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Multiple sclerosis (MS) is a chronic fatal central nervous system (CNS) disease involving in 
complex immunity dysfunction. Recently, long noncoding RNAs (lncRNAs) were discovered 
as the important regulatory factors for the pathogenesis of MS. However, these findings 
often cannot be repeated and confirmed by the subsequent studies. We considered 
that the small-scale samples or the heterogeneity among various tissues may result in 
the divergence of the results. Currently, RNA-seq has become a powerful approach to 
quantify the abundances of lncRNA transcripts. Therefore, we comprehensively collected 
the MS-related RNA-seq data from a variety of previous studies, and integrated these data 
using an expression-based meta-analysis to identify the differentially expressed lncRNA 
between MS patients and controls in whole samples and subgroups. Then, we performed 
the Jensen-Shannon (JS) divergence and cluster analysis to explore the heterogeneity 
and expression specificity among various tissues. Finally, we investigated the potential 
function of identified lncRNAs for MS using weighted gene co-expression network 
analysis (WGCNA) and gene set enrichment analysis (GSEA), and 5,420 MS-related 
lncRNAs specifically expressed in the brain tissue were identified. The subgroup analysis 
found a small heterogeneity of the lncRNA expression profiles between brain and blood 
tissues. The results of WGCNA and GSEA showed that a potential important function of 
lncRNAs in MS may be involved in the regulation of ribonucleoproteins and tumor necrosis 
factor cytokines receptors. In summary, this study provided a strategy to explore disease-
related lncRNAs on genome-wide scale, and our findings will be benefit to improve the 
understanding of MS pathogenesis.

Keywords: ribonucleic acid sequencing, multiple sclerosis, long non-coding ribonucleic acids, meta-analysis, 
function analysis
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INTRODUcTION
Multiple sclerosis (MS) is a chronic fatal neurodegenerative 
disease involving in complex immunity [central nervous system 
(CNS)] (Sospedra and Martin, 2005; Frohman et al., 2006; 
Li et al., 2018). Based on the 2014 statistics of the Atlas of MS 
investigation, the estimated number of the people afflicted 
with the MS worldwide has reached approximately 2.3 million 
(Browne et al., 2014). Although much remains unknown about 
the molecular etiology of MS, more and more studies showed that 
the dysregulation of transcriptional processes could potentially 
contribute to the pathogenesis of MS (Li et al., 2017; Selmaj et al., 
2017; Angerer et al., 2018; Cheng et al., 2018; Han et al., 2018b; 
Zhang et al., 2019).

Recently, long noncoding RNA (lncRNA), one of the non-
protein-coding genes whose transcripts are longer than 200 
nucleotides, has been discovered as the important regulatory 
factor of immune system and pathogenesis of CNS disorders 
including MS (Gomez et al., 2013; Ng et al., 2013; Dong et al., 
2015; Cheng et al., 2016; Santoro et al., 2016; Zhang et al., 2016; 
Chen et al., 2017; Eftekharian et al., 2017; He et al., 2017; Cheng 
et al., 2018; Yin et al., 2019). However, for MS, these results often 
cannot be repeated and confirmed by subsequent study. For 
example, multiple variants of the lncRNA antisense non-coding 
RNA in the INK4 locus (ANRIL) are found significantly associated 
with the risk of MS through the haplotype analysis of blood 
samples (Rezazadeh et al., 2018). But following study reveals that 
the function of ANRIL does not contribute the pathogenesis of 
MS in blood, cortex, and cerebellum tissues (Pahlevan Kakhki 
et al., 2018). Study showed a significant upregulation of lncRNA 
MALAT1 in MS blood tissues (Cardamone et al., 2019), while 
the expression of MALAT1 was found markedly decreased 
in MS brain by the subsequent study (Masoumi et al., 2019). 
Moreover, another study found that MALAT1 is not significantly 
differentially expressed between MS patients and controls 
(Gharesouran et al., 2019). We considered that the small-scale 
samples or the heterogeneity among various tissues may result in 
the divergence of the results.

Currently, specifically for lncRNAs, using RNA-seq data to 
quantify abundance of the transcripts has become very powerful 
approach compared with the traditional ones (e.g., gene 
microarray) (Wang et al., 2009). Particularly, almost all of the 
expression of the known lncRNA transcripts can be measured 
using RNA-seq data, but this proportion is just approximately 
0.1 to 10.6% by the method of probe re-annotation using various 
types of microarrays (Du et al., 2013; Fang et al., 2018; Yang 
et al., 2019). Moreover, lncRNA abundance quantification using 
RNA-seq data also shows higher accuracy based on its deep 
read coverage, while the re-annotation approach only requires 
the sequence match of 1 to 4 probes when quantifies lncRNA 
abundance (Du et al., 2013; Gellert et al., 2013; Li et al., 2019). A 
previous study reported that by paying attention to some aspect 
of library and sequencing process [i.e., poly-A tail selection, 
paired-end sequencing, and sequencing of double-stranded 
complementary DNA (cDNA)], the lncRNAs are more easily 
and more accurately identified through RNA-seq (Ilott and 
Ponting, 2013).

In this study, we thus selected all MS-related RNA-seq data 
in a variety of studies by searching three authoritative public 
databases: GEO DataSets (Barrett et al., 2013), EBI-EMBL 
ArrayExpress (Athar et al., 2019), and DDBJ Sequence Read 
Archive (Ogasawara et al., 2013) using the keyword “multiple 
sclerosis.” Then, we used these RNA-seq data to perform 
expression quantification of the lncRNA in each of the selected 
studies. Next, we integrated the lncRNA expression results of all 
selected studies by an expression-based meta-analysis to identify 
the significantly differentially expressed lncRNAs between MS 
patients and controls. Further, we explored their heterogeneity 
and expression specificity among various tissues. After that, the 
weighted gene co-expression network analysis (WGCNA) was 
performed using the expression data of lncRNAs and protein-
coding genes to identify the significant modules for MS. The 
expression of the protein-coding genes was calculated using 
the same approach on lncRNA. Finally, we conducted gene set 
enrichment analysis (GSEA) on the co-expressed protein-coding 
genes in each significant module to infer the function of the 
differentially expressed lncRNAs potentially contributing to the 
pathogenesis of MS.

MATERIALS AND METhODS

Selection of the Multiple Sclerosis-Related 
Ribonucleic Acid Sequencing Datasets 
and Studies
We used the keyword “multiple sclerosis” to search all the possible 
MS-related RNA-seq datasets in three authoritative databases: 
GEO DataSets (Barrett et al., 2013), EBI-EMBL ArrayExpress 
(Athar et al., 2019), and DDBJ Sequence Read Archive 
(Ogasawara et al., 2013). The search was performed before the 
last update of the databases on May 16 2019. Then, we selected 
the suitable datasets using four criteria: 1) the organism in the 
dataset is the human being; 2) the study in the dataset is designed 
using the case-control method; 3) the dataset has provided the 
FASTQ data; (4) the FASTQ data in the dataset is not generated 
by metagenome, whole genome, or whole exome sequencing. 
Finally, the studies from these datasets based on various tissues 
were selected. Figure 1 showed the workflow.

Quantification of Long Noncoding 
Ribonucleic Acid Sequencing Abundance 
Using Ribonucleic Acid Sequencing 
Sequencing Data
We first downloaded the sequence data of these studies by 
Prefetch and converted them into FASTQ files using fastq-dump 
tool of the SRA Toolkit software (Leinonen et al., 2011). Next, 
we downloaded the reference sequences of lncRNA and protein-
coding transcripts in FASTA format from NONCODE (version 
5) (Fang et al., 2018) and Ensembl (release 91) (Aken et al., 
2017), respectively, and further merged the two FASTA format 
files. Particularly, NONCODE is one of the most complete 
and well-annotated databases of the noncoding RNAs, and we 
obtained a total of 172,216 transcript sequences of 96,308 human 
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lncRNA genes from it. Ensembl aggregated the cDNA data from 
National Center for Biotechnology Information (Sayers et al., 
2019), UniProt (UniProt, 2015), Genome Reference Consortium 
(Church et al., 2011), and UCSC Genome Browser (Kent et al., 
2002) databases. After removing the pseudogenes, we obtained 
a total of 160,040 transcript sequences of 22,810 human protein-
coding genes from it. Then, we performed the quantification 
of the lncRNA and protein-coding transcripts simultaneously 
by mapping the RNA-seq reads of each study to the merged 
reference sequence (pseudoalignment) and calculating the count 
values using Kallisto software (Bray et al., 2016). Kallisto is a fast 
and highly accurate quantification tool for transcript abundance 
through k-mer lookup technique. Here, the merged reference 
sequences have been processed into a transcriptome index to 
conduct the pseudoalignment which has the same effect as the 
reads alignment to a given reference genome in the traditional 
transcript-level RNA-seq processing but can substantially reduce 
calculation time. For the paired-end sequencing samples, the 

arguments were set to defaults, i.e., the number of bootstrap 
samples (-b) equals 0 and the number of threads (-t) equals 1. 
For the single-end sequencing samples, besides these default 
parameter settings, we set the estimated average fragment length 
(-l) and the standard deviation of fragment length (-s) to 200 and 
20, respectively, according to Kallisto’s recommended parameters. 
Finally, based on the annotation file “Transcript2Gene,” we 
integrated transcript-level count values of lncRNAs to calculate 
their corresponding gene-level count values using the R package 
“tximport” (Soneson et al., 2015).

heterogeneity Test and Meta-Analysis
To identify the significantly differentially expressed lncRNAs 
between MS patients and controls, we calculated and integrated 
the results of each study by a meta-analysis. These analyses 
were conducted using R package “MetaOmics,” which is a 
comprehensive analytical pipeline to meta-analyze multiple 

FIgURE 1 | The flow chart of selecting the RNA sequencing (RNA-seq) datasets and studies which are used to identify the multiple sclerosis-related long 
noncoding RNAs.
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transcriptomic studies (Ma et al., 2019). This meta-analysis 
includes a normalization process same as the edgeR’s strategy 
and a “AW-Fisher” method to integrate data (Bullard et al., 2010; 
Robinson et al., 2010; Ma et al., 2019). First, we calculated the two 
parameters, I2 and P value, to measure the lcnRNA expression 
heterogeneity by the Cochran’s Q Statistics, which is based on 
a chi-square test with k − 1 degrees of freedom (k equals to the 
number of studies used for the meta-analysis). According to the 
previous studies, the heterogeneity was considered as statistically 
significant when I2 > 50% and P < 0.01 (Han et al., 2015; Li et al., 
2016; Liu et al., 2017; Han et al., 2018a; Xue et al., 2018). Then, the 
meta-analysis was performed for each of these lncRNAs based on 
their count values. Particularly, the random effect model (REM) 
and fixed effect model (FEM) were used, respectively, for the 
lncRNAs with a significant heterogeneity or not. Using the REM 
in meta-analysis can reduce bias of the results (Kim et al., 2015; 
Szajewska and Kolodziej, 2015). We calculated standardized 
mean difference (SMD) with its 95% confidence interval (CI) 
to identify the differentially expressed lncRNA between the MS 
patients and controls (95% CI of SMD does not include zero, 
FDR adjusted P < 0.05). The SMD is given by the mean difference 
between case and control divided by the standard deviation and 
applies to meta-analysis when the outcome is continuous variable 
(e.g., expression level). Moreover, since all these samples can 
be split into brain and blood, we performed the meta-analysis 
for the two subgroups, and explored the differential expression 
pattern of the MS-related lncRNAs between brain and blood.

In addition, we further explored the specific target genes 
of the lncRNAs using LncRNA2Target v2.0 database which 
is authoritative source including 152,137 lncRNA-target 
relationships confirmed by the knockdown or overexpression 
analysis and binding experimental technologies, and provides 
web interface for searching the targets by a particular lncRNA 
(Cheng et al., 2019).

Tissue Specificity Analysis of the Multiple 
Sclerosis-Related Long Noncoding 
Ribonucleic Acids
We explored the tissue expression specificity of the significantly 
differentially expressed lncRNAs in MS, which was important 
aspects of neurological disease research (usually, specifically 
expressed in CNS system) (Fatica and Bozzoni, 2014; He et al., 
2017; Tang et al., 2019b). For this purpose, lncRNA expression data 
were first downloaded from the NONCODE, which were involved 
in primary human tissue/cell line (e.g., brain, heart, breast, lung, 
liver, foreskin, lung, lymph node, colon, skeletal muscle, leukocyte, 
HeLa cells, and fibroblasts, etc.). Then, we extracted the expression 
data of various tissues by the corresponding differentially expressed 
lncRNAs in brain, blood, and whole sample, respectively, and 
stored them in three independent sets. Further, based on these data, 
we used the Jensen-Shannon (JS) divergence, an entropy-based 
approach, to calculate a tissue specificity score of the differentially 
expressed lncRNAs according to previous study (Cabili et al., 
2011). Briefly, the lncRNA expression vectors were converted to 
abundance density, and the distance between two tissue expression 
patterns was defined as the square root of JS divergence. The tissue 

specificity of a lncRNA expression pattern was measured through 
the distance between expression patterns across various tissues 
and predefined extreme pattern in which the lncRNA is uniquely 
expressed in one tissue (1 minus the distance). Thus, the metric of 
tissue specificity ranged from 0 to 1. The nearer the score to one, 
the stronger the tissue specificity becomes. Finally, using the same 
data, we performed the cluster analysis with Manhattan distance 
for differentially expressed lncRNAs in brain, blood and whole 
sample by R package “gplots.”

Inferring the Functions of Multiple 
Sclerosis-Related Long Noncoding 
Ribonucleic Acids by Weighted gene 
co-Expression Network Analysis
To infer the potential biological functions of these significantly 
differentially expressed lncRNAs in MS, we used WGCNA 
approach to determine the co-expression profile of these 
MS-related lncRNAs and protein-coding genes, and further 
performed the GSEA by the co-expressed protein-coding genes. 
First, in the same way used for identifying MS-related lncRNAs, 
we quantified the abundance of the protein-coding genes and 
identified the significantly differentially expressed genes by 
a meta-analysis. Second, we constructed the co-expression 
network by integrating the count values of the differentially 
expressed lncRNAs and protein-coding genes using the R 
package “WGCNA” (Langfelder and Horvath, 2008). Particularly: 
1) we conducted the sample clustering to check if there were any 
outlier samples using “hclust” function of R package “WGCNA”; 
2) after quality control, we used “pickSoftThreshold” function of 
R package “WGCNA” to calculate the satisfactory soft threshold 
power β for ensuring the scale-free topology characteristics 
of the co-expression network; 3) based on the β value, we 
applied the Pearson’s method to calculate an adjacency matrix 
which includes the weighted correlation of all gene pairs; 4) by 
adjacency matrix, we used the dynamic cut-tree algorithm to 
construct a hierarchical clustering dendrogram and identified 
the co-expression modules where genes have high topological 
overlap with each other. Finally, we assessed the significance of 
the modules for MS by measuring two indices. Particularly, one 
of the indices is correlation between module membership (i.e., 
intramodular connectivity) and gene significance for MS. High 
correlation means that the hub genes (i.e., the genes with high 
connectivity in a co-expression module) of the corresponding 
module also tend to be highly correlated with disease states (MS 
or healthy) (Langfelder and Horvath, 2008). The other is the 
average correlation of the genes in each module with disease 
states. This was also applied to assess association of each module 
with the platforms and the tissue types, respectively.

Pathway Analysis of the Multiple 
Sclerosis-Related Long Noncoding 
Ribonucleic Acids by gene Set 
Enrichment Analysis
Based on the two indices of module significance, we selected 
the most significant modules of disease states to investigate the 

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 1136

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


LncRNAs Analysis by Integrating RNA-seq DataHan et al.

5

lncRNA functions in MS by GSEA. We first extracted the ID 
numbers of the protein-coding genes co-expressed with lncRNAs 
in the modules. Then, we downloaded the signaling pathway 
data from two common databases, Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG). GO is a 
public resource of data on the gene functions in the biological 
process, molecular function, and cellular component (The 
Gene Ontology, 2017), and KEGG is comprehensive database 
which integrates the information of genes involved in signaling 
pathways, cellular processes, human diseases, etc. (Kanehisa 
et  al., 2017). Finally, we used the co-expressed protein-coding 
genes and the signaling pathway data to conduct the GSEA of 
the most significant modules using R package “clusterProfiler” 
(Yu et al., 2012). The adjusted P value calculated by the multiple 
testing (Benjamini-Hochberg method) was set at less than 0.05 as 
the threshold of significance.

RESULTS AND DIScUSSION

Results of Study Selection and Long 
Noncoding Ribonucleic Acid Abundance 
Quantification
Using keyword search and quality filtering, we identified 
ten MS-related RNA-seq datasets including: GSE60424, 
GSE66573, GSE66763, GSE89843, GSE100297, GSE120411, 
GSE111972, GSE123496, GSE77598, and SRP132699 from 
three authoritative databases. We found that the library 
preparation and sequencing methods in most of these 
datasets meet one/multiple requirements for improving the 

lncRNAs identification (i.e., poly-A tail selection, paired-end 
sequencing, and sequencing of double-stranded cDNA). Then, 
after the investigating the source of samples, we found that 
these datasets are involved in eight brain tissues (optic chiasm, 
corpus callosum, occipital cortex, astrocytes, frontal cortex, 
hippocampus, internal capsule, parietal cortex) and seven 
blood tissues (B cell, T cell, monocyte, platelets, neutrophils, 
natural killer cell, and whole blood). According to the various 
tissues, we selected a total of 20 studies (207 MS cases and 348 
controls) for the following analysis. The detailed information 
of each study was shown in Table 1. Finally, we downloaded 
RNA-seq data of the samples in each study, and used them to 
measure lncRNA expression (count values) using Kallisto (Bray 
et al., 2016) and R package “tximport” (Soneson et al., 2015). In 
total, lncRNA abundance in 555 samples was quantified.

heterogeneity Test and Meta-Analysis
Based on the count values of the 96,308 lncRNAs in 20 studies, 
the meta-analysis was performed to calculate SMD value with 
its 95% CI for each lncRNA using REM/FEM. Heterogeneity 
test showed that only about 2.90% lncRNAs have the significant 
heterogeneity (I2 > 50% and P < 0.01). Therefore, the homogeneous 
unbiased results could be identified in >97% lncRNAs by FEM. 
For the remaining lncRNAs of significant heterogeneity, REM 
could reduce resulting bias. In total, 5,420 lncRNAs were 
identified significantly differentially expressed between MS cases 
and controls, which included 368 downregulated and 5,052 
upregulated lncRNAs (shown in Figure 2A and Supplementary 
Table S1). For example, the Figure 2B exhibited the meta-analysis 
results of the lncRNA NONHSAG108980.1 which shows the 

TABLE 1 | Summary of the 20 selected studies for the meta-analysis. NK, natural killer cell.

Study 
Number

Dataset Tissue Year No. of 
cases

No. of 
controls

Sequencing 
platform

RNA-seq library type

Poly-A tail 
select

Sequencing 
of double-
stranded 
cDNA

Read type

1 GSE60424 B-cells 2014 6 4 Illumina HiScanSQ Yes Not described Paired-end
2 GSE60424 Monocytes 2014 6 4 Illumina HiScanSQ Yes Not described Paired-end
3 GSE60424 Neutrophils 2014 6 4 Illumina HiScanSQ Yes Not described Paired-end
4 GSE60424 NK 2014 3 4 Illumina HiScanSQ Yes Not described Paired-end
5 GSE60424 T-cells 2014 12 8 Illumina HiScanSQ Yes Not described Paired-end
6 GSE60424 Whole blood 2014 6 4 Illumina HiScanSQ Yes Not described Paired-end
7 GSE66573 Whole blood 2015 6 8 Illumina HiSeq 2500 Yes Yes Paired-end
8 GSE66763 T-cells 2015 10 6 Illumina HiSeq 2500 Not described Not described Paired-end
9 GSE77598 Monocytes 2016 5 3 Illumina HiSeq 2000 Not described Not described Paired-end
10 GSE89843 Platelets 2017 58 234 Illumina HiSeq 2500 Yes Yes Single-end
11 GSE100297 Optic chiasm 2017 5 5 Illumina HiSeq 3000 Yes Yes Single-end
12 GSE111972 Corpus callosum 2018 10 11 Illumina NextSeq 500 Yes Not described Single-end
13 GSE111972 Occipital cortex 2018 5 5 Illumina NextSeq 500 Yes Not described Single-end
14 GSE120411 Astrocytes 2018 24 18 Illumina HiSeq 2500 Yes Not described Single-end
15 SRP132699 Monocytes 2018 20 5 Illumina HiSeq 2500 Not described Not described Single-end
16 GSE123496 Corpus callosum 2019 5 5 Illumina HiSeq 3000 Yes Yes Single-end
17 GSE123496 Frontal cortex 2019 5 5 Illumina HiSeq 3000 Yes Yes Single-end
18 GSE123496 Hippocampus 2019 5 5 Illumina HiSeq 3000 Yes Yes Single-end
19 GSE123496 Internal capsule 2019 5 5 Illumina HiSeq 3000 Yes Yes Single-end
20 GSE123496 Parietal cortex 2019 5 5 Illumina HiSeq 3000 Yes Yes Single-end
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most significant association with an increased risk of MS (SMD = 
0.59, 95% CI = 0.40−0.78, P = 1.89×10−9). Then, to investigate the 
heterogeneity of the lncRNA expression profile in various tissues, 
we split the samples into brain and blood tissue, and performed 
the heterogeneity test and meta-analysis for subgroups. We 

found that not only the proportion of lncRNAs with a significant 
heterogeneity was not high for the whole samples, but also this 
percentage is further reduced to about 1.99 and 1.20% in blood 
and brain, respectively (Figure 2C). Finally, we explored the 
difference of the differentially expressed lncRNAs identified in 

FIgURE 2 | The results of heterogeneity test and meta-analysis for all samples and subgroups. (A) The expression level of the significantly differentially expressed 
long noncoding RNAs (lncRNAs) in each study after meta-analysis. The random effect model was used for 157 lncRNAs with a significant heterogeneity, while the 
fixed effect model was used for 5,263 non-heterogeneous lncRNAs. The details can be clearly viewed by enlarging the electronic version. (B) The forest plot for the 
meta-analysis of the lncRNA NONHSAG108980.1 which is the most significant result associated with an increased risk of MS (SMD = 0.59, 95% CI = 0.40−0.78, 
P = 1.89×10−9). (c) The bar plot showing the results of heterogeneity test in each group. For all samples, the proportion of lncRNAs with a significant heterogeneity 
is not high (about 2.90%), and this percentage is further decreased to about 1.99 and 1.20% in blood and brain, respectively. (D) The Venn diagram exhibiting the 
overlap among the significantly differentially expressed lncRNAs that are identified using brain tissues, blood tissues, and all samples.
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various tissues. We found that there was the higher specificity for 
these lncRNAs identified in brain compared with them identified 
in blood. Particularly, about 60.06% of the 5,420 differentially 
expressed lncRNAs can also be identified in the blood, while 
percentage is only 26.82% in brain (Figure 2D). Moreover, the 
total number of upregulated lncRNAs is far more than that of the 
downregulated ones in the blood (Supplementary Table S2) and 
the brain (Supplementary Table S3), which indicated that MS 
risk was related to lncRNA overexpression.

In addition, previous studies found that lncRNAs were 
modestly evolutionarily conserved in sequence (Guttman et al., 
2009; Iyer et al., 2015). Therefore, we explored the conservation 
in sequence of these differentially expressed lncRNAs using 
conservation constrain search in NONCODE which contains 
the conservation information of lncRNAs in 13 common model 
organisms (i.e., human, chimp, gorilla, orangutan, rhesus, 
mouse, rat, cow, pig, opossum, platypus, chicken, and zebrafish). 
The results showed that only 0.11% of the differential lncRNAs 
were conserved in sequence among all these 13 organisms, while 
this percentage is increased to 28.5% in primates (human, chimp, 
gorilla, orangutan, and rhesus).

Tissue Specificity Analysis of the Multiple 
Sclerosis-Related Long Noncoding 
Ribonucleic Acids
Using expression data of NONCODE database, we performed 
the JS divergence metric and the cluster analysis to explore 
the tissue specificity of MS-related lncRNAs. The results of JS 
divergence metric showed that the MS-related lncRNA had high 
tissue specificity when used the brain, blood and whole samples 
(Figure 3A). For cluster analysis, relied on the same data, we 
further compared the expression patterns of these differentially 
expressed lncRNAs in various human tissues and cell lines. We 
found that the differentially expressed lncRNAs identified based 
on whole sample were highly specifically expressed in brain tissue 
(Figure 3B). Similarly, we observed a significant brain-specific 
expression for the differentially expressed lncRNAs identified 
based on brain sample (Figure 3C). Interestingly, although the 
differentially expressed lncRNAs were identified from blood 
sample, their expressions were still highly specific in brain tissue 
(Figure 3D). These results are consistent with the findings of the 
previous step and our recently published study (Han et al., 2019), 
which suggest that MS possesses the characteristics of the CNS 
disorder in lncRNA dysregulation.

Inferring the Functions of Multiple 
Sclerosis-Related Long Noncoding 
Ribonucleic Acids by Weighted gene 
co-Expression Network Analysis
After abundance quantification together with meta-analysis, 
we identified 2,051 protein-coding genes significantly 
differentially expressed between MS patients and controls 
(Supplementary Table S4). Then, we combined the count values 
of 2,051 differentially expressed protein-coding genes and 5,420 
MS-related lncRNAs to perform the WGCNA. By quality control, 

we removed three outlier samples whose minimum cluster size 
less than 5 and cutting height less than 4.0×106 (Supplementary 
Figure S1). The satisfactory soft threshold power β was set 
as 9 when the model fitting index R2 equals 0.8 and the mean 
connectivity is close to 0 simultaneously (Supplementary 
Figure  S2). Finally, we constructed a co-expression network 
which includes 1,938 protein-coding genes and 5,022 lncRNAs, 
and according to the interconnectedness of gene pairs, they were 
clustered into 15 modules in network (MEyellow, MEturquoise, 
MEblue, MEsalmon, MEred, MEpurple, MEpink, MEmagenta, 
MEgreen, MEmidnightblue, MEcyan, MEtan, MEgreenyellow, 
MEbrown, and MEblack) (Figure 4A). Moreover, to assess the 
significance of these modules for MS, we calculated two types of 
correlations as the index. The results of the average correlation 
of the genes in each module with the disease states showed that 
MEyellow is the most associated module with MS (r = 0.33, 
P = 5×10−15), and the following three are MEred (r = 0.32, P = 
2×10−14), MEpink (r = −0.28, P = 2×10−11), and MEbrown (r = 
0.24, P = 9×10−9). This was also applied to assess the association of 
each module with the platforms and the tissue types, respectively. 
Consistently, we found that the MEred (r = 0.71, P = 2×10−85), 
MEbrown (r = 0.52, P = 1×10−39), and MEyellow (r = 0.38, P = 
2×10−20) were most significantly associated with the tissue types. 
While there is no module strongly associated with platforms 
(Figure 4B). These findings are generally consistent with the 
result of the correlation between the module membership and 
the gene significance for MS. For example, MEyellow and MEred 
are the top two module with the high average correlation of 
genes with disease states, and they also show a high correlation 
between module membership and gene significance (cor = 0.43, 
P = 4.6×10−15 and cor = 0.50, P = 2.6×10−19, respectively) (Figures 
4C, D). On the contrary, MEcyan shows a very low level both for 
the two types of correlations (r = −0.058, P = 0.2 and cor = 0.038, 
P = 0.8) (Figure 4E).

In addition, we also perform a WGCNA with the satisfactory 
soft threshold power β = 9 using all the quantified genes. We 
found that these genes are clustered into 119 modules in the 
network, and about 82.2% differentially expressed genes are 
clustered into 16 of the 119 modules (including a gray one). We 
also found that these modules show low/modest association with 
MS (the correlation coefficients are < 0.19). These results reflect 
the similar distribution of the differentially expressed genes 
between using all and filtering genes in this WGCNA, and imply 
that the extra genes may mask the association of the differentially 
expressed genes with MS.

Pathway Analysis of the Multiple 
Sclerosis-Related Long Noncoding 
Ribonucleic Acids by gene Set 
Enrichment Analysis
To explore the function of lncRNAs in MS, we performed 
GSEA in the four most significant modules for MS based 
on the two types of correlations, i.e., MEyellow (r = 0.33, P = 
5×10−15 and cor   = 0.43, P = 4.6×10−15), MEred (r = 0.32, P = 
2×10−14 and cor  =  0.50, P = 2.6×10−19), MEpink (r = −0.28, 
P  = 2×10−11 and cor = 0.63, P = 3.5×10−14), and MEbrown (r 
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FIgURE 3 | Continued
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= 0.24, P = 9×10−9 and cor = 0.32, P = 4.7×10−9). We found no 
significantly enriched pathway related to the MEred. Based on 
the result of LncRNA2Target, we identified that two differentially 
expressed lncRNAs in MEred could target the MS-related 
genes. Particularly, two target genes (CDH1 and CDH2) of the 
lncRNA NONHSAG081583.2 encoded cadherin protein which 
is the most abundant adhesion molecules participating in nerve 
conduction in synaptic junctions and the proinflammatory 
cytokines in MS can downregulate its expression (Minagar 
et al., 2003; Tian et al., 2009). The lncRNA NONHSAG000840.2 
targets a MS-related gene NOTCH2, and reducing NOTCH2 
in the proinflammatory monocytes can increase the frequency 

of the nonclassical monocytes and neutralizing antidrug 
antibody induction in IFN-β treated MS patients (Adriani et al., 
2018). For MEbrown, the co-expressed protein-coding genes 
were mainly involved in leukocytes and interleukin-related 
immune response (Figure 5A and Supplementary Table S5), 
which was similar to the finding of our recent study (Han et 
al., 2019). Many genomic variants in the human leukocyte 
antigen complexes and interleukin receptor were identified 
significantly associated with susceptibility of MS (Rubio et al., 
2002; Teutsch et al., 2003; Lundmark et al., 2007; Hollenbach and 
Oksenberg, 2015; Tang et al., 2019a). The protein-coding genes 
in MEpink are mainly associated with intercellular junction 

FIgURE 4 | The co-expression network analysis of the differentially expressed long noncoding RNAs (lncRNAs) and protein-coding genes. (A) The clustering 
dendrogram of these co-expressed lncRNAs and protein-coding genes. There are 15 clustered modules in the hierarchical clustering dendrogram which is 
constructed by a dynamic cut-tree algorithm. These clustered modules are marked as 15 different colors, respectively, i.e., yellow, turquoise, tan, salmon, red, 
purple, pink, midnight blue, magenta, green yellow, green, cyan, brown, blue, and black. (B) The heatmap for the association of each module with the disease 
states, platforms, and tissue types. Each cell represents a module, and contains the correlation r and corresponding P value (in brackets). Panels (c) to (E) show 
the results of correlation between the module membership and the gene significance in MEyellow, MEred, and MEcyan, respectively. The results of other modules 
were described in Supplementary Figure S3.

FIgURE 3 | The tissue specificity of the multiple sclerosis-related long noncoding RNAs (lncRNAs) based on expression data from NONCODE database. (A) Tissue 
specific expression measured by Jensen-Shannon divergence. The distributions of the maximal tissue specificity scores showed the high tissue specificity of the 
differentially expressed lncRNAs identified using whole (blue), brain (green), and blood sample (red), respectively. The (B) to (D) showed the hierarchical clustering 
heatmap for expression of these lncRNAs in primary human tissues and cell lines. These differentially expressed lncRNAs identified using whole (B), brain (c), and 
blood sample (D) are all highly specifically expressed in brain tissue. The Manhattan distance was used to perform all of the three cluster analyses.
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and signaling transmission (Figure 5B). Previous studies found 
that the defect of axon-glial signaling transmission caused by the 
oligodendrocyte gap junction loss and disconnection contributes 
to MS pathogenesis (Brand-Schieber et al., 2005; Markoullis et al., 
2012; Markoullis et al., 2014). The results of LncRNA2Target 
showed that lncRNA NONHSAG049754.2 in MEyellow targets 
the MS-related gene TNFRSF10A. This gene encodes the receptor 
of tumor necrosis factor (TNF) cytokines which plays a important 
role in inflammation regulations and is related to susceptibility 
of developing MS (De-la-Torre et al., 2019). The protein-coding 
genes in the MEyellow are related to ribonucleoprotein (Figure 
5C). Ribonucleoprotein is a kind of ribonucleic acid-binding 
protein which participates in the mRNA splicing (Guthrie, 1991). 
Previous study showed that as an important autoantigen in the 
neuroimmune disease, the ribonucleoprotein significantly more 
often interact with the autoantibodies in MS cerebrospinal fluids 
compared with controls (Sueoka et al., 2004; Yukitake et al., 2008). 
The following studies further identified a ribonucleoprotein-related 
lncRNA, TNF-α, and heterogeneous nuclear ribonucleoprotein L, 
which was significantly upregulated and produced transcriptional 
activating complexes to promote TNF-α expression by cooperating 
with ribonucleoprotein in the circulating blood cells of MS (Li 
et al., 2014; Eftekharian et al., 2017). Given that MEyellow is the 
most significant module for MS, we inferred that one of the key 
mechanisms of lncRNAs in MS is associated with the regulation of 
ribonucleoprotein and TNF cytokines receptor.

cONcLUSIONS
In this study, we comprehensively collected MS-related RNA-seq 
data from a variety of studies, and integrated these data by an 
expression-based meta-analysis to assess the affection of lncRNAs 
on the MS pathogenesis on genome scale. We identified a total 
of 5,420 lncRNAs significantly differentially expressed between 

MS patients and controls. Then, the subgroup analysis found a 
small heterogeneity of the lncRNA expression profile between 
the brain and blood tissues. Further, the specificity analysis of 
multiple tissues showed that the differentially expressed lncRNAs 
(including identified using brain, blood, and whole sample) are 
highly specifically expressed in brain tissue. Finally, the result of 
GSEA and WGCNA demonstrated that the potential important 
function of lncRNAs in MS may be involved in the regulation 
of ribonucleoprotein and TNF cytokines receptor. All in all, 
we performed a strategy to resolve the inconsistent MS-related 
lncRNA findings in previous studies, and explore the functions 
of these lncRNAs in MS. The findings of this study will be benefit 
to improve the understanding of the pathogenesis of MS.
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