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Purpose: Sjögren’s syndrome (SS) is an autoimmune disease characterized by dry 
mouth and eyes. To date, the exact molecular mechanisms of its etiology are still largely 
unknown. The aim of this study was to identify SS related key genes and functionally 
enriched pathways using the weighted gene co-expression network analysis (WGCNA).

Materials and Methods: We downloaded the microarray data of 190 SS patients and 
32 controls from Gene Expression Omnibus (GEO). Gene network was constructed 
and genes were classified into different modules using WGCNA. In addition, for the 
hub genes in the most related module to SS, gene ontology analysis was applied. The 
expression profile and diagnostic capacity (ROC curve) of interested hub genes were 
verified using a dataset from the GEO. Moreover, gene set enrichment analysis (GSEA) 
was also performed.

Results: A total of 1483 differentially expressed genes were filtered. Weighted gene 
coexpression network was constructed and genes were classified into 17 modules. 
Among them, the turquoise module was most closely associated with SS, which 
contained 278 genes. These genes were significantly enriched in 10 Gene Ontology 
terms, such as response to virus, immune response, defense response, response to 
cytokine stimulus, and the inflammatory response. A total of 19 hub genes (GBP1, 
PARP9, EPSTI1, LOC400759, STAT1, STAT2, IFIH1, EIF2AK2, TDRD7, IFI44, PARP12, 
FLJ20035, PARP14, ISGF3G, XAF1, RSAD2,LY6E, IFI44L, and DDX58) were identified. 
The expression levels of the five interested genes including EIF2AK2, GBP1, PARP12, 
PARP14, and TDRD7 were also confirmed. ROC curve analysis determined that the 
above five genes’ expression can distinguish SS from controls (the area under the curve is 
all greater than 0.7). GSEA suggests that the SS samples with highly expressed EIF2AK2 
or TDRD7 genes are correlated with inflammatory response, interferon α response, and 
interferon γ response.
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INTRODUCTION
Sjögren’s syndrome (SS), a systemic autoimmune disease, is 
characterized by lymphocyte infiltration in exocrine glands, 
which further leads to destruction of their function (Fox, 2005). 
The SS occurs ten times more frequently in females than in 
males and it is most common in women aged between 40 and 
60 years (Qin et al., 2015). SS is clinically characterized by 
keratoconjunctivitis sicca (dry eyes) and xerostomia (dry mouth) 
and may be accompanied by multi-organ systemic manifestations 
(Fox, 9482). Xerostomia can hinder eating, speaking, and 
swallowing, and cause rampant caries, all of which largely 
compromise quality of life for SS patients. SS that occurs without 
any other autoimmune diseases was defined as primary Sjögren’s 
syndrome (pSS) (Molano-Gonzalez et al., 2018). Furthermore, 
SS can occur in association with other autoimmune diseases, 
such as autoimmune thyroid diseases (AITD), systemic lupus 
erythematosus (SLE), and rheumatoid arthritis (RA) (Salliot 
et al., 2007; Anaya et al., 2016; Alani et al., 2018). Literatures have 
reported that several microRNAs were abnormally expressed in 
SS, indicating that they may be involved in the pathogenesis of SS 
and some microRNAs can also be used as diagnostic biomarkers 
of SS such as miR-146a, miR-768-3p, and miR-574 (Chen et al., 
2015; Cha et al., 2018). A recent study also found that increased 
ligand for glucocorticoid-induced TNFR family-related protein 
(GITRL) plays a critical role in attenuating the function of 
myeloid-derived suppressor cells and can exacerbate SS (Tian 
et al., 2019). However, to our best knowledge, the etiology and 
progression of SS are still unclear to date.

Weighted gene co-expression network analysis (WGCNA) 
can be used to explore the gene-network signature associated 
with complicated diseases (Langfelder and Horvath, 2008). 
WGCNA can integrate gene expression and trait data effectively 
to identify functional pathways and candidate biomarkers 
(Presson et al., 2008). WGCNA has been reported to be applied to 
investigate the gene-network signature, co-expression modules, 
and hub genes involved in some autoimmune diseases, such as 
type 1 diabetes (Riquelme Medina and Lubovac-Pilav, 2016), 
rheumatoid arthritis (Ma et al., 2017), inflammatory bowel 
disease (Li et al., 2016), and Graves’ disease (Shao et al., 2018). 
There is possibility that WGCNA can also be useful to identify 
the gene-network signature and hub genes associated with SS 
and get deep understanding of its pathogenesis. Hub gene is a 
gene that interacts with many other genes in gene networks 
and usually plays a key role in biological processes and gene 
regulation (Yu et al., 2017). Up to now, our study is the first to 
use WGCNA analysis to explore the gene-network signature of 
peripheral blood related to SS with sample size more than 200. 

Furthermore, for the hub genes in the most related module to SS, 
gene ontology analysis was also applied to explore their potential 
functions. What’s more, gene set enrichment analysis for single 
gene was performed for selected hub genes in order to find the 
associated gene sets.

MATERIAlS AND METhODS

Data Collection and Preprocessing
We downloaded mRNA expression profiles of human SS from 
the Gene Expression Omnibus (GEO) database. In our study, 
GSE51092 was used to construct co-expression networks 
and identify hub genes related to SS. The microarray dataset 
provided gene expression profile in whole peripheral blood 
from 190 SS patients and 32 controls (Lessard et al., 2013). 
According to the data processing information of GSE51092, 
each dataset was normalized independently using Robust 
Multiarray Average (RMA) followed by log2 transformation and 
quantile normalization. ComBat was subsequently applied to the 
combined dataset to adjust for batch effect.

Differentially Expressed Genes Screening
We screened the differentially expressed genes (DEGs) between 
SS patients and controls in the expressing data using the “limma” 
R package. The significance analysis of microarrays (SAM) was 
utilized to select significantly changed genes with false discovery 
rate (FDR) <0.05 and log2 fold change (FC) ≥1.

Construction of Co-Expression Network
The co-expression network of the DEGs was constructed based 
on GSE51092 microarray dataset by the R package “WGCNA” 
(Langfelder and Horvath, 2008). The soft-thresholding power we 
chose was eight when 0.8 was used as the correlation coefficient 
threshold, and 10 was chosen as the minimum number of genes 
in modules. To merge possible similar modules, we defined 0.2 as 
the threshold for cut height.

Functional Enrichment Analysis
To obtain further insights into the function of the DEGs in 
the module most related to SS, we referred to the Database for 
Annotation, Visualization and Integrated Discovery (DAVID) 
(https://david.ncifcrf.gov/home.jsp/) to perform the Gene 
Ontology analysis (Huang da et al., 2009; Huang da et al., 2009). 
P < 0.05 was set as the cut-off. The R package “GOplot” was 
adopted to show the results graphically.

Conclusion: The present study applied WGCNA to generate a holistic view of SS and 
provide a basis for the identification of potential pathways and hub genes that may be 
involved in the development of SS.

Keywords: Sjögren’s syndrome, weighted gene co-expression network analysis (WGCNA), hub gene, biological 
process, gene set enrichment analysis
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hub Genes Identification
In the module-trait correlation analysis, hub genes were considered 
as genes with gene significance greater than 0.4 and high module 
group members (MM) (weighted correlation index > 0.9), 
indicating a significant correlation with some clinical features.

hub Genes Validation and  
Efficacy Evaluation
Among the hub genes, five genes (EIF2AK2, GBP1, PARP12, 
PARP14, TDRD7) of interest that have not been studied in SS 
were further validated in another two datasets GSE84844 (Tasaki 
et al., 2017) and GSE66795 (James et al., 2015) downloaded from 
GEO database. In the GSE84844 dataset, 30 SS patients and 30 
healthy individuals were recruited and the RNA was extracted 
from their peripheral blood mononuclear cells (PBMCs). The 
data of GSE84844 were analyzed with the frozen robust multiarray 
analysis (fRMA) using Bioconductor with default settings and 
absence/presence calls were estimated by Microarray Suite 
version 5.0 (MAS 5.0). In the GSE66795 dataset, the total RNA 
was extracted from the peripheral whole blood of 131 SS patients 
and 30 healthy controls. Also, ROC curve was plotted and AUC 
was calculated with “pROC” package to evaluate the capability of 
selected genes to distinguish SS patients and controls.

Gene Set Enrichment Analysis
To further explore the potential function of the selected hub 
genes in SS, gene set enrichment analysis (GSEA) for single hub 
gene was performed. In the dataset GSE51092, according to the 
median expression level of hub genes, 190 SS samples were divided 
into two groups. The R package “clusterprofiler” was utilized 
to conduct GSEA. The h.all.v6.2.sytmbols.gmt in Molecular 
Signatures Database (MSigDB) was selected as the reference gene 
set, and P adjusted value < 0.05 was chosen as the cut-off criteria.

Statistical Analysis
The statistical significance of differences between the two 
groups was analyzed using non-parametric test or t test 
based on data distribution characteristics. All analyses were 
conducted using software R3.5.3. P value < 0.05 was considered 
statistically significant.

RESUlTS

Differentially Expressed Genes Between 
Sjögren’s Syndrome and Normal Controls
A total of 1,483 differentially expressed genes were identified and 
selected for subsequent analysis. The top 20 up-regulated genes and 
10 down-regulated genes identified in the gene expression microarray 
study of 190 SS patients and 30 controls were shown in Table 1.

Co-Expression Networks
When 0.9 was used as the correlation coefficient threshold, 
the soft-thresholding power was selected as eight (Figure 1A). 
Through WGCNA analysis, 17 co-expression modules were 

constructed (Figure 1B). The module comprising most genes 
was the turquoise one, followed by the black module, the blue 
module, and the yellow module (Figure 1B). Moreover, these 
modules were independent of other modules (Figure 1C).

Module-Trait Correlations in Sjögren’s 
Syndrome and Identification of hub Genes
Module-trait correlations analyses showed that multiple modules 
were related to SS (Figure 2A). Figure 2B showed the summary 
of significance of all genes in each module related to SS. It clearly 
indicated that the turquoise module was most significantly associated 
with SS (Figure 2B). Figure 2C showed the significance of these genes 
in the turquoise module for SS (Figure 2C). Notably, some genes in 
the turquoise module such as GBP1, PARP9, EPSTI1, LOC400759, 
STAT1, STAT2, IFIH1, EIF2AK2, TDRD7, IFI44, PARP12, FLJ20035, 
PARP14, ISGF3G, XAF1, RSAD2,LY6E, IFI44L, and DDX58 had 
high gene significance for SS (Figures 2C, D). Besides, these genes 
mentioned above were also closely related to each other (Figure 2D). 
Thus these genes could be considered as hub genes.

Functional Annotation of the Key 
Co-Expression Module
GO functional enrichment analysis showed that the genes in 
turquoise module were mainly enriched in biological process 
being involved in response to virus, immune response, defense 
response, response to cytokine stimulus, and the inflammatory 

TABlE 1 | The top 20 up-regulated genes and 10 down-regulated genes 
identified in the gene expression microarray study of 190 SS patients and  
30 controls.

Gene logFC P.Value adj.P.Val

EPSTI1 1.532429 7.80E-10 1.06E-06
LOC400759 1.255257 8.21E-10 1.06E-06
IFI44 1.724777 1.26E-08 7.25E-06
CXCL10 1.533126 1.42E-08 7.25E-06
FLJ20035 1.12229 1.60E-08 7.27E-06
XAF1 1.204912 4.07E-08 1.46E-05
RSAD2 2.177534 4.20E-08 1.46E-05
TTC21A 1.036592 4.28E-08 1.46E-05
LY6E 1.47236 5.69E-08 1.78E-05
IFI44L 2.175133 5.84E-08 1.78E-05
LAMP3 1.702514 9.52E-08 2.49E-05
ATF3 1.210089 9.71E-08 2.49E-05
SERPING1 1.465796 1.22E-07 2.85E-05
IFITM3 1.196708 1.70E-07 3.62E-05
ISG15 1.584807 1.71E-07 3.62E-05
BATF2 1.329895 2.02E-07 3.88E-05
DNAPTP6 1.48339 3.19E-07 5.34E-05
IFI27 2.979257 3.37E-07 5.44E-05
IFIT1 1.477969 1.34E-06 0.000156
MMP28 −1.2842 4.41E-09 3.33E-06
RBPMS2 −1.08485 1.74E-08 7.65E-06
LOC644532 −1.07012 2.89E-08 1.23E-05
LOC650761 −1.22368 4.15E-08 1.46E-05
LOC389816 −1.1437 7.92E-08 2.16E-05
CD248 −1.46395 1.25E-07 2.85E-05
HS.567460 −1.68229 3.89E-07 6.19E-05
HS.449276 −1.00543 8.39E-07 0.00011
LRRN3 −1.12993 7.12E-05 0.002464
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response (Figure 3A). Cross-examination of the relationship 
between these genes and GO biological process terms suggested 
that a substantial number of genes related to immune response 
were also enriched for other biological processes such as defense 
response, response to cytokine stimulus, and the inflammatory 
response, indicating that these genes could be related to multiple 
biological pathways orchestrating SS development (Figure 3B).

Validation and Efficacy Evaluation of  
hub Genes
In dataset GSE51902, the expression of five interested genes including 
EIF2AK2 (Figure 4A), GBP1 (Figure 4B), PARP12 (Figure 4C), 
TDRD7 (Figure 4D), and PARP14 (Figure 4E) was significantly 
increased in the SS patients. What’s more, the expression levels of 
the above five hub genes were investigated in another two datasets 
GSE84844 and GSE66795. As shown in Figure 5, the expression 
of EIF2AK2 (Figure 5A), GBP1 (Figure 5B), PARP12 (Figure 
5C), TDRD7 (Figure 5D), and PARP14 (Figure 5E) was also 
significantly up-regulated (all P < 0.001) in the PBMCs of SS patients 
compared to controls in dataset GSE84844. Figure 6 displayed that 
the expression trend of EIF2AK2 (Figure 6A), GBP1 (Figure 6B), 

PARP12 (Figure 6C), TDRD7 (Figure 6D), and PARP14 (Figure 
6E) in dataset GSE66795 was the same as GSE84844. In addition, 
ROC curve was plotted and the area under the curve (AUC) was 
calculated to distinguish SS from controls, and every AUC of the five 
real hub genes was greater than 0.7 in datasets GSE51092 (Figure 
7A), GSE 84844 (Figure 7B), and GSE66795 (Figure 6C).

Gene Set Enrichment Analysis
Through gene set enrichment analysis, we found the full list of gene 
sets enriched in samples with EIF2AK2 (Figure 8A), GBP1 (Figure 
8B), PARP12 (Figure 8C), PARP14 (Figure 8D), or TDRD7 (Figure 
8E) highly expressed. Then we selected the gene sets related to 
immunity among the full list to perform further analysis. Three gene 
sets were enriched in samples with highly expressed EIF2AK2 and 
TDRD7, including “inflammatory response,” “interferon α response,” 
and “interferon γ response”(Figures 9A, E). Similarly, in the samples 
with GBP1 highly expressed, “Regulation of the immune response,” 
“Regulation of the defense response,” and “response to cytokine” 
were enriched (Figure 9B). Moreover, gene sets “inflammatory 
response” and “interferon α response” were enriched in the samples 
with either PARP12 or PARP14 highly expressed (Figures 9C, D).

FIGURE 1 | WGCNA revealed gene co-expression networks in the whole peripheral blood of 190 SS patients. (A) Analysis of the scale-free fit index for various soft-
thresholding powers (Left) and analysis of the mean connectivity for various soft-thresholding powers (Right); (B) Clustering dendrogram of differentially expressed 
genes related to SS in the whole peripheral blood tissues of 192 SS patients; (C) Network heatmap plot in the co-expression modules (The progressively saturated 
red colors indicated higher overlap among the functional modules.).
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FIGURE 2 | Main findings in the module-trait correlations analyses. (A) Heatmap between the correlation between modules and SS (Each cell contained the 
correlation coefficient and corresponding P value.); (B) Module significance values of those co-expression modules associated with SS (Module significance value 
indicated the summary of gene significance of all genes in each module, and different colors of column indicated different modules.); (C) The gene significance for 
SS in the turquoise module (One dot represents one gene in the turquoise module.); (D) Top 19 genes with high gene significance for SS were intensively correlated 
to each other.

FIGURE 3 | Functional analysis. (A) Gene ontology enrichment analysis of turquoise module genes. (B) Circos plot to indicate the relationship between genes and 
GO terms. Cross-examination of the relationship between these genes and GO biological process terms suggested that a substantial number of genes related to 
immune response were also enriched for other biological process such as defence response, response to cytokine stimulus and the inflammatory response.
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DISCUSSION
As far as we know, our study is the first one to apply WGCNA 
to build the SS-related gene-network with samples more than 
200. Through WGCNA method, we constructed SS-related 
gene co-expression networks, and found several key gene 

co-expression modules and several hub genes related to the 
pathogenesis of SS. The results of this research present new 
insights into the molecular mechanism of SS development.

In the present study, a total of 17 co-expression modules 
were obtained by WGCNA analysis. Among them, the turquoise 
module was the main one involved in SS, containing 278 genes. 

FIGURE 4 | Expression of hub genes in dataset GSE51092. (A–E) Expression levels of EIF2AK2 (A), GBP1 (B), PARP12 (C), TDRD7 (D), and PARP14 (E) were 
significantly increased in SS patients.

FIGURE 5 | Validation of hub genes in dataset GSE84844. (A–E) Expression levels of EIF2AK2 (A), GBP1 (B), PARP12 (C), TDRD7 (D), and PARP14 (E) were 
significantly upregulated in SS patients.
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Besides turquoise, there were several other co-expression 
modules in SS, such as black, blue, and yellow modules. Therefore, 
the etiology of SS involves complex genetic networks.

GO functional enrichment analysis is very powerful and widely 
used to classify biological entities into functional related groups 
(Rue-Albrecht et al., 2016). In this study, we also applied GO analysis 
to elucidate the biological functions of genes in the turquoise 

module. The results showed that the turquoise module was mainly 
enriched in response to virus, immune response, defense response, 
response to cytokine stimulus, and the inflammatory response. 
These findings further confirmed the involvement of multiple 
immune processes and cytokines in the pathogenesis of SS.

Among the 17 modules, the turquoise module is the key one 
involved in SS pathogenesis. Besides, among the 278 genes in the 

FIGURE 6 | Validation of hub genes in dataset GSE66795. (A–E) Expression levels of EIF2AK2 (A), GBP1 (B), PARP12 (C), TDRD7 (D), and PARP14 (E) were 
significantly upregulated in SS patients.

FIGURE 7 | ROC curve of hub genes including EIF2AK2, GBP1, PARP12, PARP14, and TDRD7 in two datasets. (A) GSE51092 (B) GSE84844 (C) GSE66795.
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turquoise module, some genes had greater significance for SS 
than others, such as GBP1, PARP9, EPSTI1, LOC400759, STAT1, 
STAT2, IFIH1, EIF2AK2, TDRD7, IFI44, PARP12, FLJ20035, 
PARP14, ISGF3G, XAF1, RSAD2, LY6E, IFI44L, and DDX58. 
These genes could be regarded as hub genes. In addition, they can 
play important roles in certain co-expression module. However, 
their mechanisms in SS are largely unclear.

Most of these hub genes are type I interferons inducible genes. 
To date, the molecular mechanism of SS is not well clarified, but 
cumulative evidence showed that SS patients have an activated 
interferon type I response (Bave et al., 2005; Vakaloglou and 
Mavragani, 2011). It was demonstrated by enhanced interferon type 
I activity and increase expression of interferons-regulated genes in 
SS patients (Emamian et al., 2009). IFN, EPSTI1, STAT1, and IFI44L 
were identified in a meta-analysis among the top 20 differentially 
expressed genes associated with SS (Song et al., 2014). The 
interferon type I signature is present in over half of the SS patients 
and related to disease activity and the presence of autoantibodies 
(Kirou et al., 2005; Brkic et al., 2013). One study has found an 
upregulation of IFIH1, RSAD2, and DDX58 in plasmacytoid 
dendritic cells and monocytes of Interferon-positive SS patients 
and a downregulation of IFIH1 and DDX58 in Interferon-negative 
SS patients (Maria et al., 2017). Interferon type I inducible genes 
IFI44, IFI44L, LY6E, and XAF1 were all increased in patients with 
SS (Brkic et al., 2013). PARP9, also, an IFN-induced gene, was 

found with distinct hypomethylation and upregulation in CD19+ 
B cells of SS patients. Our study further confirmed that interferon 
type I signature was involved in the pathogenesis of SS. However, 
seven (GBP1, LOC400759, EIF2AK2, TDRD7, PARP12, FLJ20035, 
and PARP14) of these genes have not been studied in SS. Among 
them, in dataset GSE51902 (Lessard et al., 2013), the expression of 
EIF2AK2, GBP1, PARP12, PARP14, and TDRD7 was significantly 
increased in the SS patients. What’s more, the expression levels 
of the above five hub genes were validated in another dataset. We 
found that their expression was also significantly up-regulated in 
the PBMCs of SS patients compared to controls in dataset GSE84844 
(Tasaki et al., 2017). Although these two studies used different 
platforms for gene expression analysis and were conducted on very 
distinct populations, the expression trends of these five genes were 
not affected. The reason may be that the data were normalized or 
standardized. It also suggests that the expression of these five genes 
is universal in different ethnic groups. Of course, their expression 
and related function also need to be elucidated in more different 
races in the future.

In addition, our study revealed that immune response, 
inflammatory response, response to cytokine stimulus, and regulation 
of lymphocyte proliferation were involved in the pathogenesis of 
SS based on the functional analysis. In fact, a study has found that 
TH2 helper cells cytokines dominate in the early lesions of SS, while 
TH1 helper cells cytokines are related to later stages of the disorder 

FIGURE 8 | Gene set enrichment analysis (GSEA). The full list of gene sets enriched in samples with EIF2AK2 (A), GBP1 (B), PARP12 (C), PARP14 (D), or TDRD7 
(E) highly expressed.
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(Mitsias et al., 2002). Studies have demonstrated an association of 
IL-17, IL-18, IL-22, IL-36α, and IL-37 with the pathophysiology of 
SS (Ciccia et al., 2015; Xin et al., 2015; Liuqing et al., 2017; Matsui 
and Sano, 2017). Also, CD4+ T lymphocytes comprise majority of 
the glandular infiltration in SS (Nair and Singh, 2017). However, the 
exact roles of these cytokines and lymphocyte in SS are not clear.

Although the present study is the first to investigate the 
coexpression gene networks associated with SS using WGCNA 
analysis with large sample size, our study also has limitations. On 
one hand, we did not further study the exact mechanism of the 
identified hub genes in SS. On the other hand, in our WGCNA 
analysis and validation of hub genes, we used the data from three 
different studies. These three studies used different platforms for 
gene expression analysis and were conducted on very distinct 
populations. Thus, the expression of these hub genes still needs 
to be investigated in more different races.

In summary, our study finds involvement of the key gene 
co-expression module, hub genes and some functional biological 
pathways related to immune response, inflammatory response 
and cytokines in the pathogenesis of SS. These findings provide 
new insights into the development of SS, although the exact 

molecular mechanism of hub genes and functional pathway in 
SS still need to be further explored.
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