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The High-throughput Chromosome Conformation Capture (Hi-C) technique combines the 
power of the Next Generation Sequencing technologies with chromosome conformation 
capture approach to study the 3D chromatin organization at the genome-wide scale. 
Although such a technique is quite recent, many tools are already available for pre-
processing and analyzing Hi-C data, allowing to identify chromatin loops, topological 
associating domains and A/B compartments. However, only a few of them provide an 
exhaustive analysis pipeline or allow to easily integrate and visualize other omic layers. 
Moreover, most of the available tools are designed for expert users, who have great 
confidence with command-line applications. In this paper, we present HiCeekR (https://
github.com/lucidif/HiCeekR), a novel R Graphical User Interface (GUI) that allows 
researchers to easily perform a complete Hi-C data analysis. With the aid of the Shiny 
libraries, it integrates several R/Bioconductor packages for Hi-C data analysis and 
visualization, guiding the user during the entire process. Here, we describe its architecture 
and functionalities, then illustrate its capabilities using a publicly available dataset.

Keywords: Hi-C, user-friendly interface, long-range interactions, genome organization, topologically associating 
domains

INTRODUCTION
The DNA is organized in a three-dimensional (3D) structure inside the cell nucleus, where 
chromosomes occupy distinct regions called chromosome territories. Within chromosome 
territories, the chromatin forms Topological Associated Domains (TADs) characterized by a high 
frequency of intra-domain loci interactions. Inside the TADs, chromatin loops contain active 
genes and are physically separated from repressed domains. Investigating the 3D organization of 
chromatin is important to better understand the higher-order regulation of gene expression and, 
more in general, the genome functionality.

In the last twenty years, the advent of modern high-throughput technologies has allowed 
investigating chromatin structure and its hierarchical organization from an individual gene location 
to the global genome-wide perspective, using either method based on microscopy, such as fluorescent 
in situ hybridization (Solovei et al., 2002), and/or those based on chromosome conformation capture 
and their evolution. In particular, the original Chromosome Conformation Capture (3C) technique 
(Dekker, 2002), defined as One-By-One approach, enabled to study the 3D chromatin interaction 
between one region of interest and another single locus that is distant in the linear genome. Over 
the years, it was improved to expand the number of genomic regions studied in each experiment. 
Therefore, the Circular Chromosome Conformation Capture (4C) (Zhao et al., 2006) technique 
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was proposed to investigate one locus of interest against all 
others (i.e. One-By-All approach), and later, the Chromosome 
Conformation Capture Carcon Copy (5C) (Dostie et al., 2006) 
allowed studying the interactions between multiple sequences 
(i.e. Many-By-Many approach). More recently, by combining 
proximity-based ligation with massively parallel sequencing, the 
High-throughput Chromosome Conformation Capture (Hi-C) 
(Belton et al., 2012; Dekker et al., 2013) allows to simultaneously 
investigate all genome interactions, therefore providing the All-
By-All approach. Thanks to Hi-C experiments, it is now possible to 
study long-range interactions, i.e. physical interactions between 
chromosomal regions linearly distant that occupy the same spatial 
location in 3D chromatin conformation, identify chromatin 
hierarchical structures, and provide high-resolution 3D images 
of the chromatin architecture and its changes associated to 
diseases or treatments. However, to comprehensively explore the 
chromatin structure and its state, the integration of Hi-C results 
with the global epigenetic landscape is required. Due to the huge 
amount of data produced during Hi-C experiments, complex 
work-flows, and sophisticated computational algorithms are 
necessary to extract information and support the researchers in 
the interpretation of their computational results. Furthermore, 
these workflows need to be adapted, in terms of resolution and 
algorithms, to the specific structures of interest, see Nicoletti 
et al. (2018); Pal et al. (2019) for general views.

The first step of the data analysis consists of the alignment 
of the raw reads on a reference genome. However, due to the 
presence of DNA fragments originated from two distinct 
genomic loci, that are combined during ligation, the two mates 
are usually aligned independently and the mapper often requires 
to incorporate an iterative procedure to better identify the 
ligation junction. Tools such as HiCUP (Wingett et al., 2015) 
or the iterative approach described in Imakaev et al. (2012) can 
be used, instead of classical short-read mappers. The alignment 
step produces Binary Alignment Map (BAM) files containing the 
genomic coordinates of each aligned read on the chosen genome. 
Such files need to be filtered to remove spurious sequences, PCR 
duplicates, digestion or ligation artifacts, low-quality sequences, 
and any other sources of technical noise from the sequences of 
interest.

The analysis is then carried on the retained high-quality 
sequences. The reference genome is divided into small regions 
(called bins), that are used to evaluate a square symmetric matrix 
(known as raw contact matrix) by counting the number of paired-
end reads inside each pair of bins. Such a step is often referred 
to as binning and the contact matrix measures the strength of 
the interaction between two bins (i.e. the rows and the columns 
of the contact matrix). The bin width defines the resolution of 
analysis and, as a consequence, the computational time and the 
resources required to perform the analysis. The choice of the 
resolution depends on the organism under investigation, the 
sequencing depth, the size of the restriction fragment, as well as 
the available computational resources.

Subsequently, the contact matrix has to be normalized to 
mitigate bias effects typically present in this type of analysis. 
Normalization is a crucial step that can have a strong effect on 
the results (Ay and Noble, 2015). Some normalization algorithms 

were proposed in Yaffe and Tanay (2011); Hu et al. (2012); 
Imakaev et al. (2012); Knight and Ruiz (2013). The normalized 
contact matrices are useful for visualization and are used for 
further downstream analysis.

The post-processing or downstream analysis defines a wide 
series of computational procedures aimed at identifying and 
extracting hierarchical chromatin structures of interest. For 
example, it is possible to partition the genome in compartments, 
usually denoted as A and B compartments. Such domains 
are usually located along the same chromosome and display 
strong interactions within the same domain and negligible 
interactions with the other domains. It has been shown that such 
compartments are connected to active and inactive chromatin 
states, respectively, and can be related to regions of (gene-dense) 
euchromatin and regions of (gene-poor) heterochromatin. 
Compartments are usually identified at a resolution of 100 Kbp 
or higher. Moreover, by looking at the block-wise structure of 
the contact matrix, contiguous regions of high self-interactions 
clearly separated from adjacent regions can be identified. 
Such regions are usually referred to as tad and the separation 
boundaries determine their coordinates. tad are usually 
identified with a resolution of 50 Kbp or higher. Several methods 
have been proposed for identifying tad boundaries, see Zufferey 
et al. (2018). With higher-resolution analysis, it is possible to 
identify specific point-to-point interactions usually referred 
to as loops. Such interactions can be either cis-interactions or 
trans-interactions and appear as spike signals in the contact map. 
Loops are usually identified with a resolution of 10 Kbp.

Finally, it is also helpful to integrate hic data with 
other experimental genome-wide datasets [i.e. Chromatin 
Immunoprecipitation Sequencing (ChIP-Seq) or RNA 
sequencing (RNA-Seq)] or with other information from an 
external database to support the researcher in interpreting 
experimental data, provide evidence of specific regulatory 
mechanisms and/or insight for novel research hypotheses.

In the last few years, several computational approaches have 
been proposed to either to perform one or few of the above-
mentioned steps or to combine them in more general pipelines. 
From one hand, the interesting comparative study made in 
Forcato et al. (2017) provided a clear and detailed description of 
the advantages and drawbacks of individual methods/algorithms. 
Indeed, after bench-marking several procedures using different 
quality indexes, Forcato et al. (2017) showed that several methods 
reported good performance on some specific steps, although no 
methods outperformed the others. On the other hand, despite 
the great effort in the development of tools specifically designed 
for the analysis of Hi-C, they rarely include all the required 
functionalities for complete analysis in a single platform. 
Han and Wei (2017) and Calandrelli et al. (2018) provided a 
recent list of existing general-purpose tools. In general, most 
of the available tools are designed for expert users with great 
confidence about command-line applications. As a consequence, 
they are not supporting user-friendly data explorations that 
can lead experimental biologists to easily interpret their results, 
confirm, or make novel scientific hypotheses. These motivations 
led us to the development of HiCeekR, a novel computational 
tool that allows performing most of the above-mentioned steps, 
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through an easy user-friendly graphical interface, combining 
different algorithms for the analysis of Hi-C data. Moreover, 
HiCeekR has been designed for guiding the users during the 
entire analysis process and to provide interactive plots that 
might help researchers with limited experience in command-
line applications, to explore and visualize data and results using a 
simple point-and-click approach.

MATeRIAlS AND MeTHODS
In this section, we first describe HiCeekR workflow, then we 
provide technical details about its implementation and the 
structure of the Graphical User Interface (GUI). Finally, we 
illustrate how HiCeekR stores input/output data and results, and 
describe the internal modular architecture.

HiCeekR Workflow
HiCeekR is a novel Shiny based R package (https://github.com/
lucidif/HiCeekR) for Hi-C data analysis. Thanks to its GUI, 
HiCeekR friendly guides the user during the entire analysis 
process, allowing him/her to perform a complete data analysis 
pipeline and to integrate Hi-C data with other omic datasets. 
Moreover, HiCeekR produces several interactive graphics that 
allow exploring the results by the usage of the mouse pointer.

As shown in Figure 1, HiCeekR analysis starts from 
already aligned sequence files (in BAM format) obtained from 
Hi-C experiments, it proceeds through a series of steps from 

pre-processing and filtering, to the evaluation and normalization 
of the contact matrices. Once the contact matrices are available, 
the user can perform the downstream analysis. In particular, 
HiCeekR allows the identification of genome compartments 
and tad, the integration of Hi-C data with other omic datasets, 
such as ChIP-Seq and/or RNA-Seq, the functional analysis, and 
the visualization of the interaction network. Overall, HiCeekR 
supports the user in elucidating the functional interplay between 
chromatin structure and gene regulation by combining and 
making friendly available a wide bunch of computational and 
statistical methods.

Through HiCeekR, each step/function can be executed 
sequentially in a step-by-step analysis (Figure 1). After each step, 
the user can visualize intermediate results, such as summary 
statistics or graphical representations. However, each step or 
function can be re-executed by modifying the parameter settings, 
obtaining consequently updated results. Intermediate and final 
results (as text files or figures) are stored in pre-organized data 
structures (see Data Format and Data Organization) that can be 
easily retrieved for future investigations through the HiCeekR 
GUI.

Pre-Processing
The pre-processing consists of a series of fundamental 
operations required for the proper execution of HiCeekR. Such 
operations allow HiCeekR to easily access the information in the 
subsequent steps and are aimed to reduce the overall execution 
time. In HiCeekR, the pre-processing is jointly performed 

FIgURe 1 | A schematic representation of HiCeekR pipeline. Starting from aligned data, HiCeekR enables to pre-process and filter them to compute  
(and normalize) the contact matrix. Afterward, it performs several downstream analysis steps in order to detect genome compartments, TADs. Moreover, it also 
allows the integration of additional epigenetic and transcriptional whole genome datasets, as well as other genome-wide tracks. Finally, it presents the results in 
interactive graphical forms.
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with the creation of a new project (see Getting Started for the 
Analysis), when the user selects the experimental Hi-C files 
(in BAM format) to work on and the reference genome (in 
FASTA format). At this stage, it is also required to provide the 
restriction enzyme cutting site and an overhang parameter (in 
base pairs) that are necessary to split the genome in restriction 
fragments. The overhang parameter defines the number of base 
pairs overlapping the restriction enzyme cutting site. Given 
such information, the restriction fragments are indexed. The 
coordinates of each detected restriction enzyme cutting site are 
stored in an index-file (HDF5 file) and associated with one or 
more mapped read allowing to speed up further computations. 

The HDF5 file format (https://www.hdfgroup.org/solutions/
hdf5/) is chosen for speeding-up heterogeneous data storage 
and processing, and it is not usually meant to be inspected by 
a standard user. Note that at this stage, low-quality reads are 
automatically removed.

At the end of the pre-processing, HiCeekR produces a 
summary of the statistics for the indexed reads and two 
diagnostic plots (see Figures 2A, B—before filtering) useful to 
detect artifacts that will be removed during the filtering step. The 
first plot represents a distribution of the insert lengths over the 
entire genome, the second shows the distribution of the inward-
outward insertion lengths (see Filtering for further details).

FIgURe 2 | Diagnostic plots and effect of the filtering on sample GSM1608509 (see A Case Study). Panel (A) shows read length distribution before and after 
filtering. The plot before filtering indicates that long fragments are present, the corresponding plot after filtering shows that fragments larger than 600 bp were 
removed. Panel (B) shows the read-orientation plot before and after filtering. The plot before filtering suggests possible dangling-end events (green line spike) 
located at about 28  =  256 bp, the corresponding plot after filtering shows that such inward-oriented pair of reads were removed.
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Additionally, during the pre-processing, HiCeekR defines 
the resolution of the entire analysis by the selection of the bin 
size (default is 6) base pairs), that is used afterward during the 
binning step.

Filtering
The filtering step is aimed to remove well-recognized artifacts 
that are produced during library preparation, such as PCR-
artifacts, self-circle, and dangling-end fragments (Belton et al., 
2012; Ay and Noble, 2015; Lajoie et al., 2015).

In particular, HiCeekR automatically removes PCR duplicates, 
when previously marked in the BAM files. Marking duplicates 
can be easily carried out using standard tools.

The identification of self-circle and dangling-end fragments 
is obtained from the association between read-pairs and 
restriction fragments that can lead to a two case scenario: the 
read-pair is associated to different restriction fragments or the 
same restriction fragment. The former case constitutes the set 
of valid reads, while the latter occurs when un-ligated dangling-
end or circularized self-circle fragments are present into the 
library preparation. Self-circle (outward strand orientation) 
and dangling-end (inward strand orientation) fragments can be 
discriminated each other by looking at the strand orientation of 
the paired-reads that fall in the same restriction fragment. Since 
such read-pairs are considered uninformative, they are removed 
during the filtering step.

HiCeekR removes self-circle and dangling-end fragments by 
setting a minimum distance for inward pair reads and outward 
pair reads (min-inward and min-outward values). It calculates 
the distance of each associated read from the nearest restriction 
enzyme site and then estimates the length of the sequencing 
fragment. Very long fragments, that could be associated with 
unwanted ligation products, can also be removed by setting a 
suitable threshold through the max-frag-length parameter. By 
inspecting the diagnostic plot in Figures 2B—before filtering), the 
user can select the min-inward and min-outward values to remove 
self-circle and dangling-end products (Lun and Smyth, 2015).

After the filtering process, HiCeekR updates the diagnostic 
plots (Figure 2—after filtering). Results are stored in an HDF5 
format.

Binning
The binning step is aimed to perform all those operations 
required to evaluate the raw contact matrix (Ay and Noble, 
2015). To this purpose, the reference genome is divided into 
nb bins of approximately non-overlapping and fixed-width wb 
(fixed-size bin). Indeed, the exact bin subdivision depends on the 
locations of the restriction enzyme cutting sites, and few bases 
of overlap might be allowed between consecutive bins. We recall 
that the bin size wb determines the resolution of the analysis (also 
the resources and the required running time). It is important 
to select wb to guarantee good statistical power at an affordable 
computational cost. Unfortunately, there are no precise guidelines 
for the selection of wb, since its choice depends on the sequencing 
depth and the type of chromatin structure of interest. For these 
reasons, HiCeekR allows the user to perform the computational 
analysis at different resolutions, suggesting to first use a low 

resolution to obtain a general view of the chromatin organization 
and then repeating and refining the analysis by increasing the 
resolution while focusing on specific genomic locations of 
interest (for example, a specific chromosome, or a specific sub-
region or two sub-regions located on different chromosomes).

After the bins indexing, HiCeekR assigns the previously 
filtered-in reads to the genome bins where they better map. 
Then, it produces the raw contact matrix, a symmetric square 
matrix M Rn nb b∈ × , by counting the number of reads Mi,j 
that fall within the bins i and j, respectively. To facilitate data 
exploration, the indexed bins are automatically converted into 
genomic coordinates. By exploring the raw contact matrix, it is 
common to observe bins with very large/small values that appear 
as “outliers” and might due to noise such as low mappability 
or the presence of many repeated sequences. To reduce this 
problem, it could be useful to remove “outliers” bins by using a 
bin-level filtering strategy, as suggested by Lajoie et al. (2015). 
However, such “outliers” bins can be detected in different ways 
(Lajoie et al., 2015). The current version of HiCeekR does not 
implement any bin-level filtering, although we plan to integrate 
such functionality in future releases.

At the end of binning, HiCeekR stores the bins genomic 
coordinates as a BED file format and the entire count matrix as a 
Tab Separated Valuer (TSV) file.

Normalization
The normalization step is aimed to remove technical bias from 
the raw contact matrix that could lead to false positive/negative 
findings. The output of such step is a normalized contact 
matrix, a symmetric square matrix M̂ Rn nb b∈ ×  of real values, 
that constitutes one of the main results of the computational 
data analysis. The current release of HiCeekR implements 
two different strategies for normalizing the contact matrix: 
the iterative correction and eigenvector decomposition (ICE) 
(Imakaev et al., 2012), and the WavSiS (Shavit and Lio’, 2014).

ICE is a well-known correction method based on the 
assumption that the bias in the interaction between two loci can 
be factorized as the product of the individual biases, affecting 
each of the two interacting loci (Imakaev et al., 2012). By using 
such matrix factorization approach, ICE method applies an 
iterative decomposition algorithm based on the maximum 
likelihood to convert the raw contact matrix into a normalized 
one of relative contact probabilities, guaranteeing equal visibility 
for each region. In particular, the ICE method gives the possibility 
to Winsorize the matrix to mitigate the effect of the impact of 
high-abundance bin pairs by using the Winsor.high parameter, in 
combination with the ignore.low parameter to not ignore the low 
abundance bins.

WavSis removes noise by inspecting the variance distribution 
of the coverage across different physical scales, stabilizing the 
variance, and applying a wavelet denoising strategy. In particular, 
the raw contact matrix M (whose entries Mi,j are assumed to follow 
a Poisson distribution) is regarded as a series of decomposed 
vector coefficients (whose number depends on the number of 
chromosomes), using the Haar-Fisz transform, which helps in 
stabilizing the variance. After that, a Gaussian wavelet shrinkage 
method is used to remove the noise from each set of coefficients 
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and the normalized matrix is reconstructed by inverting the 
transform. This method is performed independently on each 
chromosome (selected through the chromosome of interest select-
box). Additionally, it is possible to remove uncovered regions 
(detected during this normalization phase) with NA values, by 
using the remove uncovered checkbox.

At the end of this process, HiCeekR generates a new tsv file 
with the normalized count matrix.

Post-Processing
HiCeekR post-processing or downstream analysis supports 
the user in extracting chromatin structures from the raw or 
normalized contact matrix and interpreting the results in 
multiple ways: the detection of A/B-compartments and TADs, 
the integration with other omic-layers, and the functional 
interpretation, respectively. These functionalities are available 
to the user through the modules PCA, directionality index, 
TopDomTADs, HiCsegTADs, EpigeneticFeatures, and bed2track 
(in the Post-processing panel), Heatmap, and Network (in the 
Visualization panel).

HiCeekR detects A/B compartments thanks to the PCA 
module that performs the principal component analysis 
(PCA). Large-scale interaction patterns can be identified from 
the normalized contact matrix by computing the preferential 
interacting regions (the so-called, compartment A and 
compartment B). The compartments can be identified by looking 
at the PCA eigenvector with opposite signs (Lieberman-Aiden 
et al., 2009; Lajoie et al., 2015). This step requires to select the 
normalized contact matrix and outputs the PCA eigenvectors 
(stored as PCA eigenvector matrix) that can be used either to 
define compartments and for visualization purposes (Figure 6). 
Usually, the first one or two PCA eigenvectors are sufficient to 
identify the compartments.

Current version of HiCeekR highlights the TADs using three 
approaches: i) directionality index, ii) TopDom, and iii) HiCseg.

The directionality index module computes the directionality 
index di, as introduced by Dixon et al. (2012). di is defined as
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where ai and bi denote the number of mapped reads in the 
upstream and in the downstream of bin wi, respectively, and 

e a b
i

i i= +
2

. The directionality index di generates a segmentation 
of the genome, and the TADs are defined as the regions between 
two sharp changes of directions in such indexes.

The TopDomTADs module implements TopDom algorithm, 
as proposed in Shin et al. (2015). In particular, it defines a 
segmentation of the genome based on a three steps procedure: 
it evaluates the contact frequency signal as the average contact 
frequency of each bin with its upstream or downstream regions, 
then selects potential TADs boundaries as the local minima of 
the contact frequency signal, finally it filters out potential false 
positive by using Wilcox Rank Sum test under the assumption 
that the expected contact frequencies of regions within a TADs 

should be higher than those of a bin in the TADs and a bin outside 
the TADs, and of those bins outside the TADs. The number of 
bins to be included in upstream or downstream regions can be 
controlled by the user with the parameter Window Size, which 
constitute the only tuning parameter of TopDom algorithm.

The HiCsegTADs module implements HiCseg algorithm, as 
proposed in Lévy-Leduc et al. (2014). In particular, it defines 
a partition on the contact matrix (either the raw matrix M or 
the normalized contact matrix M̂ ) with a block structure 
depending on the unknown TADs boundaries. The parameters 
of the distributions are estimated by a maximum likelihood 
approach assuming that the observed contact values, Mi,j or ˆ

,Mi j , 
within the same TADs share the same distribution parameters. 
Maximum likelihood estimates are obtained using a dynamic 
programming algorithm. In this context, Gaussian distributions 
have to use for modeling normalized contact matrix M̂ , whereas 
Poisson or Negative binomial distributions for raw contact matrix 
M. The user can also choose the maximum number of TADs with 
the parameter Kmax and the structure (i.e. block-diagonal or 
extended-black diagonal) of the matrix segmentation.

At the end of the TADs processing, HiCeekR automatically 
generates output files as directionality index track (as a coverage 
file), and the detected TADs boundaries (in standard BED format). 
Note that for all modules, the identification of compartments and 
TADs is performed independently for each chromosome.

As already mentioned, one of the advantages of HiCeekR 
is given by the possibility to integrate and visualize Hi-C 
data together with other omic data. To this purpose, in the 
EpigeneticFeatures module, it is possible to upload one or more 
aligned BAM files from ChIP-Seq experiments. Then, HiCeekR 
computes the normalized coverage at the same bin-width 
resolution chosen for the current Hi-C analysis. Mimicking 
classical ChIP-Seq coverage, the normalized coverage can be 
computed either as the number of reads within the bin per million 
of mapped reads (RPM) or the ratio of the number of reads 
within the bin in the ChIP-Seq sample over those in the input 
DNA sample. Additionally, with the bed2track module, it is also 
possible to process any other genome-wide track in BED format. 
Such track will be converted by HiCeekR in bin coordinates (i.e. 
the bin coordinates will be included in the converted track when 
they intersected the user supplied BED track) to be visualized.

Note that, thanks to the Heatmap module, the user can 
visualize the normalized contact matrix, the PCA loadings, 
and/or the directionality index di, and/or any bed track (such 
as those provided as output by TopDomTADs or HiCsegTADs, 
or converted from user supplied tracks using bed2track), then 
can add one or more ChIP-Seq coverage tracks to have a more 
detailed overview of the chromatin state (Figure 6).

Finally, in the Network analysis, HiCeekR automatically 
retrieves the list of genes located within a specific compartment, 
TADs, or regions of interest. The annotation is obtained 
overlapping the bins coordinates of the region of interest with the 
genomic coordinates of the genes (as provided in an annotation 
file). To this purpose, note that a given bin might be associated 
with several genes (if the bin overlaps the gene body of more 
genes), or a given gene might be associated with multiple bins if 
its gene body is larger than the bin resolution or it overlaps any 
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bin boundary. There are bins not containing genes. The gene-bin 
association map depends on the annotation and the resolution 
of the analysis. HiCeekR provides three interactive tables 
Interaction, Genes, and Enrich. Interaction is a table that contains, 
for each pair of interacting bins, the corresponding genomic 
coordinates, the interaction strength, the names of the genes 
therein contained (if any), and few other information. The gene 
symbols are hyperlinked to GeneCards (https://www.genecards.
org) to facilitate the data interpretation. In the Enrich table, the 
results of the functional analysis on the identified genes carried 
out using gProfiler are shown (Raudvere et al., 2019). Identified 
enriched GO terms, or KEGG and Reactome Pathways are 
reported together with enriched regulatory motifs/transcription 
factors (from TRANSFAC), tissue specificity (from human 
protein Atlas database), Human-specific phenotypes (from 
Human Phenotype Ontology Database), protein complexes 267 
(from CORUM) and results from other interrogated databases. 
Genes is a table that, among several other information, allows 
to visualize the gene expression values of the identified genes 
(only if the user uploaded a gene expression dataset either from 
RNA-Seq or microarray experiments) that can help in better 
discriminating chromatin states.

Visualization
It is well known that the visualization of information in a graphical 
form constitutes one of the most important data exploration 
tools. However, visualizing Hi-C data can be challenging due 
to the high-dimensionality of the files and the dimension of the 
genome. Nowadays, several visualization tools are available, see 
Yardimci and Noble (2017) for a general review. Nevertheless, 
HiCeekR provides functions to visualize the obtained results 
without requiring additional software. Moreover, most of the 
HiCeekR plots are interactive. In particular, the user can select 
two main representations: Heatmap and Network (Figure 3).

Using the Heatmap visualization the user can explore the raw 
and the normalized contact matrix using the classic heatmap 

graphical representation where low and high contact values are 
depicted using different color intensities. He/she can select a 
specific chromosome or a pair of chromosomes or, otherwise, a 
region of interest within each of them. Moreover, it is possible 
to zoom in/out or to move to another region of interest. 
Additionally, in the Heatmap visualization, the user can add 
several other genome-wide tracks that allow to simultaneously 
visualize multiple information, such as the loadings of the PCA, 
the directionality index di, any BED format track (i.e. generated 
by the TADs modules or converted by bed2track module) as well 
as other omic profiles, such as ChIP-Seq profiles, on the same 
genome-wide scale, as shown in Figure 6.

Using the Networks visualization the users can visualize the 
interactions of a set of bins of interest against all other bins in 
network form, where the vertices represent the bins and the edges 
represent the detected interactions. Moreover, the link width is 
proportional to the strength of the interaction. Additionally, by 
using user-defined cut-offs, it is to possible to filter-out negligible 
interactions.

Implementation
HiCeekR is an R-Shiny web GUI which combines several R/
Bioconductor packages widely used for Hi-C data analysis and 
visualization functionalities. In particular, the filtering and the 
binning steps are implemented using diffHic package (Lun and 
Smyth, 2015), one of the most used tools for this type of data. 
Matrix normalization is carried out using ChromeR package 
(Shavit and Lio’, 2014) for the WavSis method and diffHic for the 
ICE algorithm. The downstream analysis is based on HiTC for 
the PCA and for the directionality index modules (Servant et al., 
2012), TopDom for the TopDomTADs module, HiCseg for the 
HiCsegTADs module, gProfileR for functional enrichment, and 
other customized R functions. The graphical output is produced 
using the ggplot2, plotly, heatmaply, networkD3, and corrplot 
packages.

FIgURe 3 | HiCeekR graphical output. (A) Heatmap representation on the contact matrix. (B) Network representation of selected contacts.
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Finally, from the architectural point of view, HiCeekR is 
open-source, easily expandable with additional functionalities 
(thanks to the modular structure) and it also allows to integrate 
third-party functions, as discussed in Shiny, Modules, and Other 
Technical Considerations.

Graphical User Interface
The graphical interface has been designed for guiding the user 
during the entire analysis process. To this purpose, as shown in 
Figure 4, the upper part of the interface displays the navigation 
bar illustrating all the main analysis steps in sequential order 
(i.e. Pre-Processing, Binning, Normalization, Post-Processing, 
Visualization). Each analysis step panel contains one or more 
specific functions. By selecting one of them, HiCeekR renders 
the “Function panel” where input data files, function parameters 
and/or options (default values are suggested whenever possible) 
can be set before executing the function (the left side of the 
interface allows the user to choose all the parameters/options). 
The results are shown in the “Result panel,” that is displayed on 
the right side of the interface, as plots or tables are automatically 
saved in a pre-structured way. The graphical representations are 
interactive and allow exploring the results through point&click 
and dragging&dropping approach.

Getting Started for the Analysis
At the first HiCeekR execution, the user has to create a 
configuration file. A dedicated interface will guide him/her by 
browsing the working folder. This step is mandatory for further 

analyses. Then, each time HiCeekR is executed, the user can either 
create a new data project or continue/update an already existing 
project (by selecting the load option in the Welcome interface). 
When an experimental dataset is analyzed for the first time, 
the user will create a new project. HiCeekR will create the data 
structure, as described in Data Format and Data Organization 
and later results will be stored in a corresponding project name 
folder. After that, the data analysis can be initiated.

Data Format and Data Organization
HiCeekR allows handling both user experimental data and other 
information such as the reference genome and annotations. 
Reference genomes are stored in the Genomes folder (in FASTA 
format), gene annotation in the Annotation folder [in Gene 
Transfer Format (GTF) format]. User experimental data mostly 
consist in Hi-C sequencing data (i.e. aligned BAM files) obtained 
from short-read alignment software. However, during the 
downstream analysis, HiCeekR can use other experimental data 
such as aligned sequences (i.e. BAM files) obtained from a ChIP-
Seq analysis workflow or gene expression values (i.e. TSV file) 
obtained from RNA-Seq analysis pipeline. We stress that for these 
additional data the reference genome used during the alignment 
has to be consistent with the one used for aligning Hi-C data and 
the gene identifiers have to be consistent with those available in 
the annotation file. All user experimental data, that refers to the 
same project, are stored in the Project data folder contained in 
the specific Project folder, which has been created by HiCeekR 
during the pre-processing phase. All user project folders are 

FIgURe 4 | HiCeekR graphical interface. The upper part of the interface is the navigation bar; on the left side the user can select the parameters of the function, on 
the right side results will be displayed in form of tables or plots.

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 1079

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


HiCeekRDi Filippo et al.

9

saved in the HiCeekR_projects main directory. Within each 
Project folder, the results of a specific analysis are organized in 
the Analysis folder, different for each sequence file and resolution 
(i.e. the width wb chosen during the binning phase). During each 
analysis step, HiCeekR stores the results in files in corresponding 
sub-folders for the specific step. Figure 5 shows the input/output 
data organization folder tree.

Shiny, Modules, and Other Technical Considerations
HiCeekR is implemented using R/Shiny library and modular 
structure. R/Shiny package easily allows developing advanced and 
practical interfaces in a web-based approach combined with the 
power of the R statistical instrument. Shiny apps were originally 

designed for small applications consisting of two main entities: 
the Shiny User Interface (SUI) that provides all the aesthetic 
components the user interacts with and the Shiny Server Side 
(SSS) that performs the required computations. Nevertheless, 
nowadays it is possible to implement complex applications by 
combining multiple modules.

A module is conceived as a shiny independent app, with 
its SSS and SUI. Each HiCeekR interface corresponds to a 
different module. Overall, the modular structure implemented 
in HiCeekR allows handling the complexity of the interface and 
better face the maintainability of the software, not only from a 
bug-fixing point of view but also when novel functionalities need 
to be added. Indeed, in this latter case, to add a novel module 

FIgURe 5 | HiCeekR hierarchical data structure. All data are contained in the HiCeekR working directory folder and organized in projects. HiCeekR working 
directory folder is created the first time HiCeekR is executed, using the configuration file (see Getting Started for the Analysis). Genomes and Annotations can 
be shared across different projects and are stored in the Genomes and Annotation folders, respectively. All user projects are saved in the specific Project_folder 
contained in HiCeekR_projects main directory. Within the specific Project_folder it is possible to create sub-folders related to a specific sample, and/or analysis 
resolution. Each sub-folder contains Results and SysOut folders. Folder Results contains a sub-folder for each analysis step where intermediate and final results are 
saved. Folder SysOut contains internal logs file and it is not meant for standard users.
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it will be necessary only incorporate the novel interface, which 
implements the required functionalities. Thanks to this choice, 
HiCeekR results in an easily expansible software.

HiCeekR and Other Available Tools
As mentioned in the Introduction, there are relatively few tools 
that allow performing a comprehensive Hi-C data analysis [see, 
Calandrelli et al. (2018) and Han and Wei (2017)] for a short 
list of the most popular tools). Most of them are implemented 
either in Python, R, Perl, C++, or as a combination of different 
programming languages. Moreover, they often require several 
external dependencies to be installed. Out of them, GITAR 
Calandrelli et al. (2018) and HiCPro Servant et al. (2015) 
were implemented mostly in Python as command-line. They 
constitute two useful pipelines designed for expert users (i.e. 
they allow to perform a specific analysis step or a series of steps). 
However, they do not have a graphical interface supporting non-
expert users. Similarly, HiC-bench Lazaris et al. (2017) provided 
a well-organized R/Python platform (with a large number of 
functionalities including those for parameter exploration), 
but has the same above-mentioned limits for the support of 
non-expert users. By contrast, HiCdat Schmid et al. (2015) 
and HiCexplorer Wolff et al. (2018) equipped their tool with a 
graphical interface. However, the interface of HiCdat is quite 
naive and limited to the pre-processing step (the higher-order 
analysis steps have to be performed as command-line). Vice versa, 
the interface of HiCexplorer is Galaxy based. Hence, it meets the 
needs of non-expert users as HiCeekR. However, HiCexplorer 
lacks interactivity in the graphical visualization. Moreover, its 
local installation is computational demanding. Compared to 
the above-mentioned alternatives, HiCeekR is completely R 
based, easy to install and presents a modular graphical interface 
designed for supporting non-expert users with several functions 
for interactive visualization of the results.

ReSUlTS

A Case Study
We illustrate the capability of HiCeekR in analyzing Hi-C data 
using a dataset from the lymphoblastoid cell line (GM12878) 
produced from the blood of a female donor, freely available 
(in FASTQ format) from Gene Expression Omnibus (GEO) 
(accession number GSE62742). The dataset contains seven 
biological replicates (including GSM160850 replicates used in 
the illustrative Figures 2, 6, and 7), each of them obtained from 
approximately 25 millions of cells prepared with standard Hi-C 
library protocol digested with HindIII. The runs were sequenced 
using Illumina HiSeq 2000 to produce 2 × 75 paired-end 
sequences for each library, see Grubert et al. (2015) for details.

Before starting the analysis with HiCeekR, the sequence files 
were independently aligned to the human reference genome 
using HiCUP and the hicupmapper script.

In particular, low quality reads (i.e. reads with more than one 
mismatch in the first 28 bases or the ones with a summed Phred 
quality score lesser than 70 for all mismatched positions) were 

removed and only uniquely mapped reads were reported in the 
BAM files. Duplicated reads were marked using the Picard tools 
with MarkDuplicates (version 2.18.4). Such BAM files constitute 
the starting point of the HiCeekR analysis.

We also downloaded a series of ChIP-Seq and RNA-Seq 
datasets on the same cell line from the ENCODE portal, to 
illustrate the capability of HiCeekR in integrating other omic 
data. In particular, we selected already aligned BAM files for 
the following histone modifications: H3K9Ac, H3K9me3, 
H4K20me1, H3K27me3, H3K36me3, H3K4me2, H3K4me3, 
H3K79me2 (ENCSR447YYN series from Bradley Bernstein 
laboratory at Broad Institute). For simplicity, using the samtools 
(version 1.9), we merged the three replicates of each modification 
into a single BAM file, that was sorted and indexed. From RNA-
Seq experiment (ENCFF383EXA series from California Institute 
of Technology or GEO accession number GSE33480) we 
downloaded the normalized gene expression values and obtained 
a single two-column tab-delimited file with the gene identifier 
in the first column and fragments per kilobase of transcript per 
Million mapped reads (FPKM) in the second one.

All the analyses were performed using as reference genome 
GRCh37.p13 (https://www.ncbi.nlm.nih.gov/assembly/GCF_0 
00001405.25/) and the gene annotation file obtained from 
GENCODE gencode.v19.annotation (ENCSR884DHJ).

HiCeekrR Computational Analysis
After creating the new project, we independently analyzed the 
seven replicates by selecting the corresponding BAM file from 
the Pre-processing module. For each sample, we selected the 
reference genome, the cutting enzyme in the cut site text-box 
(HindIII site “AAGCTT”), and an overhang parameter of 4 bp. 
Then, we executed the pre-processing and we set 50,000 bp as bin 
resolution for the rest of the analysis. Therefore, for each BAM 
file, HiCeekR created a specific folder inside the project folder 
where the results were saved.

The fragment length and the reads-orientation plots (see 
Figure 2—before filtering) were used to explore the presence 
of artifacts. We noticed that all the seven replicates show a self-
circle spike close to 28  =  256 bp. By using the Filtering module, 
for each BAM file, and setting min.inward parameter equal to 
1,000 bp, we filtered-out the spike because we are not interested 
in reads falling in the same restriction fragment. At the same 
time, since we did not notice dangling-end artifacts, we did not 
set any min.outward threshold to remove it. Figure 2—after 
filtering—illustrates the effect of the applied filtering. Note that, 
within HiCeekR the figure is interactive, a slide bar allows the 
user to choose the cut-off directly on the plot.

Afterward, we executed the Binning module using default 
settings. HiCeekR automatically loaded all required files from the 
sample under analysis and processed for all the chromosomes. At 
the end of this step, the detected interactions are shown in the 
results panel (and saved in the corresponding folder), as bin-to-
bin interaction tables.

For this illustrative example, we decided to investigate only 
chromosomes: 1, 2, 3, 13, 14, 16, since they were previously 
studied in Martin et al. (2015). Therefore, we selected the 
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corresponding target chromosomes inside “chromosome of 
interest” selection box and ticked the selective bin table check-box 
inside the Export panel to continue the analysis.

From the Normalization module, we selected the ICE 
normalization method and set the Window.high parameter equal 
to 0.02 in combination with the ignore.low = 0 parameter to 
ignore the low abundance bins. Moreover, to avoid the NA values 
produced by the DiffHiC implementation, we also selected the 
“Set NA to min” check-box. In such a way HiCeekR sets all 
the NAs to the min of the matrix. Afterward, we exported the 
normalized contact matrix for the chromosomes of our interest. 
Note that these normalized matrices constitute the starting point 
of the post-processing analysis.

For brevity, here we illustrate only two cases of usage for the 
Post-processing: i) We first identified compartments and TADs, 
then we integrated them with ChIP-Seq data, and visualized a 
region of interest (as in Figure 6), ii) We converted the normalized 
contact matrix in a network of interactions for some regions of 
interests (as in Figure 7), then we identified the genes located in 
each interacting bin and performed gene functional analysis. In 
this latter case, we also added the gene expression values from 
RNA-Seq data.

For the first case, we used the PCA module on the normalized 
contact matrix. Afterward, we used the directionality index 
module to determine the directional index di and TopDomTADs 
with Window Size = 20 that provides us a list of TADs boundaries 
in BED format. Then, we used the EpigeneticFeature module to 
process ChIP-Seq dataset and compute the normalized coverage 
at the same genomic resolution of the HiC-Seq analysis (i.e. over 
bins). Using the select bin Table file selector, we chose the BED file 
corresponding to the chosen bin resolution and the chromosome 
of interest (here we chose chromosome 2). Then, in the first sub-
panel, we selected the first BAM file for the ChIP-Seq data, e.g. 
the H3K9Ac BAM file, through the BAM file path selector, and we 
associated “H3K9Ac” as track label. By checking the add checkbox, 
we added a second track without replacing the previous one. We 
repeated this operation for H3K9me3, H4K20me1, H3K27me3, 
H3K36me3, H3K4me2, H3K4me3, H3K79me2. At the end of the 
process for each sample, HiCeekR generated a vector containing 
the raw coverage (number of mapped reads) in the bins. Using 
the second sub-panel, we exported the coverage for all samples 
as a combined table. To do this, we chose the file name through 
the file name text input and the normalization strategy to use (in 
the normalization checkbox). For this case study, we performed 
the RPM normalization and saved the results using the export 
table button.

Using heatmap module (layout), we selected the normalized 
contact matrix by the contact matrix input file widget and we 
focused the attention on the region 51902204–71950291 of 
chromosome 2, as illustrative example. From the same panel, we 
added four additional tracks. In particular, we selected in the first 
slot the PCA file obtained from the pca module. Since this file 
contains multiple columns (corresponding to the eigenvectors 
of the principal components), we selected the eigenvector 
corresponding to the second principal component (PC2). Note, 
PC1 or PC2 are usually used to describe compartments, the 
specific choice depending on the size of the region of interested 

and the resolution of the analysis. In the second slot, we loaded the 
directionality index di file. After that, we added the bed track of 
the TADs boundaries as produced by the TopDomTADs. Then, we 
added the two epigenetic tracks (produced in EpigeneticFeatures 
module) selecting “H3K9Ac” and “H3K27me3” features columns 
as an illustrative example. At the end of these uploads, we are able 
to visualize all the tracks by flagging the active checkbox in each 
slot panel (see Figure 6).

In the second case, we used the network module in the 
Visualization panel and focused the attention on the regions 
investigated in Martin et al. (2015), listed in Table 1. Note that 
since the regions in Table 1 are often larger than the bin size 
chosen for this analysis, each region can correspond to a few bins.

To this purpose, we first selected the normalized contact 
table (using the contact table input file widget), then the gene 
annotation file (using Annotation file input), finally we added the 
RNA-Seq gene expression data, by selecting the specific file in 
the Expression data file input. By pressing the set input button 
HiCeekR loaded the data and moved into the second tab panel 
(show). Inside this tab panel, we selected the chromosomal 
coordinates given in Table 1 (analyzing them individually). 
For all the interested regions, we set the normValue to 0.01 and 
checked the global checkbox (in the left panel). Since the focus of 
the study was to enlighten long-range interactions, we excluded 
from the visualization all those regions with a bin distance lower 
than eight bins, by checking the intra Chr checkbox and setting 
the min bin distance text box to 8. Then, HiCeekR visualized the 
network (see Figure 7) and produced three interactive panel-
tables (i.e. Interactions, Genes, and Functional), as mentioned in 
Pre-Processing. Within panel-tables Interactions, we ranked all 
the interactions by the interaction strength from the strongest 
(higher contact matrix value) to the weakest (lower contact 
matrix value). Therefore, we identified the strongest bin to bin 
interactions together with the genes therein contained. For the 
functional analysis, we selected the hsapiens database in the 
organism select box.

Analysis Results
Results of the first analysis are summarized in Figure 6, where 
the short p-arm of chromosome 2 (chr2:51,000,000–71,000,000) 
is displayed in a multi-layer view. The figure includes the 
normalized contact matrix (on the top) and, in order, the PC2 
eigenvector (as a green track), the di indices (as a red track), the 
TADs boundaries as detected by TopDom (as a purple track), 
and the RPM normalized tracks of the histone marks H3K9Ac, 
H3K27me3 (as brown and pink tracks), which are associated to 
transcribed an repressed chromatin, respectively. We highlighted 
a correlation between the typical rectangular block-shapes in 
the heatmap and the PC2 loadings allowing detecting the A/B 
compartments (territories) and categorizing also the TADs 
thanks to the directionality indexes di. Additionally, the histone 
mark tracks allow us to better characterize the chromatin 
structure within each pattern. A clear correlation between 
distinct A/B compartments and the H3K9Ac and H3K27me3 
enriched regions is shown at the selected chromosomal region 
(Figure 6).
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FIgURe 6 | Continued
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For the second analysis, we report the independent analysis of the 
regions in Table 1. First of all, we noticed that the regions identified 
in Martin et al. (2015) are often among the strongest interactions 
(top positions after ranking by strength) identified in our analysis.

In particular, from the panel-table Interactions, we easily 
identified the following gene-bins interactions, where gene-bins 
means the bins overlapping or containing a given gene. Recall 
that, based on the chosen resolution and the length of the gene 
body, each bin might contain few genes, or a given gene might 
be associated with few bins. We identified that the EOMES-
bins has multiple strong interactions within chromosome 3, 
as previously reported Martin et al. (2015). Out of them, the 
EOMES-bins was found to interact with the AZI2-bins (such 
interaction was confirmed for all replicates with strength 
spanning from 0.020 to 0.025 in the normalized matrices). 
Additionally, we confirmed the interaction between the COG6-
bins and the FOXO1-bins within chromosome 13, although it 
is weak (about 0.01 in the normalized matrices). By contrast, 

FIgURe 6 | Multilayer visualization of the region 51902204–71950291 of chromosome 2 (replicate GSM1608509). From the top, the first track shows the 
normalized contact matrix as a heatmap, where the color intensity is proportional to the strength or the interaction. The green track shows the eigenvector of the 
second principal components (PC2) that define the putative A/B compartments. The red track displays the directional indexes di (that helps in defining TADs). The 
purple track shows the TADs boundaries as detected by TopDomTADs. The two remaining tracks show the RPM normalized coverage for H3K9Ac (in brown) and 
H3K4me2 (in pink) histone marks. The H3K9Ac and H3K4me2 enriched regions exhibit a profile similar to PC2 track, indicating that it overall correlates with the 3D 
organization of the chromosomes in these regions.

FIgURe 7 | Bin to bin interaction network (evaluated with low stringency). The interaction network was built starting from the region in Tab. 1 containing COG6 
gene (bins in orange) and retrieving all interactions within chromosome 13. Additionally, we highlighted the bins containing FOXO1 and NXT1P1, in green and red 
respectively. This analysis has been performed on GSM160850 replicate.

TABle 1 | The list of regions identified in Martin et al. (2015) (as chromosome, 
start, end of the region, and the most relevant genes therein located).

Chr Start end genes

Chr1 197,473,879 197,744,623 DENND1B
Chr3 27,757,440 27,764,206 EOMES
Chr13 40,229,764 40,326,765 COG6
Chr14 69,262,513 69,454,180 ZFP36L1, ACTN1
Chr16 11,022,748 11,036,257 DEXI
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we found that the COG6-bins presents a strong interaction 
with the NXT1P1-bins (chr13:39697243-39750825) (about 
0.017 in the normalized matrices). Such case is illustrated in 
Figure 7, where the COG6-bins are depicted in yellow, and the 
NXT1P1-bins and FOXO1-bins are depicted in red and green, 
respectively. Moreover, the DEXI-bins on chromosome 16 shows 
a strong interaction with the RMI2-bins, as reported in Martin 
et al. (2015). Indeed, this interaction was found with strength 
from 0.0344 to 0.033 in the normalized matrices, being among 
the strongest interactions that this region shows with distant 
regions. This region seems also to interact with the ZC3H7A-
bins, although this interaction is weaker (value close to 0.01) 
than others. On the other hand, when moving to chromosome 1, 
the DENND1B-bins shows a strong interaction with the LHX9-
bins (with normalization matrix values spanning from 0.020 
to 0.030). Finally, on chromosome 14, we partially confirmed 
the interaction between the bins containing the ZFP36L1 
and ACTN1 genes and the ZFYE26-bins. This interaction was 
observed only in a subset of replicates, and, when detected, it 
shows low strength (normalized value of about 0.01).

From the panel-table Genes, we found that, according to 
the RNA-Seq data, all above mentioned interacting genes are 
expressed except LHX9 and show variable expression levels in 
RNA-Seq: ZC3H74 gene has the highest RPKM value (186.55), 
ZFP36L1, ZFYVE26, and AZI2 genes show high expression 
(59.03, 48.67, 37.93 respectively), while DENDD1B, EOMES, 
FOXO1, ACTN, DEXI, and RMI2 genes show a lower level of 
expression (ranging from 4.21 to 6.87).

Finally, the most interesting results of the functional enrichment 
analysis performed on the genes interacting with regions in 
Table 1 are given in Table 2. We can see that DENND1B gene, 
which codifies for a guanine nucleotide exchange factor (GEF) 
acting as a regulator of T-cell receptor (TCR) internalization in 
T-cells interacts with LHX9, ATP6V1G3, C1ORF53 genes. They 
show significant enrichment of binding sites for the transcription 
factor T-bet, that is a master regulator of the T-helper 1 (Th1) cell 
development (Kallies and Good-Jacobson, 2017). The zinc-finger 
ZFP36L1 gene interacts with RAD51B and ACTN1 genes, which 
codify for proteins involved in homologous recombination and 
cell migration, respectively (Lio et al., 2003; Yamaji et al., 2004). 
Remarkably, the AZI2 gene, which interacts with the EOMES 
gene, is an important activator of NF-kB signaling as also 
reported in Martin et al. (2015). It shows binding sites for the 
FOXJ2 transcription factor, which strictly correlated with NF-kB 
signaling (Lin et al., 2004).

Computational Costs
The analysis of this case-study was executed on an Intel i7-7700HQ 
processor, with 32Gb RAM system (64bit architecture) on 
Ubuntu 18.04 LTS, with R version 3.6.1 and Shiny 1.3.2. Other 
relevant packages are listed in the github page.

The most computationally expensive step is the pre-processing 
of Hi-C data which requires approximately 20 to 25 min for 
processing a single BAM file of approximately 150 million of 
reads. For the binning step, performed on large chromosomes 
such as human chromosome 1 or 2, with bin size 50,000 bp, 
the elapsing time is about 3 to 5 min including the output file 
storage. While for the normalization step the required time is 
about 30 s. The identification of TADs requires 2 to 5 min per 
chromosome, depending on the methods and the size of the 
chosen chromosome. Another time demanding step is the import 
of indexed ChIP-Seq BAM files that can even take a couple of 
hours for samples with very high depth such as those obtained 
after merging different replicates. The computational time is 
clearly reduced when working with a specific chromosome or at 
lower bin resolutions or with organisms with smaller genomes.

Software Availability and System 
Requirements
HiCeekR is freely available as source code package on GitHub 
(https://github.com/lucidif/HiCeekR), where future releases will 
be also posted. Moreover, issues and problems can be submitted 
to the HiCeekR developers through the github issues page to 
contribute to the development of future releases. The github page 
also includes a detailed user manual where all HiCeekR modules 
are described and the data used in the current study that can be 
used as training example. The current version of HiCeekR was 
developed and tested on Ubuntu 16/18 and macOS 10.13, using R 
environment version 3.6.1, and the latest releases of R packages is 
reported on the github page as Session Info. System requirements 
strongly depend on the size of the reference genome, sequencing 
depth and, in particular, on the bin resolution. However, minimal 
system requirements are Intel i5 4th generation processor and 
16Gb RAM.

CONClUSIONS
Despite the relevance of Hi-C data and the availability of several 
packages for performing specific steps in their analysis, only a few 

TABle 2 | Results obtained from the functional analysis; the table contains significant terms identified starting from the list of genes contained in the bins strongly 
interacting with the regions examined by network construction.

Region term.id dm term.name intersection p-value

DENND1B TF:M08355 tf Factor: HOXB2:T-bet LHX9, ATP6V1G3, 
C1ORF53

0.0195

EOMES TF:M08290_1 tf Factor: FOXJ2:Elf-1 AZI2, ZCWPW2 0.0053
EOMES TF:M03979_1 tf Factor: ETV1 AZI2, ZCWPW2 0.0306
EOMES TF:M07287_1 tf Factor: FOXO3A AZI2, ZCWPW2 0.0362
ZFP36L1,ACTN1 CORUM:260 cor RAD51B-RAD51C complex RAD51B 0.0497
ZFP36L1,ACTN1 CORUM:4025 cor Affixin-actinin (alpha) complex ACTN1 0.0497
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comprehensive and user-friendly tools have been developed during 
the last years (Schmid et al., 2015; Caudai et al., 2018; Wolff et al., 
2018). Thanks to its GUI, HiCeekR provides an easy-to-use way to 
analyze this data type, specifically designed to guide researchers 
lacking specific training in scientific programming through the 
different computational steps. Moreover, it also provides multiple 
approaches for integrating Hi-C data with other omic datasets and 
a wide series of interactive graphical outputs that can significantly 
support researches in the interpretation of the huge amount of 
data produced during Hi-C experiments. The major capabilities of 
HiCeekR are illustrated by analyzing a publicly available dataset, 
and integrating ChIP-Seq and RNA-Seq dataset.

Moreover, HiCeekR is implemented in a modular structure. 
Therefore, other approaches available in literature could be easily 
encapsulated in further releases. In this regard, an interesting 
extension is the one proposed by Merelli et al. (2015). In this latter 
case, by using NuChart tool they build multiple gene-centric 
graphs starting from Hi-C and transcription data, allowing 
additional statistical investigations, thanks to the graph-based 
approach. Such an approach can complement HiCeekR network 
approach to provide a wider range of methods. It is also clear 
that post-processing analysis constitutes one of the aspects where 
artificial intelligence approaches can still greatly contribute to the 
elucidation of chromatin structure and gene regulation interplay, 
therefore several other algorithms are expected to be available 
soon. Hence, we expect that HiCeekR will growth by expanding 
the number of methods available.

On the other hand, although HiCeekR already implements 
several methods to facilitate Hi-C data analysis, much work 
still needs to be done to speed-up the time-demanding 
computations required for carrying out some specific steps, such 
as the pre-processing and binning. A possible improvement is 
the implementation of a parallel version of the algorithms used 
in HiCeekR or the split-up of the computations on multiple 
cores/CPUs. In this regards, a good example is given by the 
NuChart-II R packages, where particular attention is reserved 
for the implementation of parallel routines for Hi-C data analysis 
(Merelli et al., 2013; Tordini et al., 2017).

Last but not least, HiCeekR can be improved to better 
supporting computational reproducible research. Indeed, thanks 
to its GUI approach, HiCeekR guides the user to perform a 

complete analysis of Hi-C data, automatically storing input/
output data. Despite this is very helpful from the user point of 
view, it does not provide reproducible research functionalities 
yet. As mentioned in (Russo et al., 2016b), it is known that the 
problem of computational reproducibility is very challenging for 
tools based on GUI, since it becomes hard to precisely trace all 
the steps/parameters of the analysis workflow when the user can 
apply a point-and-click approach. However, in the same spirit 
such that (Russo et al., 2016a) was extending RNASeqGUI (Russo 
and Angelini, 2014) in the direction of reproducible research, 
we plan to implement multiple functionalities to automatically 
produce a comprehensive analysis report incorporating all the 
executed code and the results (as tables and figures).
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