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Malignant pleural mesothelioma (MPM) is the most common type (about 80% reviewed in Leard 
and Broaddus, 2004) of malignant mesothelioma, a rapidly fatal and highly resilient tumor arising 
in the mesothelium, a tissue of mesodermal origins which covers many of the important internal 
organs (reviewed in (Yap et al., 2017). This cancer is mostly associated with exposure to asbestos 
(reviewed in Felley-Bosco and MacFarlane 2018).

Few years ago, we and others reported about hedgehog (Hh) signaling in a subset of MPM patients 
(Shi et al., 2012; Zhang et al., 2013; Meerang et al., 2016). We briefly discuss here whether, taking 
into account recent knowledge, it would be worth to consider these observations for mesothelioma 
therapy. We first consider data obtained using high throughput mesothelioma profiling studies 
(Bueno et al., 2016; Hmeljak et al., 2018), then we mention the caveats about successful hedgehog 
inhibition therapy in cancer (reviewed in Curran 2018) and finally we highlight novel aspects of 
hedgehog signaling in the context of immune signaling in cancer. Information about Hh signaling 
expression in cancers other than mesothelioma can be found in some recent reviews (Wu et al., 
2017; Niyaz et al., 2019; Pietrobono et al., 2019;).

Canonical Hh core signaling include hedgehog ligands (sonic hedgehog, Shh; desert hedgehog, 
Dhh; indian hedgehog, Ihh) (reviewed in Petrova and Joyner 2014) which activate the G protein-
coupled receptor Smoothened (Smo), upon binding to the transmembrane receptor Patched (Ptch) 
removing its inhibitory effect. Activation of Smo then leads to nuclear translocation of the Glioma 
associated protein (Gli) family of transcription factors and induction of Hh target genes such as 
Gli1, Ptch1 and Hedgehog interacting protein (Hhip). The latter competes with Ptch by binding 
to Hh ligands (Chuang and McMahon 1999), while cell-adhesion-molecule-related/downregulated 
by oncogenes (Cdon), bioregional Cdon-binding protein (Boc), and Growth Arrest Specific 1 
(Gas1) positively regulate Hh signaling. Gli protein levels and activities are primarily regulated by 
Suppressor of Fused (Sufu) which is a negative regulator of mammalian Hh signaling (Cooper et al., 
2005; Svard et al., 2006).

While the Hh signaling pathway is necessary for embryonic mesothelial development (Dixit et al., 
2013) it is inactive in mesothelium (Shi et al., 2012). We were the first to show SHH gene expression 
in human MPM tumor tissues along with increased expression levels of HHIP and GLI1 (Shi et al., 
2012). High levels of GLI-1 expression is significantly associated with worst overall survival in two 
independent cohorts of patients [(Shi et al., 2012) and analysis of mesothelioma TCGA (https://
portal.gdc.cancer.gov/projects/TCGA-MESO) data using Progene2 (Goswami and Nakshatri 2014)]. 
In a recent high-throughput multi-omics analysis (Bueno et al., 2016), Hh signaling expression was 
enriched in sarcomatoid histotype, which is generally associated with worst overall survival. We also 
observed activation of Hh signaling during mesothelioma development in mice exposed to asbestos 
(Rehrauer et al., 2018). Interestingly, a recent pan-cancer analysis (de Reyniès et al., 2019) revealed 
that not only GLI-1 (p = 0.019584614) but also GLI-2 (p = 0.035063475) and SHH (p = 0.003447888) 
high expression have prognostic value in mesothelioma TCGA. Intriguingly, such correlation was 
not observed (de Reyniès et al., 2019) by analyzing two other datasets, where expression was based 
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on array data instead of RNA-seq. The reasons for the discrepancy 
are not straightforward. However, in all datasets bad prognosis 
was associated with epithelial to mesenchymal transition and 
stemness.

Oncoprint analysis (www.cBioportal.org) of TCGA data 
(Figure 1A) shows that few mesothelioma patients bear PTCH1 
truncation mutations or SUFU deep deletions and there is a 
statistically significant co-occurrence between alterations of 
several components of Hh signaling (Figure 1B). Interestingly 
however, there is no strict correlation with ligands expression and 
the ligand with the highest differential level is DHH. Mutations 
in human and murine mesothelioma cell lines has also been 
reported (Lim et al., 2013) (Sneddon et al., 2017).

As recently pointed out (Curran 2018), it has been not possible 
to maintain Hh signaling when primary tumors are grown in the 
presence of serum. However, we were able to culture primary 
human MPM, in 3% oxygen, in the absence of serum, but in the 
presence of their own conditioned medium plus specific growth 
factors and, in some of them, we showed an active Hh signaling 
(Shi et al., 2012). In these conditions we could observe (Felley-
Bosco et al., 2015) the presence of primary cilia, a non-motile 

flagellar-like organelle present on growth-arrested cells (Satir et 
al., 2010) where Hh signaling occurs. This is possibly linked to 
the fact that about 35% of the cells grown in these conditions are 
quiescent (Renganathan et al., 2014), contrary to what is observed 
in cells cultured in the presence of serum. Giving the fact that in 
mesothelioma there is a considerable number of quiescent cells, 
since median cell-cycling marker Ki67 (also called MIB1) staining 
is 10% (Kadota et al., 2012), an additional advantage of these culture 
conditions is to better resemble to tumors. Interestingly, DHH is 
the ligand whose expression is maintained in these conditions in 
several human and rodent mesothelioma models (Shi et al., 2012) 
(Meerang et al., 2016). The reason for a differential expression 
of DHH in mesothelioma is not clear, especially because it is 
mostly associated with testis (Bitgood et al., 1996) and Schwann 
cell (Parmantier et al., 1999) development. An intriguing recent 
observation is that DHH positively regulates the differentiation 
from common myeloid progenitor (CMP) to granulocyte/
macrophage progenitor and decreases the differentiation from 
CMP to megakaryocyte/erythrocyte progenitor (Lau et al., 
2012). Are DHH producing mesothelioma cells influencing 
hematopoietic cells in the microenvironment?

FiGURE 1 | Hedgehog signaling in TCGA mesothelioma samples. “Oncoprint” analysis performed using cBioportal (www.cBioportal.org) of Hh components (A) and 
co-occurrence alterations statistically significant (B).
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Consistent with caveats recently discussed (Curran, 2018), 
it seems that Hh activation signature is not always associated 
with mutation in driver genes in mesothelioma although there 
are few patients with Hh driver mutations. Some Hh signature 
might be reflecting stromal activity. Pre-clinical studies have 
shown a moderate effect on tumor reduction accompanied by 
tumoral decrease of Hh-activation after treatment with Smo 
antagonists of tumor-bearing immunodeficient mice (Shi 
et al., 2012), while in another model in immunocompetent 
rats (Meerang et al., 2016) the tumor decreasing effect was 
associated with a marked effect on tumor stroma.

Patients with PTCH1 driver mutations should respond to Smo 
inhibitors. The latter have been tested only in three unselected 
mesothelioma patients and no response was observed (LoRusso 
et al., 2011). As for other targeted therapy, there is a need for proper 
predictive biomarkers. In medulloblastoma, another cancer where 
a subgroup of patients shows Hh activation, a five-gene expression 
signature was used to select patients who received Smo inhibitor 
and 66% showed objective responses (Shou et al., 2015). In a more 
recent study, this Hh signature showed that the five responders and 
three patients with stable disease had Hh-activated tumors, while 
two patients with activated Hh and 50 patient with an Hh-negative 
signature did not respond to Smo inhibition (Kieran et al., 2017). 
It is still not known whether this gene signature would be the same 
in mesothelioma, and it is not sure whether energy will be invested 
in tackling Hh signaling as therapeutic strategy in few patients, 
in view of the more frequent signaling pathways altered in this 
disease (Bueno et al., 2016; Hmeljak et al., 2018).

Patients with Hh-ligand independent mutations may benefit 
from alternative therapeutic strategies. Several studies reported 
that Gli1 inhibition, either by agents such as arsenic trioxide, 
which prevents Gli2 localization to primary cilia (Kim et al., 
2010) or GANT61, which prevents Gli1-DNA binding in living 
cells (Lauth et al., 2007), resulted in growth arrest and induction 
of cell death in MPM cell in vitro (Li et al., 2013; You et al., 2014; 
Lim et al., 2015).

Further complexity is added by the recent observation 
that Shh produced by tumor associated astrocytes promote 
medullobastoma growth by increasing nestin expression 
independently of Gli-1 (Liu et al., 2017). Nestin is a biomarker 
of epithelial to mesenchymal transition in MPM and high 

expression levels are associated with worst outcome (Thies et al., 
2015), but it is not clear whether it is associated with any Hh 
signaling in MPM.

Finally, there is an aspect of Hh signaling which is worth 
mentioning in the context of immunotherapy, which is changing 
the handling of cancer patients, including MPM patients. Hh 
ligands (including DHH) produced by tumor cells lead to 
Gli-1 mediated “M2-polarization” of macrophages (Hanna 
et  al., 2019) which is associated with immunosuppression and 
pro-tumorigenic activity. This additional cross talk between 
tumor cells and stroma is therefore of potential importance in a 
cancer characterized by abundant “M2-polarized” macrophages 
(Minnema-Luiting et al., 2018).

Dr. Curran mentioned (Curran 2018) that the difference 
between Hh inhibitor concentration leading to the decrease 
of hedgehog reporter activity in mouse fibroblast and the 
concentration necessary to inhibit tumor cell growth is indicating 
reasons for clinical failure in the treatment of cancer patients 
using Hh inhibition.

Although agreeing with that caveat, based on our own and 
recent data in multi-omics studies, our opinion is that it is 
likely that Hh signaling functions as a pro-tumorigenic signal 
in some MPM. Indeed, both Hh ligand-dependent and ligand-
independent effects promote MPM cell growth in experimental 
models and high through-put analysis of MPM patients shows 
that the Hh pathway is active in a subset of patients. It is up to 
the mesothelioma research community to coordinate efforts to 
further investigate this aspect.
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