by learning dynamic interactions from
longitudinal data. The early identification of pre-diabetic
individuals, even when they are in a normoglycemic state,
provides further reason for targeting interventions in those,
most likely to benefit. Furthermore, the utility of the proposed
formulation approach in conjunction with standard HMM has
not been explored to address the problem of sparse and
irregularly sampled EMRs data which is an unavoidable issue
in almost every health-care dataset.
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MATERIALS AND METHODS

Study Design, Participants and Data
Collection
This prospective study primarily focuses on EMRs data obtained
from the Canadian Primary Care Sentinel Surveillance Network
(CPCSSN) (http://cpcssn.ca/). This prospective dataset contains
812,007 records of 172,168 unique individuals, those were
enrolled in CPCSSN between the years 2003 and 2015.

Temporal feature vectors of clinical measurements for each
patient was generated based on the patient’s extracted EMRs
data from the observation window. Each feature vector
representation includes information related to BP (Blood
Pressure), sex, Body Mass Index (BMI), Fasting Blood
Glucose (FBG) levels, age, High Density Lipoprotein (HDL),
Light Density Lipoprotein (LDL), Glycated Hemoglobin (HbA
(1c), total cholesterol and Triglycerides (TG). All patients were
assigned a unique ID to track the health status during the
follow-up period. In this article we intended to explore the
potential of EMRs data to assess T2DM risk, thus we did not
add any other outside covariate (i.e. physical activities. To
capture a representative cohort, all individuals who have at
least 5 visits with 1 year time interval gap till the end of 8 years
of follow-up and have information for all the attributes
included in this proposed study, as mentioned in Table 2,
were eligible for inclusion. Approximately 170,250 patients out
of 172,168 do not meet minimum inclusion criteria and
excluded from the research sample. Thus, this prospective
study resulted in a total of 1981 participants for final dataset.
In terms of patient demographics, the average age was 40 years,
range between 18 to 83 years.

Generally, early risk identification of T2DM in populations is
appropriate when it will be an organized continuous process
rather than a single time and isolated effort. Furthermore, there
should be a reasonable balance in the costs of case identification
and treatment in relation to healthcare cost as a whole.
Therefore, using these sequences of clinical measurements
extracted from CPCSSN a set of experiments was completed to
measure how well the proposed data-driven and multivariate
predictive model performs in evaluating the ongoing risk of
T2DM over varied length of prediction windows.

The primary outcome of interest is to prognosticate risk of
developing diabetes in an individual over a series of 8 time
horizons: 1 year to 8 years. Such modeling confers an epistemic
and instrumental value that manifests in the ability to take
intervention measures on time and/or provide individualized
treatments based on disease risk (Yoon et al., 2016). By having
follow-up through 2015, we ensured that all individuals had at
least 5 years of follow-up regardless of disease status.

Proposed Method
Considering the objective of the proposed research and the above
mentioned challenges the proposed method consists of two main
components. (1) Handling sparse and irregularly sampled time
series EMRs data and (2) the development of prognostic
prediction model based on HMM using relevant risk factors
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for prognostic prediction of diabetes risk over different
time horizons.

Handling Sparse and Irregularly Sampled EMRs Data
Modeling the clinical condition of a particular patient using
evidential physiological data is a ubiquitous problem that arises
in many healthcare settings (Liu et al., 2015; Schulam and Saria,
2015; Yoon et al., 2016; Hoiles and Van Der Schaar, 2016). In this
context, EMRs data is one of the fundamental resources to derive
medical insights and/or support medical practice However,
management and processing of such data is challenging due to
various factors that are inherent in the data itself.

In particular, the dynamic range of the time scale in EMRs is
one of the bothersome characteristics of EMRs data and
potentially the contributing factor for sparse and irregularly
sampled clinical data. Irregularly sampled (or non-uniformly
sampled) time series are characterized by variable time intervals
between successive observations (Li and Marlin, 2016). When
the intervals between successive observations are long, the time
series are said to be sparsely sampled. Irregularity is caused by
the fact that patients will only have EMRs data recorded when
they visit the hospital.

Consider a longitudinal EMRs data of n independent time
series D={S1, S2,……, Sn} recorded at a specific time, for
instance, hours, months, or years. Each Si is represented as a
list of time points ti = {ti1, ti2,……, ti| Si|}

T, and a list of
corresponding values, yi = {yi1, yi2,……, yi| Si |}

T. We assume
that each time series is defined over a regular time interval [0, T ].
However, for irregularly sampled time series we do not assume
that all of the time series are defined on the same collection of
time points (i.e., ti ≠ tj in general), we do not assume that the
intervals between time points are uniform. We also do not
assume that the number of observations in different time series
is the same (i.e., |Si| ≠ |Sj| in general) and evolves smoothly over
time. In other words longitudinal record of each patient is
considered as a sparse matrix with features and a
time dimension.

CPCSSN data is prone to sparsity and irregularity and tended
to violate the HMM based prognostic model assumption to some
degree. In addition, sparse and irregularly sampled time series
data is itself different from traditional structured data to fit a
model. Therefore before developing analytics solution from such
data for prognostic prediction of T2DM risk over different time
horizons, we propose to use an approximation approach based
on NDDM (Kalu, 2009). Which approximates the values for
those unknown observations in the longitudinal matrix for each
patient by exploring the latent structures on both feature and
time dimensions from the information which becomes available
from relevant observations in EMRs.

Furthermore, it would be worth exploring whether the
proposed method could affect the classification accuracy of the
prediction model. However, according to our best knowledge this
is the first study that incorporated NDDM to handle the problem
of sparse and irregularly sampled EMRs data before developing
numerical solution for prognostic prediction of diabetes risk over
different time horizons.
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NDDM is a standard method used for interpolating
polynomial in terms of divided differences. The interpolation
problem can be defined as follows: given a set of pairs of numbers
(x0, f0), (x1, x1), ………, (xn, fn), with all x1, x2,……,xn are
different and not necessarily equally spaced, whereas fi may be
the value of some mathematical function f(x) or empirically
obtained in an experiment or observation. The interpolation
problem is to find a polynomial Pn(x) such that Pn(x)= f0, Pn
(x1) = f1,…., Pn(xn)= fn.

The polynomial Pn(x) is used to estimate value for all x such
that Pn(x) is approximately f(x) or to get values for xs at which
no measurement was taken. This interpolation polynomial can
be written in the Newton form as follows (Mathews, 1986):

Pn(x) = f ½x0� + f ½x0, x1�(x − x0) + f ½x0, x1, x2�(x − x0)(x − x1)

+ f ½x0, x1, x2x3�(x − x0)(x − x1)(x − x2) + ::::::

+ f ½x0, x1, x2, :::xn�(x − x0)(x − x1)(x − x2):::::::(x − xn)

Where {f[x0], f[x0, x1] and f[x0, x1, x2]} are finite divided
differences and f[x0], f[x0, x1] and f[x0, x1, x2] are the first,
second, and third order finite divided differences, respectively
that can be defined as below:

f ½x0� = f x0ð Þ

f ½x0, x1� =
f x1ð Þ − f x0ð Þ

x1 − x0

f ½x0,  x1,  x2�  =
  f x2ð Þ−f x1ð Þ

x1−x0
− f x1ð Þ−f x0ð Þ

x1−x0

 x2 − x0

Similarly, nth Divided Difference is given by

f ½xi,  xi+1,  xi+2,…, xi+n� =
f ½xi,  xi+1,  xi+2,…, xi+n� − f ½xi,  xi+1,  xi+2,…, xi+n−1�

 xi+n − xi
Prognostic Modeling
Once the dataset is prepared by taking the output of the proposed
approximation method the next crucial task is potentially
contributing risk factors selection. Therefore, to optimally
select the potentially contributing factors, Logistic Regression
(LR) analysis is performed on the derived dataset that consist of
risk factors related to demographics, vitals, diagnoses and
laboratory tests results as given in Table 1.

Models were trained and evaluated using only risk factors that
exhibit significant relationship with T2DMwhen LR analysis was
performed. Models were trained and evaluated using only risk
factors that exhibit significant relationship with T2DM when LR
analysis was performed. Subsequently, the parameters are drawn
from training dataset using Baum-Welch algorithm. However, to
fit the predictive model, we used standard GaussianHMM, a
variant of classical HMM. It is a finite probability density
distribution model that has been widely deployed as temporal
Frontiers in Genetics | www.frontiersin.org 4
latent variable model for modeling dynamic systems (Kenny
et al., 1990; Artières et al., 2000). Several variants of the basic
hidden markov model have been proposed, with slightly different
functionality (Rabiner, 1989). The basic concept was published
in a series of classic papers by Baum and Petrie (Baum and Petrie,
1966). As our data retained continuous variables thus, the
observation probability assumes the Gaussian distribution. Our
model has structural assumptions about the underlying structure
of the process and assumed to be composed of the set of hidden
states S = {s1, s2, s3……sm} (corresponding to diabetic or non-
diabetic in our case) in the model, initial state distribution, an
observational symbol distribution (e.g. Gaussian) of each state
and a state transition matrix generally parameterized by a set
probabilities used for further analysis, as follows:

q =  p = pi = q1 = sif g|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Prior probability ,

   A = ai,j = p(qt+1 = sjjqt = si)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Transition propabilities matrix     

0
B@

     B =  bi Kð Þ =  bi Ot = Vkð Þ  = N Vk, μi,  sið Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Emission probabilities matrix

1
CA,

where μi and si are the mean and variance of the distribution
corresponding to the state si respectively, and N is Gaussian
probability density function that can be defined as below:

p xð jμ,  sÞ = N  (xjμ,  s) = 1ffiffiffiffiffiffiffiffi
2ps

p
0
exp

− x − μð Þ2
2s

� �

Hence, the standard Gaussian HMM is specified by
l = {A, μ, s, p}.
TABLE 1 | Characteristics of the population in the CPCSSN database.

Predictors Findings

Demographic (Sex, Age)
Female, sample size (%) 100,566 (57)
Male age mean ± SD, Yr 48.2 ± 24.1
Female age mean ± SD, Yr 49.5 ± 24.8
Male age mean ± SD, Yr 48.2 ± 24.1
Vital Signs/clinical measures
Systolic BP, mean ± SD, mm Hg 129.34 ± 17.183
Chronic obstructive pulmonary disease frequency (%) 9,939 (2.4)
Dementia frequency (%) 12,007 (1.8)
Depression frequency (%) 32,672 (10)
Diabetes Mellitus frequency (%) 26,077 (6)
Epilepsy frequency (%) 5,553 (0.8)
Hypertension frequency (%) 61,370 (13)
Osteoarthritis frequency (%) 37,274 (7)
Parkinson’s Disease frequency (%) 1,825 (0.2)
Lab Values
Fasting blood glucose, mean ± SD, mmol/L 5.54 ± 1.91
TG, mean ± SD, mmol/L 1.523 ± 0.962
LDL, mean ± SD, mmol/L 2.83 ± 0.99
High density lipoprotein, mean ± SD, mmol/L 1.3893 ± 0.416
BMI, mean ± SD, kg/m2 37.113 ± 1528.71
HbA(1c), mean ± SD, mmol/L 6.268 ± 0.976
Cholesterol mean ± SD, mmol/L 4.893 ± 1.159
January 2020 | Volum
SD, standard deviation; Yr, year; BP, blood pressure; LDL, light density lipoprotein;
HbA(1c), glycated hemoglobin; TG, triglycerides; BMI, body mass index; HDL.
* Some patients have more than 1 disease in the database.
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Hold-out method was used in all modeling iterations to obtain
an estimate of howwell themodel can generalize to an independent
dataset. Thus, two subset of sequence of clinicalmeasurementswere
considered, a training set and testing set. 80% of the data was used
for training and the remaining 20% for testing.

Subsequently, for each of the 8 time horizons, Viterbi decoding
method from HMM API (Hmmlearrn) was incorporated to train
Gaussian HMM and carry out diagnostic and prognostic
inferences related to diabetes risk in an individual over different
time horizons. This is typically a Maximum a posteriori (MAP)
estimation of the most likely sequence of hidden states, produced
by the Viterbi algorithm given the observation sequence O =
fO(l)

t ,  t = 1, 2, ,… :T,  l = 1, 2, 3,  … : Lg  and OtϵR
D where T is

the length of each sequence and l is the numbers of independent
observation sequences, and model l = {A, μ, s, p }. For further
detail supplementary material is given in Presentation 1_v1.pdf.

After training the predictivemodel, the second task corresponds
to the performance evaluation of Gaussian HMM at each of the 8
time points. Therefore, we estimated the discriminatory ability of
each model via the Area under the Receiver Operating
Characteristic Curve (AROC) computed over hold-out method.
IBM SPSS Statistics (version 19) was used to perform statistical
analysis in this study. Along with this the experiments used a
combination of software tools developed in house and based on
open source packages for Python (Version 2.7).
RESULTS

During 2003 to 2015, 172,168 individuals’ of aged between 18 to
90 received healthcare services at CPCSSN, contributing over 8
million records, of these individuals, 40,317 individuals have
Frontiers in Genetics | www.frontiersin.org 5
diabetes, accounting for 23% of all cases morbidity during the
study period. After applying inclusion criteria and approximation
method, as mentioned above, to deal with irregularly sampled
data the final dataset resulted in a total of 1918 individuals with
15,344 clinical visits recorded over 8-years. Approximately 584
(30.44%) of individuals in our derived research sample were
diabetic and among them 40.40% were women. Descriptive
statistics of eligible cohort are reported in Table 2.

As a secondary analysis, we also performed a LR analysis to
evaluate the significant p-value of each risk factor included in our
derived dataset in the context diabetes risk identification.
According to the LR analysis except total cholesterol all the
risk factors included in our research sample were statistically
significant and added value to the model in prognosticating
T2DM risk. HbA(1c) (Glycated Hemoglobin) was the most
strongly associated with diabetes as compare to other risk
factors included in this analysis, it remained the best predictor
with odds ratios of (p < 0.0005, OR = 12.565 [95% CI, 10.902
-14.482]). It demonstrated that HbA(1c) solely was the prime
risk factor with the ability to prognosticate the diabetes risk.
Whereas FBG was ranked at second among the risk factors
included in this study for prognosticating the diabetes risk (p <
0.0005, OR = 5.965[95% CI, 5.607 -1.281]). To get a better
understanding of what was going on inside the LR and to
visualize the relative influence of each predictor for predicting
diabetes risk we plotted Figure 1. It can also be observed that the
B-value (-0.549) for LR equation for predicting the diabetes risk
from the HDL is negative although it hold a significant p-value
(5.63E-24, 95% CI). It demonstrated that increased level of HDL
is associated with a reduced likelihood of diabetes onset (p <
0.0005, OR = .577 [95% CI, 0.480 -0.695]). However the B-values
for the remaining risk factors are positive.
TABLE 2 | Descriptive statistics of Diabetic and Non-diabetic population in our derived data sample.

Predictors Findings

Total population Progressors Non-progressors

1,918 584 (23.49) 1,334
Demographic (Gender, Age)
Male, sample size (%) 114 3(38.96) 280 495
Female, sample size (%) 775 (61.03) 304 839
Overall age mean ± SD,Years 63.19± 11.89 65.312 ± 12.34 58.937 ± 14.315
Vital Signs/clinical measures
Systolic BP, mean ± SD, mm Hg 128.611 ± 15.86 131.49 ± 16.7 128.496 ± 17.259
Lab Values
FBS, mmol/L mean ± SD, mmol/L 6.029± 1.51 7.256 ± 2.056 5.214 ± 0.562
Triglycerides, mean ± SD, mmol/L 1.72 ± 1.02 1.777 ± 1.205 1.419 ± 0.837
HDL, sample size, mean ± SD, mmol/L 1.356 ± 0.39 1.249 ± 0.361 1.453 ± 0.423
HbA(1c), mean ± SD, mmol/L 6.268 ± 0.95 6.821 ± 1.049 5.698 ± 0.365
Total Cholesterol mean ± SD, mmol/L 5.409 ± 0.59 4.433 ± 1.224 5.081 ± 1.085
LDL, mean ± SD, mmol/L 2.442± 0.851 2.427 ± 1.011 3.007 ± 0.939
BMI, mean ± SD, kg/m2 29.81 ± 6.362 36.163 ± 1197.454 37.984 ± 1697.225
Depression frequency (%)
YES 373 112 261
NO 1,544 472 1,073
Hypertension positive cases frequency (%)
YES 1,107 421 686
NO 809 163 646
Unknown 2 2
January 2020 | Volum
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As the objective of this proposed research is to prognosticate
T2DM risk in an individual over different time horizon in order
to make informed choices about future care and treatment with
reduced complications and improved outcomes. Therefore, we
prognosticate diabetes risk over a series of time horizon using
only positively correlated and modifiable risk factors. Although
this association provides some general guidance for diabetes but
ineffective for individual risk assessment (Arbab-Zadeh and
Fuster, 2015). In order to prove our proposed algorithm
effectively, we make the contrast experiments. Figure 2
compares the predictive performance of our proposed method
and standard HMM in term of AROCs for developing diabetes
risk over different time horizon, using approximated and
irregularly sampled data respectively. The AROC of our
proposed method on our derived and approximated dataset
was 0.81 (p < 0.0005, [95% CI, (0.791-0.847)]) for prediction
window of 1-year as compared to AROC 0.764(p < 0.0005, [95%
CI, (0.741-0.794)]) with classical HMM without handling sparse
and irregularly sampled multivariate time series data. It can be
observed that the proposed method demonstrated significant
performance over all the baseline models (p < 0.0005) and time
horizons. The highest AROC achieved (0.814) belonged to the 1-
year model with our proposed approach, as can be observed from
Figure 2. Furthermore, experimental results also demonstrated
that the AROC of our proposed model is consistently superior
over all the time horizons as compare to baseline method.
However, as expected, performance for both predictive models
declines in relation to increasing time horizons. It can be
observed that the predictive performance of our proposed
model is at or above 0.795 AROC for prediction windows ≤4
years whereas the performance is at 0.771 AROC for a 6-years
prediction window. Performance then declines rapidly for
prediction window lengths longer than 6 years.
Frontiers in Genetics | www.frontiersin.org 6
According to the probabilistic prediction of HMM, we
estimated 8 years risk of developing diabetes in our study
sample, among 3 different risk categories with the cutoff value
<3, 3 to 9 and equal to10. We determined that 46% of individuals
in our sample had a risk less than 3%; 38% had a risk between
30% to 9% and 16% had a risk equal to10%.
DISCUSSION

The intensification in diabetes incidence is principal reason of
increased diabetes prevalence. Early identification of individuals
at high risk is imperative and a practical approach to prevent or
delay the onset of diabetes through implementing proactive
lifestyle and pharmacological interventions (Diabetes
Prevention Program Research Group, 2003). In this context,
physiological data contained in electronic medical records
(EMRs) is the fundamental source for disease prognostic
modeling (Tou et al., 2018). In addition, the rapid evolution in
state of the art ML techniques offer a potentially promising
means to accelerate discoveries, from EMRs data, which can be
readily translated to clinical practice. From the clinicians’
prospective, the development of such risk scoring techniques
would allow them to allocate resources and healthcare services
optimally and with more confidence (Vogenberg, 2009).

Hidden Markov Models and their variants have been widely
deployed for modeling dynamical systems (Rabiner, 1989). These
temporal latent variable models have also attained substantial
success in various applications (Gruber et al., 2007; Fox et al.,
2011). However, the format of the EMRs data together with the
nature of the clinical setting poses various significant challenges
that confound standard HMM. In particular, the dynamic range
of the time scale in EMRs is one of the potentially contributing
FIGURE 1 | Visualization of the association between diabetes and each of the risk factors included in our study sample.
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factor for sparse and irregularly sampled clinical data. Typically
the HMM presumes that the training data sample is collected
regularly at discrete time intervals. Thus, direct incorporation of
EMRs with observations sequence irregularly or sparsely
sampled into standard HMM [(e.g. the models in Fox et al.
(2011) and Rabiner (1989)] will not suffice for jointly describing
the latent states and hence ensuring accurate inferences. This
paper presented a new hybrid approach combining
approximation technique as a component with Hidden
Markov Model (HMM) in order to deal with sparse and
irregularly sampled time series data for effectively determining
the risk of developing diabetes in an individual over different
time horizons. The proposed method is fully modular. It
basically incorporated an approximation method based on
NDDM to handle multivariate sparse and irregularly sampled
data as dynamical systems inputs, followed by the application of
HMM based diagnostic predictive model that operates over the
regularly spaced time series output provided by the
approximation method.

In order to develop the prognostic prediction model we
incorporated further two step approach. Therefore, we also
incorporated LR analysis in order to identify potentially
contributing risk factors of diabetes. In LR analysis we
considered 0.05 level of significance, as depicted in Table 3.

Table 3 shows the results considering a significant level of
0.05. It depicts highly significant association between each risk
factor and diabetes expect total cholesterol. This means that all
the risk factors added value to the model for diabetes onset
prediction excluding total cholesterol. As the total cholesterol
exhibited negative association with the T2DM thus we excluded
it from the contributing risk factors. Along with this, we also
excluded gender from the potentially contributing risk factors.
As gender is a non modifiable risk factor; thus, provide not much
guidance for diabetes prevention. Wilson et al. (2007) also not
Frontiers in Genetics | www.frontiersin.org 7
recommended gender as a candidate risk factor for the prediction
of diabetes onset. On the other hand age is also a non modifiable
risk factor but we did not exclude it from contributing risk
factors because several existing research conducted by Stern et al.
(2002), Lindstrom et al. (2003), Kanaya et al. (2005), Zhou et al.
(2013) and Perveen et al. (2016) suggested that age is a
potentially significant risk factor for prognostic prediction of
diabetes risk. These studies also highlighted that elderly
population had higher risk for developing T2DM than those
with younger age. In addition, our results also demonstrated that
age is a significant influencing factor for diabetes (p < 0.0005,
OR = 1.002[95% CI, 0.999 -1.006]) as depicted in Table 3.

Nevertheless, HDL is statistically significant risk factor (p <
0.0005, OR = .577 [95% CI, 0.480 -0.695]) but have a negative
association with the development of diabetes risk in an
individual (Mazzone et al., 2006; Lincoff et al., 2007).
According to our analysis the probability of developing
diabetes reduced approximately 5% with one unit increase in
HDL level.While increased levels of FBS and HbA(1c) in blood is
strongly associated with higher risk of developing T2DM. It can
also be observed from the concise adds ratios that HbA(1c) is the
strongest predictor for prognosticating diabetes risk.
Furthermore, Statistical analysis results of our proposed study
are also commensurate with the results of the existing research
proposed by Mackey et al. (2015), Wang et al. (2016) and
Perveen et al. (2018a).

To evaluate the impact of modeling sparse and irregular time
series data using approximation technique based on NDDM we
conducted a set of experiments on both the original and
approximated synthetic dataset. In both cases the baseline
model is GausianHMM however the input to one of them is
sparse and irregularly sampled time series. The output is a single
scalar representing the predicted class along with the probability
distribution over a set of class values.
FIGURE 2 | Comparative analysis of area under receiver operating characteristic curve of our proposed method and standard HMM over different time horizons.
January 2020 | Volume 10 | Article 1076

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Perveen et al. Modeling T2DM Progression
Validation of the accuracy of a prognostic prediction model is
often involves plotting observed incidents verses estimated
probability to observe visually how close model predictions
were to actual predictions (Buijsse et al., 2011). Therefore, we
also incorporated AROC to evaluate the discriminatory
capability of our proposed model in identify 8-years risk
of diabetes.

In the results, the reported AROC for the proposed method
on our derived` dataset was 0.81 (p < 0.0005, [95% CI, (0.791-
0.847)]) for prediction window of 1-year, showing a high
discriminative capability as compared to standard HMM with
AROC 0.764 (p < 0.0005, [95% CI, (0.741-0.794)]). It can also be
concluded that dealing with sparse and irregularly sampled
multivariate time series data can yield relatively better
performance. Furthermore, experimental results also
demonstrated that the AROC of our proposed model is
consistently superior over all the time horizons as compare to
standard HMM learned, indicating that the model learned using
approximation approach based on NDDM have the potential to
discriminate persons who will have the diabetes from those who
did not with considerably high performance.

In addition to identifying diabetes risk a-prior, this is the first
study that proposed an approximation technique based on
NDDM to deal with the sparse and irregularly sampled EMR
data before developing prognostic model. Furthermore, the
proposed method has the ability to effectively estimate the
future risk of T2DM with reduced healthcare expenditures.

The total estimated direct and indirect healthcare
expenditures for diabetic patients were $13,700 per year,
whereas about $7,900 of this amount was particularly
attributed to diabetes (American Diabetes Association, 2013).
It is also estimated that diabetic patients have healthcare
expenditures, on average, 2.3 times higher than what
expenditures would be in the absence of diabetes. As the
predictive performance of our proposed method was
comparatively good, therefore, we also estimated the 8-years
risk of developing T2DM among 1458 non-diabetic individuals
for whom data was available in 2015. According to the
probabilistic results of our proposed method over the baseline
Frontiers in Genetics | www.frontiersin.org 8
data set it can be observed that approximately 15.8%(231)
individuals have significant risk of developing T2DM in the
next 8-years interval ranging from 2015 to 2022. Given the newly
identified individuals with increased risk of developing T2DM,
we can save a considerable fraction of individuals from our
baseline data set if healthcare providers promptly manage
those vulnerable.

There are some remarkable advances and benefits of the
proposed research. In this study we performed prognostic
prediction of diabetes risk over a set of time horizons using
EMRs data collected for secondary purposes not for research.
Therefore it is a time and cost effective approach. According to
LR analysis it can also be concluded that HbA(1c) is the strongest
predictor for prognosticating diabetes risk and has the ability to
solely predict it. As fasting is not prerequisite for The HbA(1c)
test and can be conducted at any time of the day. Therefore, it
can easily be used in community screening programs or an
opportunistic screening in outpatient visits. Furthermore, in our
derived dataset each laboratory test (i.e. FBG, LDL, HbA1c, HDL
and triglycerides) was measured and recorded for each time
horizon in CPCSSN. However, a limitation of the study is that
the proposed model was only validated internally caution is
required when applied over other populations in order to
minimize the bias in generalization.
CONCLUSION

In summary, our results demonstrated that the proposed method
has the capability to deal with sparse and irregularly sampled
data for leveraging EMRs to learn underlying hidden state with
the objective to provide insights into the disease process over a
series of time horizon. Furthermore, the proposed method
conceal the inherent temporal dependencies exist in the
temporal data, required for decisive step to characterize disease
risk in an individual with significantly improved predictive
performance as compare to standard HMM. Therefore, this is
an encouraging step forward for active identification of high risk
individuals as a means to propel healthcare toward an innovative
preventive orientation for diabetes. In future further research is
warranted for the cost effective analysis of the proposed study.
This can be extended to prognosticate the future risk of other
type of ailments particularly chronic diseases.
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